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In recent years, in-depth studies have shown that extracellular matrix stiffness plays an
important role in cell growth, proliferation, migration, immunity, malignant transformation,
and apoptosis. Most of these processes entail metabolic reprogramming of cells.
However, the exact mechanism through which extracellular matrix stiffness leads to
metabolic reprogramming remains unclear. Insights regarding the relationship between
extracellular matrix stiffness and metabolism could help unravel novel therapeutic targets
and guide development of clinical approaches against a myriad of diseases. This review
provides an overview of different pathways of extracellular matrix stiffness involved in
regulating glucose, lipid and amino acid metabolism.
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INTRODUCTION

The extracellular matrix (ECM), mainly composed of collagen, fibronectin, laminin, elastin, and
thrombospondin, is a non-cellular component of the cellular microenvironment (1, 2). During
embryonic development and tumorigenesis, there is an increase in deposition and cross-linking of
collagen as well as hyaluronan acid content, resulting in increase of ECM’s stiffness (3–5). Existing
evidence has also implicated ECM stiffness in tumor development (6, 7).

Metabolism provides energy and biomass for cellular activity and proliferation (8), with normal
cells meeting their metabolic needs primarily by regulating glucose, lipid and amino acid
metabolism. In cancer cases, metabolic reprogramming is a common phenomenon that allows
cancer cells to proliferate, survive, and spread in an altered microenvironment. The enhanced
metabolism of glucose, lipid, and amino acid in cancer cells provides energy, membrane lipid
molecules, signaling molecules, and nucleotides for rapid proliferation (9–11). Previous studies have
described the role played by ECM stiffness in regulating the cellular metabolic reprogramming,
especially in tumors. Specifically, it has been suggested that both in vivo and in vitro experimental
changes in tumor matrix stiffness or stiffness-related metabolic reprogramming can significantly
Abbreviations: ACC, acetyl-CoA carboxylase; ACL, ATP-citrate lyase; ECM, extracellular matrix; FAS, fatty acid synthase;
GLS, glutaminase; GLUL, glutamine synthetase; GSK3, glycogen synthase kinase-3; G6Pase, glucose-6-phosphatase; HA,
hyaluronic acid; HCC, hepatocellular carcinoma; HK2, hexokinase 2; LDHA, lactate dehydrogenase A; LDLR, low-density
lipoprotein receptor; LPL, lipoprotein lipase; MPA, mycophenolic acid; MSO, methionine sulfoximine; PDAC, pancreatic
ductal adenocarcinoma; PEPCK, phosphoenolpyruvate carboxykinase; PFK, phosphofructo kinase; PFKFB3, 6-
phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; PHGDH, phosphoglycerate dehydrogenase; PKM2, pyruvate kinase
M2; PSAT1, phosphoserine aminotransferase 1; PSPH, phosphoserine phosphatase; SCD-1, Stearoyl-CoA desaturase 1;
SHMT2, serine hydroxymethyltransferase 2; SREBP, sterol regulatory element-binding protein; TRIM21, E3 ubiquitin ligase
tripartite motif (TRIM)-containing protein 21; TXNIP, thioredoxin-interacting protein.
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inhibit tumor growth and invasive metastasis. Therefore,
targeting metabolic reprogramming associated with tumor
stiffness could be a potential therapeutic strategy for clinical
treatment of cancer.

In this review, we briefly introduce the stiffness composition
of ECM and the mechanobiological coupling pathway.
Furthermore, we comprehensively reviewed regulation of ECM
stiffness on glucose, lipid and amino acid metabolism, as well as
the associated effects on cell proliferation, survival, and invasion.
Overall, we provide new ideas for understanding cellular
metabolism, which are expected to guide development of new
strategies for the treatment of tumors.
EXTRACELLULAR MATRIX COMPONENTS
AND MECHANICAL BIOLOGICAL
COUPLING PATHWAY

ECM comprises several components. Among them, collagen and
hyaluronan acid are the main ones that affect its stiffness.
Previous studies have shown that increase in deposition and
cross-linking of collagen as well as hyaluronan acid contents
increase ECM’s stiffness (3–5, 12). In addition, this stiffness can
transfer physical signals from the ECM to intracellular matrix
Frontiers in Oncology | www.frontiersin.org 2
through mechanical conduction, thereby change the biological
behavior of the cell.

Studies have also shown that both collagen receptor integrin
and hyaluronan acid receptor CD44 are involved in the
mechanical conduction of ECM stiffness (13). Specifically,
hyaluronan acid with different molecular weights binds to its
receptor CD44, whereas collagen components of various
subtypes bind to corresponding integrin receptor subtypes,
regulating downstream signal pathways and producing
different biological effects (Table 1).

This affirms the need to analyze composition and proportions
of ECM across different tissue samples during clinical or basic
translational studies. In addition, targeted anti-downstream
signaling pathways or receptors of different ECM components
and compositions can achieve precise and individualized
therapeutic effects in the extracellular microenvironment.
ECM STIFFNESS AND GLUCOSE
METABOLISM

Effects of ECM stiffness on cellular glucose metabolism are
mediated by multiple pathways, which are broadly categorized
as: (i) YAP/TAZ pathway; (ii) TXNIP pathway; (iii) Rho/Rock-
TABLE 1 | ECM components and mechanical biological coupling pathway.

