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Abstract

Geographic patterns of human genetic variation provide important insights into human evolution and disease. A commonly used
tool to detect and describe them is principal component analysis (PCA) or the supervised linear discriminant analysis of principal
components (DAPC). However, genetic features produced from both approaches could fail to correctly characterize population
structure for complex scenarios involving admixture. In this study, we introduce Kernel Local Fisher Discriminant Analysis of Principal
Components (KLFDAPC), a supervised non-linear approach for inferring individual geographic genetic structure that could rectify the
limitations of these approaches by preserving the multimodal space of samples. We tested the power of KLFDAPC to infer population
structure and to predict individual geographic origin using neural networks. Simulation results showed that KLFDAPC has higher
discriminatory power than PCA and DAPC. The application of our method to empirical European and East Asian genome-wide
genetic datasets indicated that the first two reduced features of KLFDAPC correctly recapitulated the geography of individuals and
significantly improved the accuracy of predicting individual geographic origin when compared to PCA and DAPC. Therefore, KLFDAPC
can be useful for geographic ancestry inference, design of genome scans and correction for spatial stratification in GWAS that link
genes to adaptation or disease susceptibility.
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Introduction
The genetic differentiation and substructure of human
populations are impacted by spatially heterogeneous
landscapes [1, 2], social stratification [3, 4], as well as
culture [5]. For a long time, an interesting debate in
population genetics is whether continuous clines or
discrete clusters can better characterize human genetic
variation [6–9]. However, without doubts, human popu-
lation genetic structure exhibits a strong spatial pattern
due to population history. On the global scale, this spatial
pattern has been described by the isolation-by-distance
model, where genetic differentiation between popula-
tions increases with increasing geographic distance, as
a result of within-population genetic drift and reduced
exchange of migrants between populations [10]. Recent
studies, mostly at a continental scale (i.e. Europe, Asia),
have shown that genetic variation significantly aligns
with geography and exhibits spatial patterns that can be

inferred by principal component analysis (PCA) [11–13]
and model-based analyses [14, 15]. Some studies have
reported that the geographical spread of alleles favoured
by natural selection contribute to local adaptation
[16]. On the other hand, alleles underlying human
complex diseases such as cancer, schizophrenia and
heart disease also exhibit geographic patterns [17, 18].
Therefore, successful detection of the genetic structure
and correct inference of the individual geographic origin
will be helpful for applications to personalized medicine,
anthropology and forensics.

To date, several non-parametric approaches have
been developed to make inferences about the genetic
structure of populations and detect loci under selection.
PCA is one of the most widely used approaches for
these purposes [19]. The link with population structure
was demonstrated by a series of studies [11, 20–22],
which gradually showed that the proportion of the
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variance explained by the first principal component
(PC) computed from the genome-wide single-nucleotide
variation (SNP) genotype matrix is highly correlated
with the fixation index, FST. Furthermore, the linear
superposition of PC maps has been used to infer the
human geographic origin for various present-day and
ancient individuals [11, 18, 23, 24]. However, recent
studies reported that under some complex scenarios, PCs
are not sufficiently informative to represent population
structure, as PCs are linear combinations of the variants
without consideration of potential non-linear relation-
ship [25, 26]. It has also been suggested that it might
be more robust to use non-linear functions of the top
PCs, rather than more PCs, to capture non-linear spatial
trends [27].

Despite its widespread use in population genetics, the
spatial genetic structures represented by the PCs are,
to some extent, not discernible between populations
because PCs are a summary of the overall variance
lumping together between- and within-population varia-
tion [28]. In contrast, Fisher linear discriminant analysis
(LDA) [29] can maximize between-group variance while
simultaneously minimizing within-group variance. In
order to take advantage of this property and fulfil
the assumption that variables submitted to LDA are
perfectly uncorrelated, Jombart et al. proposed DAPC
(Discriminant Analysis of Principal Components) [28], a
hybrid statistical technique for dimensionality reduction
that combines LDA and PCA. DAPC is statistically
validated for linear inference and has been successfully
applied to study population structure [28, 30]. Never-
theless, individual scores in a population determined
by LDA may be subject to bias as LDA assumes equal
variance for all populations and weighs individuals in a
population using the centroid of the genetic components
of that population [31]. This property typically merges
samples that might be from multiple populations
into a single population. As it is the case with LDA,
DAPC does not allow for within-group sub-structuring
that may arise through migration or non-random
mating [32].

Here, we propose a new method to overcome this limi-
tation, Kernel Local Fisher Discriminant Analysis of Prin-
cipal Components (KLFDAPC), which follows the same
principle as DAPC but uses Kernel Local Fisher Discrim-
inant Analysis (KLFDA) [32] instead of LDA. KLFDA is a
more general approach for discriminant analysis that
allows not only for within-group sub-structuring (mul-
timodality) but also for non-linear associations among
samples (individuals) within groups [32, 33]. Therefore,
our method combines non-linear and multimodal fea-
ture extraction of KLFDA and the dimension reduction
of PCA, which helps overcome some of the limitations of
PCA and DAPC.

We compared the performance of KLFDAPC for popu-
lation structure inference and individual geography pre-
diction with those of PCA and DAPC by applying all
three methods to both simulated and empirical datasets.