ECM
components

Receptor
protein

Signal pathway Cell model Animal model References

Collagen b1 integrin integrin-FAK-PI3K-Akt Ha-ras human
MCF10AT MECs

NOD/SCID mice Matrix Crosslinking Forces Tumor Progression by Enhancing
Integrin Signaling (3)

Collagen type I b1 integrin integrin–N-cadherin astrocytes female C57BL/6J
mice

Interaction of reactive astrocytes with type I collagen induces
astrocytic scar formation through the integrin– N-cadherin
pathway after spinal cord injury (14)

Collagen type I b1 integrin integrin-FAK-YAP Repairing Epithelium C57BL/6J mice YAP/TAZ-Dependent Reprogramming of Colonic Epithelium
Links ECM Remodeling to Tissue Regeneration (15)

Collagen type I CD44 CD44-RhoA-YAP fibroblasts Male C57BL/6
mice

Targeting Mechanics-Induced Fibroblast Activation through
CD44-RhoA-YAP Pathway Ameliorates Crystalline Silica-
Induced Silicosis (16)

Collagen type V avb3 and
avb5

integrins

NA cardiac fibroblast Murine models Type V Collagen in Scar Tissue Regulates the Size of Scar after
Heart Injury (13)

HA CD44 CD44-ERM-actin
cytoskeleton

human kidney cell line
293

NA CD44 is required for two consecutive steps in HGF/c-Met
signaling (17)

HA CD44 CD44-AFAP-110-actin
cytoskeleton

MDA-MB-231 cells NA Interaction of Low Molecular Weight Hyaluronan with CD44
and Toll-Like Receptors Promotes the Actin Filament-
Associated Protein 110-Actin Binding and MyD88-NFjB
Signaling Leading to Proinflammatory Cytokine/Chemokine
Production and Breast Tumor Invasion (18)

HA CD44 CD44-Rho GTPases hippocampal neurons Wistar rats
postnatal day 0

CD44 - a novel synaptic cell adhesion molecule regulating
structural and functional plasticity of dendritic spines (19)

HA CD44 CD44-ERM-
cytoskeleton

macrophage female C57Bl/6
mice

Transmembrane pickets connect cyto-and pericellular-
skeletons forming barriers to receptor engagement (20)

HA NA RTK-ZFP36-TXNIP/
MYC-TXNIP

LiSa-2 liposarcoma
cells

White SCID
(Beige) mice

Extracellular Matrix Remodeling Regulates Glucose Metabolism
through TXNIP Destabilization (21)

NA b1 integrin integrin-GSK3b-b
Catenin

Huh7 cells NA Higher Matrix Stiffness Upregulates Osteopontin Expression in
Hepatocellular Carcinoma Cells Mediated by Integrin b1/
GSK3b/b-Catenin Signaling Pathway (22)

NA E cadherin E cadherin-LKB1-AMPK MCF10A/MDCK II NA Linking E-cadherin mechanotransduction to cell metabolism
through force mediated activation of AMPK (23)
In different cells or animal models, extracellular matrix components combine with their receptors and affect different downstream signaling pathways. HA, hyaluronic acid. NA, not available.
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actin cytoskeleton pathway; (iv) Rho/Rock-PTEN pathway; (v)
integrin-FAK-PI3K-Akt pathway; (vi) GSK3 pathway; and (vii)
AMPK pathway. Furthermore, the effects of passageways
regulated by ECM stiffness on cellular glucose metabolism can
ultimately be summarized as follows: (i) changes in the number
of glucose transport proteins in the cell membrane; (ii) alteration
of glycolytic enzyme activity; (iii) alteration of glycogen synthase
activity; (iv) expression of gluconeogenic genes; (v) enhancement
of the pentose phosphate pathway; and (vi) cell endocytosis
(Figure 1).

YAP/TAZ is a key molecule in the mechanobiological
coupling signaling pathway, owing to its involvement in
embryo and tumor development where it promotes cell
proliferation and survival. The mechanisms through which
ECM stiffness upregulates YAP/TAZ are diverse, and may be
regulated differently across different cell types. Generally, these
mechanisms are broadly categorized as: (i) effect on cytoskeletal
tension (24); (ii) effect on hyaluronic acid (HA) receptor CD44
(16); (iii) activation on the MAPK signaling cascade in hepatic
cancer cells (25); (iv) ECM stiffness can affect cellular metabolism
through integrin (discussed in a later section), and it has been
reported that integrin affects cellular metabolism through YAP/
TAZ (26). However, it is unclear whether ECM stiffness can
activate YAP/TAZ through integrin. (v) ECM stiffness regulates
AMPK (23, 27), which is also involved in regulating YAP/TAZ
signals (28). Therefore, we hypothesized that ECM stiffness could
regulate metabolism through AMPK-mediated YAP/
TAZ signals.

Previous studies have also shown that stiffness upregulates
YAP/TAZ expression in various types of cells (24, 25, 29–32),
Frontiers in Oncology | www.frontiersin.org 3
such as hepatocellular carcinoma (25), hepatic stellate cells (33)
and pulmonary artery endothelial cells (30). Consequently, this
YAP/TAZ-mediated upregulation promotes uptake and
utilization of cellular glucose, increases glycolysis, and
influences glycogenolysis. The activated YAP/TAZ can be
involved in glucose metabolism in three general ways. Firstly,
it increases expression of glucose transport proteins. For
example, The YAP-TEAD was shown to directly regulate
GLUT1 (25, 34) and GLUT3 (26, 28) transcription, thereby
promoting cellular uptake of glucose, which supplies more
energy to cells and is also involved in nucleotide biosynthesis.
In zebrafish, WZB117-mediated inhibition of GLUT1 and
mutations in YAP were both shown to reduce glucose uptake
and subsequent nucleotide synthesis leading to reduced liver
volume (34). Thus, it is possible that matrix stiffness is involved
in regulating liver growth and size by influencing YAP/TAZ-
mediated glucose uptake. Secondly, activated YAP/TAZ affects
glucose metabolism by increasing expression of key glycolytic
enzymes, such as hexokinase 2 (HK2) (25, 35–37), lactate
dehydrogenase A (LDHA) (25, 30, 32), pyruvate kinase M2
(PKM2) (38), and 6-phosphofructo-2-kinase/fructose-2,6-
biphosphatase 3 (PFKFB3) (37). This consequently promotes
glycolysis, thereby providing more energy for cellular activities
and more carbon skeletons to the cell. Knocking out of the YAP
gene in human hepatocellular carcinoma (HCC) cell lines,
HepG2, and MHCC97L cells, cultured in the stiff ECM,
resulted in downregulation of glycolytic enzymes HK2 and
LDHA, which subsequently reduced the migration capacity of
cancer cells (25). Subsequently, HCC cells cultured on stiff
hydrogels with HK2 downregulated by siRNA knockdown,
FIGURE 1 | Profiles of pathways through which extracellular matrix stiffness affects glucose metabolism. Extracellular matrix stiffness affects glucose metabolism in
the following seven pathways: (i) YAP/TAZ pathway; (ii) TXNIP pathway; (iii) Rho/Rock-actin cytoskeleton pathway; (iv) Rho/Rock-PTEN pathway; (v) integrin-FAK-
PI3K-Akt pathway; (vi) GSK3 pathway; and (vii) AMPK pathway. The effects of extracellular matrix stiffness on cellular glucose metabolism can ultimately be
summarized as follows: (i) Changes in the number of glucose transport proteins in the cell membrane; (ii) Alteration of glycolytic enzyme activity; (iii) Alteration of
glycogen synthase activity; (iv) Expression of gluconeogenic genes; (v) Enhancement of the pentose phosphate pathway; and (vi) Endocytosis of cells.
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exhibited impaired ability to migrate compared to control cells.
Moreover, there were no significant differences in cell migration
when the cells were incubated on hydrogels of different stiffness
after HK2 knockdown (25). Knocking down of HK2, a gene
downstream of YAP, in breast cancer cells MCF7 also inhibited
the migration ability of the cells (35). On the other hand, Zheng
et al. found that the induced expression of HK2 and PFKFB3 by
YAP overexpression in a subcutaneous breast cancer xenograft
model in nude mice increased tumor weight and tumor size (37).
In a subcutaneous nasopharyngeal carcinoma model of nude
mice, 3-BrPA-mediated inhibition of HK2, downstream of YAP/
TAZ, also significantly inhibited the growth of nasopharyngeal
carcinoma in mice (36). Thirdly, upregulated YAP/TAZ can
affect key enzymes of the gluconeogenesis, hence affecting
glucose metabolism. Functionally, YAP/TAZ represses
expression of phosphoenolpyruvate carboxykinase 1 (39) and
glucose-6-phosphatase catalytic subunit (39) by inhibiting the
ability of PGC1a to bind to and activate transcription of the
promoters of gluconeogenic genes. Furthermore, YAP/TAZ has
also been shown to upregulate expression of pyruvate
carboxylase (30). In summary, ECM stiffness regulates glucose
uptake, utilization, and gluconeogenesis via the YAP/TAZ
signaling pathway both in vitro and in vivo. This regulation
subsequently affects growth, apoptosis, and migration of cancer
cells. Reducing ECM stiffness or inhibiting the YAP/TAZ
signaling pathway through different ways may delay
tumor progression.

ECM stiffness has been shown to regulate glucose metabolism
by influencing thioredoxin-interacting protein (TXNIP), a
negative moderator of cellular glucose uptake. For instance,
Sullivan et al. found that decreasing hyaluronic acid (HA), the
main component of ECM stiffness, decreases intracellular
TXNIP (21). Short-term reductions in HA content activate
RTK signals and promote ZFP36 expression, which results in
post-transcriptional regulation and a decrease in TXNIP.
Conversely, long-term reductions in HA content increase MYC
signals and inhibit TXNIP transcription (21, 40–42).

Effects of TXNIP on glucose metabolism can be categorized as
follows; Firstly, TXNIP affects glucose uptake by regulating
glucose transport proteins. Consequently, this reduces GLUT1
at the plasma membrane by inhibiting GLUT1 transcription (21,
43) and promoting internalization of GLUT1 and GLUT4 at the
plasma membrane (21, 43, 44). Overexpressing TXNIP in human
prostate cancer PC3 cells reduced glucose uptake as well as ATP
levels (42). A study on triple-negative breast cancer reported that
TXNIP overexpression resulted in reduced glucose uptake,
impaired cell proliferation, and elevated apoptosis. These
findings indicate that its expression is associated with reduced
overall survival and reduced metastasis-free survival (40).
Secondly, TXNIP inhibits glycolysis and subsequent biological
effects (41, 42, 45). For example, its knockdown in breast cancer
cells resulted in increased cellular glycolysis and the speed of cell
migration (21). In another study, Ji et al. found that TXNIP
mediated a reduction in proliferation of cultured human
pancreatic cancer cell lines, such as PANC-1 and SW1990
cells, and inhibited the colony-forming ability of pancreatic
Frontiers in Oncology | www.frontiersin.org 4
ductal adenocarcinoma (PDAC) cells (41). In addition,
overexpressing TXNIP was found to inhibit progression of the
cell cycle and eventually arrest it at the G 2-M phase, whereas its
downregulation predicted poor prognosis for PDAC. Therefore,
ECM stiffness can regulate cell proliferation and migration
through action of TXNIP in cell glucose uptake and glycolysis,
and affecting the prognosis of tumor patients.

ECM stiffness has also been shown to affect the actin
cytoskeleton by activating Rho/ROCK signaling, which in turn
regulates cellular metabolism (5, 16, 46–48). Several ways
through which the actin cytoskeleton is involved in the
regulation of glucose metabolism have been reported. ECM
stiffness can influence glucose uptake by regulating
translocation of the glucose transport protein GLUT4 to the
cytomembrane (49–51). Besides, most glycolytic enzymes, except
hexokinase that bind to mitochondria, are thought to bind to the
cytoskeleton, which regulates activity of glycolytic enzymes (52).
Park et al. demonstrated that the actin cytoskeleton regulates
glycolytic enzyme phosphofructo kinase (PFK) by limiting
migration and radius of action of the E3 ubiquitin ligase
tripartite motif (TRIM)-containing protein 21 (TRIM21) (48).
Functionally, TRIM21 enhances PFK degradation by promoting
the role of proteasome (48, 50, 53, 54). In fact, PFK
downregulation and effective of glycolysis were observed in
human bronchial epithelial cells following blebbistatin-
mediated inhibition of myosin II (48). Huang et al. found that
ECM stiffness decreased the glycolysis of human colon
carcinoma cell line HCT-116 by increasing the density of actin
filament and making aldolase combine with actin cytoskeleton in
an inactive form (53, 55, 56). In addition, the actin cytoskeleton
may regulate glycolysis by affecting glycogen synthesis by
regulating intracellular translocation of glycogen synthase (50).
Therefore, ECM stiffness plays a key role in regulating cellular
glucose uptake, glycolysis and glycogen synthesis by affecting
Rho/Rock-actin cytoskeleton. Overall, these processes balance
intracellular energy homeostasis and provide energy for cellular
life activities.

Apart from regulating cell metabolism, through Rho/Rock-
actin cytoskeleton, ECM stiffness can also regulate cell
metabolism via the Rho/Rock-non-actin cytoskeleton pathway,
such as Rho/Rock-PTEN. For example, Li et al. found that RhoA/
ROCK can mediate PTEN phosphorylation and activation in
leukocytes and human transfected embryonic kidney cells (57).
Additionally, activated PTEN up-regulates expression of
glycolytic enzymes HK2 and PKM2 (58), thereby increasing
the expression of gluconeogenic genes G6Pase and PEPCK
(59). However, activated PTEN has also been shown to reduce
the amount of GLUT1 on the cell membrane and lower glucose
uptake into the cell (60).

Integrin is a family of cell-surface receptors that translate
mechanical signals from the ECM into molecular biological
signals within the cell. Previous studies have shown that ECM
stiffness can stimulate FAK activation by enhancing integrin
signaling, thereby activating PI3K/Akt signaling (3, 61–64).
Activated Akt signaling regulates cellular glucose metabolism
through multiple pathways, and increases the amount of glucose
February 2021 | Volume 11 | Article 631991
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transport proteins in the cell membrane. For example, in vitro
experiments revealed that Akt could stimulate expression
of GLUT1 (65, 66) and GLUT3 (67). However, in a
hematopoietic cell line FL5.12, activated Akt, without
increasing GLUT1 synthesis, promoted the translocation of
GLUT1 to the cell surface (68). In addition, activated Akt was
also found to stimulate translocation of GLUT4 to the cell
membrane in different types of cells (65, 67, 69, 70). Knocking
down of the integrin or GLUT3 gene significantly delayed the in
situ growth of glioblastoma in immunosuppressed mice
orthotopic transplantation model (26). Furthermore, activated
Akt increases the activity of glycolytic enzymes. For example, Akt
was found to increase cellular HK activity (68, 71), preventing
degradation of phosphofructose kinase (PFK), as well as
maintaining and activating PFK activity (68). In Rat1a cells,
hexokinase, a hexose kinase downstream of Akt, was successfully
inhibited cytochrome c release and led to apoptosis (71). Besides,
activated Akt has been shown to maintain the pentose phosphate
pathway (68), as well as cause an increase in glycogen synthase
activity and promote glycogen synthesis (72). Lastly, activated
Akt has been shown to increase cellular endocytosis thereby
promoting glucose transport (72). Taken together, these findings
suggest that ECM stiffness is involved in regulating survival,
apoptosis, and tumorigenic capacity of cancer cells by increasing
the number of glucose transporters on the cell membrane,
improving activity of glycolytic enzyme, as well as enhancing
the pentose phosphate pathway and glycogen synthesis through
integrin and its downstream signaling pathways.

Previous studies have also shown that ECM stiffness can
inactivate phosphorylated GSK3 through integrin-mediated
phosphorylation of glycogen synthase kinase-3 (GSK3) (22).
Specifically, GSK3 downregulates GLUT4 (73) and upregulates
gluconeogenic gene glucose-6-phosphatase (G6Pase) expressions
(74), as well as phosphoenolpyruvate carboxykinase(PEPCK)
transcription by phosphorylating the cAMP-responsive
element transcription factor (73, 74). This in turn regulates
glucose homeostasis. In addition, GSK3 has been shown to
phosphorylate and degrade b-catenin via the proteasome (75–
78), thereby suppressing cellular glycolysis. b-Catenin increases
the amount of GLUT1 (79, 80) and GLUT4 (81) in the cell
membrane, and also promotes expression of glycolytic enzymes
HK2 (79, 80), PKM2 (79, 80), LDHA (79, 80), and LDHB (81).
Apart from this, b-Catenin has also been implicated in
upregulating expression of cellular gluconeozymes G6Pase
(82), PEPCK (82), and pyruvate carboxylase (83). Overall,
these findings indicate that ECM stiffness, through GSK3 and
b-catenin, play a key role in regulating glucose transporter,
gluconeogenic gene expression and glycolytic enzyme activity,
thereby affecting glucose metabolism.

ECM stiffness has been reported to activate the AMPK (23,
27), an essential metabolic regulator that, once activated, shuts
down energy-consuming anabolic processes and activates
catabolic pathways to produce energy and achieve an energy
steady state in a cell. ECM stiffness’s involvement in metabolism
is primarily related to ATP production through activation of
AMPK. Specifically, activated AMPK increases GLUT4
Frontiers in Oncology | www.frontiersin.org 5
expression (84, 85) and displacement to the membrane via the
AMPK-p38 MAPK signaling pathway (84, 86), thereby
increasing glucose uptake.

In addition, activated AMPK can also phosphorylate and
inactivate glycogen synthase site 2 (87), thus reducing glycogen
synthesis energy consumption during glycogen synthesis. Apart
from increasing ATP production from glucose metabolism,
activation of AMPK by matrix stiffness also increases fatty acid
b-oxidation to generate ATP. Therefore, ECM stiffness reduces
energy consumption and increases ATP production through
AMPK signaling, which provides energy for the actin
cytoskeleton deformation to resist extracellular forces (23).
ECM STIFFNESS AND LIPID METABOLISM

ECM stiffness can affect cellular lipid metabolism through several
different pathways, including (i) integrin-FAK-PI3K-Akt; (ii)
YAP/TAZ; (iii) AMPK; (iv) Rho/Rock-actin cytoskeleton; (v)
Rho/Rock-PTEN; and (vi) TXNIP. Transcription of various
enzymes involved in cellular lipid metabolism is mainly
regulated by the sterol regulatory element-binding protein
(SREBP). Particularly, SREBP1 and SREBP2 regulate synthesis
of cellular fatty acids and cholesterol, respectively. In addition,
ECM stiffness regulates synthesis of various enzymes involved in
lipid metabolism through different pathways that regulate both
SREBP1 and SREBP2. Apart from this, ECM stiffness further
participates in cell lipid metabolism by regulating low-density
lipoprotein receptor (LDLR), lipoprotein lipase (LPL), and fatty
acid transporter CD36 (Figure 2).

ECM stiffness causes FAK activation due to enhanced integrin
signaling, which subsequently activates PI3K/Akt signaling.
Activated Akt signaling has further been implicated in lipid
metabolism in two ways; Firstly, Akt can regulate SREBP1 by
activating CRTC2, which further enhances SREBP’s activity by
inhibiting degradation of SREBP1 and SREBP2 (88–94).
Activated SREBP upregulates fatty acid synthase (FAS) (89–91,
93), Stearoyl-CoA desaturase 1 (SCD-1) (89, 91), ATP-citrate
lyase (ACL) (90), and Acetyl-CoA carboxylase (ACC) (90),
thereby promoting fatty acids and triglycerides biosynthesis in
cells. Furthermore, SREBP upregulates HMG-CoA synthase (93),
a key ketogenesis factor. Secondly, Akt signaling has been shown
to promote cellular uptake of cholesterol by upregulating LDLR
(90, 95). Overexpressing SREBP1 as well as FAS, ACC, ACL, and
SCD-1 downstream of AKT signaling in HCC cell lines was
found to accelerate growth of cancer cell and arrest apoptosis.
Conversely, siRNA-mediated silencing of the above five genes
inhibited growth of cancer cell and elevated apoptosis (92).

ECM stiffness has also been shown to upregulate YAP/TAZ,
which subsequently regulates SREBP expression (33). This
affirms its influence on cellular metabolism. Previous studies
have shown that YAP/TAZ promotes fatty acid and triglyceride
synthesis by upregulating FAS (11, 96), ACL (11), ACC (11, 96),
and SCD-1 (11, 96) through upregulated SREBP1. In addition,
YAP/TAZ reportedly upregulated 30-hydroxymethyl glutaryl
coenzyme A reductase (96) in cultured C57BL/6 mouse
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hepatocytes, by upregulating SREBP2, which in turn increased
cellular cholesterol synthesis. In vitro HCC experiments revealed
that YAP/TAZ promoted cancer cell proliferation by increasing
lipid formation (11).

The effect of ECM stiffness on cellular lipid metabolism is
through AMPK, which results in reduced anabolic lipid
metabolism and enhancement of fatty acid b-oxidation to
generate ATP and meet cellular energy needs. Functionally,
AMPK induces translocation of the fatty acid transporter
CD36 to the cell membrane (85, 97, 98) and increases fatty
acids ingestion. In addition, it phosphorylates and inactivates
ACC (85, 99–101), blocking the extension of fatty acid chains
and stimulating fatty acid oxidation. Apart from these, AMPK
phosphorylates and inactivates 30-hydroxymethyl glutaryl
coenzyme A reductase (85, 102), thereby reducing cholesterol
synthesis and energy expenditure.

Furthermore, ECM stiffness regulates cellular metabolism by
modulating the actin cytoskeleton, by activating Rho/ROCK
signaling, which also plays a role in the regulation of lipid
metabolism. The actin cytoskeleton regulates the location of
LPL on the cell surface, and its activity by regulating transport
of LPL vesicles within the cell (103, 104). In addition, it has been
implicated in regulation of SREBP processing in the Golgi
apparatus, hence influencing lipid biosynthesis (27, 105).
Previous studies have also shown that ECM stiffness also
activates PTEN via the Rho/ROCK signaling pathway, thereby
regulating cholesterol metabolism (106). On the other hand,
TXNIP inhibits l ipogenesis (45, 107) , a l though in
cardiomyocyte-specific TXNIP knockout mice, low levels of
SREBP2 expression were recorded in cardiomyocytes following
Frontiers in Oncology | www.frontiersin.org 6
TXNIP knockdown. In fact, TXNIP deficiency also led to
myocardial beta-oxidation (108).

Taken together, these findings indicate that ECM stiffness acts
via different pathways to upregulate SREBP activity, with its
downstream lipid metabolic enzymes. In addition, it up-regulates
activity of LDLR, CD36 and LPL on the cell membrane to
participate in lipid metabolism, thus affecting cell proliferation,
growth and reducing cell apoptosis.
ECM STIFFNESS AND AMINO ACID
METABOLISM

ECM stiffness regulates amino acid metabolism of cells through
many different pathways, including the YAP/TAZ, and kindlin-2
pathways, as well as integrin-FAK-PI3K-Akt. Functionally, it
affects cellular amino acid metabolism by regulating the number
of proteins involved in amino acid transport in the cell
membrane, the quantity and activity of enzymes involved in
the amino acid synthesis, as well as glutamine catabolism and
synthesis (Figure 3).

ECM stiffness has been shown to regulate cellular metabolism
by upregulating YAP/TAZ, a key player in amino acid
metabolism. It also regulates enzymes involved in amino acid
synthesis, including phosphoserine aminotransferase 1 (PSAT1)
(109–111), phosphoserine phosphatase (PSPH) (109, 111), and
phosphoglycerate dehydrogenase (111). These enzymes play a key
role in synthesis of serine and serine hydroxymethyltransferase 2
(SHMT2) (109), which are involved in the synthesis of glycine and
glutamic-oxaloacetic transaminase (110) that in turn catalyze
FIGURE 2 | Profiles of pathways through which extracellular matrix stiffness affects lipid metabolism. Extracellular matrix stiffness affects lipid metabolism in the
following five pathways: (i) integrin-FAK-PI3K-Akt pathway; (ii) YAP/TAZ pathway; (iii) AMPK pathway; (iv) Rho/Rock-actin cytoskeleton pathway; and (v) TXNIP
pathway. The effects of extracellular matrix stiffness on cellular lipid metabolism can be described as upregulation of SREBP, LDLR, LPL and CD36.
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aspartate production. Previous studies have also shown that
matrix stiffness can upregulate enzymes involved in the
synthesis of amino acids by regulating the YAP/TAZ pathway.
For example, in vitro knockout of a gene upstream of YAP/TAZ or
YAP/TAZ gene downregulated YAP/TAZ and PSAT1, PSPH, and
SHMT2, inhibited serine/glycine production repressed
proliferation of prostate cancer cells (109). Conversely,
downregulating YAP/TAZ and downstream PSAT1, PSPH, and
SHMT2 genes in xenograft tumors of nude mice resulted in
decreased tumor volume and weight (109).

ECM stiffness has been implicated in glutamine catabolism,
through direct activation of YAP-TEAD-mediated glutaminase
(GLS) transcription (30, 32, 112, 113). Glutamine catabolites
participate in the TCA cycle, where they provide energy for cells.
Apart from this, glutamine is a precursor for many non-essential
amino acids, and also plays a key role in the synthesis of many
amino acids. Bertero et al. found that the matrix stiffness-YAP/
TAZ pathway in squamous cell carcinoma increased glutamate
synthesis in cancer cells by upregulating GLS (32). The
synthesized glutamate entered into cancer-associated
fibroblasts to mediate synthesis of glutathione and balance the
redox state and increase cell contractility. Consequently, the
cancer-associated fibroblasts reportedly increased aspartate
synthesis through upregulated GLS. The resultant aspartate
entered cancer cells to participate in nucleotide synthesis and
promote proliferation of cancer cells. siRNA-mediated inhibition
of GLS resulted in reduced proliferation of cancer cells and
inhibited their invasive ability. In murine breast cancer models,
inhibiting ECM stiffness using BAPN or inhibiting YAP using
Frontiers in Oncology | www.frontiersin.org 7
verteporfin resulted in reduced proliferation of cancer cells, as
well as tumor size, and number of lung metastases. In addition,
the authors recorded prolonged survival fol lowing
downregulation of GLS and activity (32). A TCGA-based
analysis revealed an association between high levels of GLS
mRNA in head and neck squamous cell carcinoma with overall
poor prognosis of patients. Therefore, targeting these molecules
for may be a feasible approach for treating the disease (32). In
another study targeting pulmonary arterial hypertension, Bertero
et al. reported reduced cell proliferation and migration in
pulmonary arterial endothelial cells or pulmonary arterial
smooth muscle cells following siRNA-mediated knockdown of
GLS or YAP/TAZ genes (30). Previous studies, using mouse
models, have also shown that pulmonary vascular matrix
stiffness is involved in vascular cell proliferation through
regulation of glutamine catabolism via YAP/TAZ. Inhibiting
ECM stiffness using BAPN (LOX inhibitor) was found to
downregulate YAP and GLS and reduce proliferation of
endothelial and smooth muscle, atherosclerosis, and
pulmonary hypertension (30). In addition, GLS inhibitors have
also been found to inhibit growth and migration of
myofibroblastic hepatic stellate cells (112), while glutaminase
inhibition has been reported to reduce cell growth in breast
cancer cells (113).

However, a metabolomic analysis, targeting a zebrafish
model, reported that the YAP/TAZ pathway did not promote
glutamine catabolism. Instead, the authors found elevated
production of glutamine through upregulation and increased
activity of glutamine synthetase (GLUL). Consequently, the
FIGURE 3 | Profiles of pathways through which extracellular matrix stiffness affects amino acid metabolism. Extracellular matrix stiffness affects amino acid
metabolism in the following three pathways: (i) YAP/TAZ pathway; (ii) kindlin-2 pathway; and (iii) integrin-FAK-PI3K-Akt pathway. The effects of extracellular matrix
stiffness on cellular amino acid metabolism can ultimately be summarized as follows: (i) regulating the number of amino acid transport proteins in the cell membrane;
(ii) regulating the quantity and activity of enzymes involved in the amino acid synthesis; (iii) regulation of glutamine catabolism; (iv) regulation of the synthesis of
glutamine.
February 2021 | Volume 11 | Article 631991

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ge et al. Extracellular Matrix Stiffness Affecting Metabolism
increase in glutamine enhanced nucleotide biosynthesis and
promoted liver growth (10). In zebrafish larvae, use of GLUL
inhibitor methionine sulfoximine or knocking out GLUL
significantly inhibited YAP-driven hepatomegaly, whereas the
purine analog mycophenolic acid also suppressed the YAP-
driven hepatomegaly. These findings demonstrate that YAP-
mediated activation of GLUL increases glutamine levels, while
promoting nucleotide biosynthesis is a significant factor in
hepatomegaly or rapid cell proliferation in hepatocellular
carcinoma (10).

ECM stiffness has also been implicated in amino acid
transport, by upregulating YAP/TAZ. Specifically, YAP/TAZ
upregulates the Asp/Glu transporter SLC1A3 (32), neutral
amino acid transporter protein SLC1A5 (113), glutamine
transporter SLC38A1 (114), leucine transporter SLC7A5 (114,
115), and SLC3A2 (115). Consequently, high SLC1A5 expression
in breast cancer revealed a strong association with decreased
overall breast cancer survival based on analysis of patient data
from GEO database (113). On the other hand, Park et al. found
that knocking down SLC38A1 or SLC7A5 significantly inhibited
cell growth in HCC cells (114). However, cell growth was
restored following exogenous introduction of SLC38A1 and
SLC7A5 into YAP/TAZ-depleted cells via expression vectors.
Moreover, knocking down SLC38A1 or SLC7A5 has been shown
to significantly reduce tumor weight and growth in
xenotransplantation models of subcutaneous and orthotopic
HCC in nude mice. These results affirm the key role played by
YAP/TAZ in growth and progression of HCC cells, through
activation of SLC38A1 and SLC7A5. Taken together, these
studies indicate that ECM stiffness plays a key role in synthesis
and transport of amino acid, as well as synthesis and
decomposition of glutamine by regulating YAP/TAZ activity.
These processes are key in regulating growth, proliferation,
invasiveness, and metastasis of cancer cells.

Previous studies have also described ECM stiffness’ critical
role in tumorigenesis, survival, proliferation, and apoptosis.
Generally, this is through the regulation of proline metabolism
by kindlin-2, one of the molecules that regulate cellular and
extracellular matrix adhesion. This molecule is also present in the
mitochondria, where it forms complexes with PYCR1 (116, 117),
a key enzyme that regulates proline synthesis. ECM stiffness has
been shown to promote entrance of kindlin-2 into the
mitochondria where it interacts with PYCR1, thus promoting
proline synthesis (116). In vitro and in vivo experiments,
targeting lung adenocarcinoma, have demonstrated that
knocking down of the kindlin-2 gene increased ROS and
apoptosis, but reduced the number of cells, as well as the
percentage of Ki67-positive cells by reducing proline synthesis.
This in turn affected lung carcinogenesis and reduced lung
cancer mortality of mice (116).

Furthermore, ECM stiffness has been shown to enhance
integrin signal and stimulate FAK activation, thereby activating
PI3K/Akt signaling. Activated Akt signals play a key role in
amino acid metabolism, and also increase abundance of the
SLC6A19 protein, an amino acid transporter in the
Frontiers in Oncology | www.frontiersin.org 8
cytomembrane (118), as well as the 4F2hc (also known as the
CD98) (95), which are key promoters of cellular uptake of
amino acids.

The different pathways of ECM stiffness that regulate
metabolism have mutual promotion or restriction. For
example, studies have shown that GSK3 is inactivated under
Akt regulation (119–121). Thus, ECM stiffness may participate
in cellular metabolism by regulating GSK3 activity through Akt.
In addition, TXNIP is regulated by Akt (44) and AMPK (43),
although it is not clear whether ECM stiffness regulates cell
metabolism by TXNIP through Akt and AMPK. Furthermore,
ECM stiffness-mediated activation of Kindlin-2 has been
associated with activation of integrin (122), with kindlin-2
shown to regulate YAP/TAZ signals at both transcriptional
and protein levels (123). Therefore, it is possible that ECM
stiffness regulates metabolism via the integrin-kindlin-2-YAP/
TAZ signaling pathway. In summary, it is clear that ECM
stiffness-mediated regulation of metabolism may vary across
different types of cells.
CONCLUSION

ECM stiffness plays a key role in the regulation of many aspects
of cell activities that require metabolic energy supply, including
survival, growth and development, proliferation, apoptosis,
tumor development, migration and metastasis (124). In this
review, we have described several mechanisms through which
ECM stiffness regulates metabolism, and outlined their impact
on cellular life activities and tumors. Summarily, ECM stiffness
affects cell behavior by regulating tumor metabolism. This may
explain why therapies targeting ECM of tumors have been in the
focus of numerous researches over recent years. While these may
provide effective solutions for controlling tumors, there is need to
address various associated limitations to guarantee precision
therapy targeting matrix stiffness and its regulated signaling
pathways. For example, further research models are needed to
unravel the interrelationship between tumor development and
changes in matrix stiffness, since the two are mutually influenced.
In addition, since the use of a single target molecule for therapy
has proven to be less effective than the regulation of signaling
pathways, focus needs to shift to targeting these pathways, owing
to mutual regulation among them. Furthermore, there is need to
address the challenge of model establishment and ensure they
mimic the dynamics of matrix stiffness in disease scenario. This
is because the existing models have posed difficulty in
representing the heterogeneity of stiffness within tumors.
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