The implementation of our method is freely available
in the R package KLFDAPC at https://xinghuq.github.io/
KLFDAPC/.

Materials and methods
KLFDAPC is aimed at overcoming limitations of other
popular dimensionality reduction techniques used to
infer the genetic structure of populations. These include
the presence of hidden genetic structure and non-linear
genetic associations between samples. In principle, this
could be achieved using KLFDA, an extension of Fisher
discriminant analysis that preserves within-class local
structure by evaluating the within- and between-class
scatter in a local manner and incorporates non-linear
associations using the kernel transformation technique
[32, 34]. However, KLFDA works well only for small
datasets because the kernel transformation faces two
key problems, (i) a heavy computational cost and (ii) large
diagonals in the kernel matrix if the number of variables
is greater than the number of samples (P > > n) [35],
which is typically the case for genetic data comprising
millions of genetic features (loci). As a solution to this
problem, and following the example of DAPC [28], we
propose to introduce an initial dimensionality reduction
step that captures much of the variance present in
the original data. This can be achieved using PCA.
Thus, the method we propose integrates dimensionality
reduction of PCA and the non-linear feature extraction
of KLFDA, making the KLFDAPC scalable to genome-wide
variation data.

KLFDAPC can be applied not only to genotype matrices
but also to many other types of datasets, such as
phenotypic traits and species counts. In what follows,
we describe the steps required to implement it in
general.

KLFDAPC formulation
The first step in the implementation of KLFDAPC is to
obtain the PCs. The detailed description of this step is
presented in Supplementary Methods available online
at http://bib.oxfordjournals.org/. The next step is to con-
duct the KLFDA analysis using the first P PCs; exploration
and guidelines to choosing the value of P is explained
below (see section ‘Tuning KLFDAPC parameters’). Here,
we focus on describing in detail the formulation of
KLFDA. As opposed to the PCA step, in KLFDA, we
have to take into account the populations where the
individuals were sampled in order to now consider the
partitioning of genetic variation into its within- and
between-population components. Thus, each individual
has a population label yi ∈ (1, 2, . . . , c). Some individuals
in a population could be recent migrants, and therefore,
the population labels for these individuals might not
represent their true source population. KLFDA uses a
measure of local affinity (see below) that preserves the
within population multimodality while maximizing the
between population difference. Therefore, individuals
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in the same labelled group but actually from different
populations can still be embedded and separated
appropriately.

The main objective of KLFDA is to estimate the local
Fisher transformation matrix, TLFDA, using the within-

population scatter matrix S
(w) ∈ Rn and the between-

population scatter matrix S
(b) ∈ Rn, and then carry out

a generalized eigenvalue decomposition. More details
about the kernel local Fisher discriminant analysis for-
mulation can be found in Refs. [32, 33]. Below, we briefly
recap the main steps for implementing KLFDA, which
include (i) computing the kernel matrix M, and affinity
matrix A; (ii) defining the local Fisher transformation
matrix TLFDA in terms of within- and between-population

scatter matrices S
(w)

and S
(b)

and (iii) computing an
analytical form of the transformation matrix by solving
a generalized eigenvalue problem.

Computing the kernel matrix
Once the data have been reduced to P PCs, KLFDA first
transforms the PC scores into a kernel matrix M via
non-linear mapping using a kernel function [36]. In this
study, we use a Gaussian kernel, also known as radial
basis function kernel. Let xi = (xip) and xj = (xjp)

be vectors containing the top P PCs for individuals
i and j, for i and j in {1, . . . , n} and p in {1, . . . , P}.
The elements of the Gaussian kernel matrix M can be
defined as,

Mi,j = 1√
2π σ

exp

(
−

∥∥xi − xj

∥∥2

2σ 2

)
, (1)

with σ determining the width of the Gaussian kernel [37].
This is a parameter that needs to be tuned, a step that is
described in the section ‘Tuning KLFDAPC parameters’.

The kernel matrix can be viewed as a n-dimensional
genetic distance matrix between pairs of individuals
where each individual has a population label yi ε (1, 2,
. . . , c). From the kernel distance matrix, we estimated
the genetic affinities between individuals and then used
them to calculate the within- and between-population
weights.

Computing the affinity matrix
Here, the affinity matrix Ai,j between individual i and
individual j is computed using the k-nearest neighbour
search with the local scaling method [38]. Let mi =
(Mik) and mj = (Mjk) be n-dimensional vectors of kernel
distances between each one of these individuals and
all other individuals calculated from Eq. 1. Let NNK

i be
the set of K-nearest neighbours of individual i under
the Euclidean distance, where K is the neighbourhood
size. If mi ∈ NNK

j and mj ∈ NNK
i , i and j are identified

as neighbours; otherwise, they are non-neighbours. The

elements of the affinity matrix A are given by [38]

Ai,j = exp

(
−‖mi − mj‖2

σiσj

)
(2)

where σi represents the local scaling of the data samples
around mi, which is determined using

σi = ‖mi − mK
i ‖ (3)

where mK
i is the vector of kernel distances for the K-

th nearest neighbour of i. Ai,j ∈ [0, 1] with small values
indicating individuals have a low genetic affinity (i.e.
are genetically far apart), and larger values indicating
high affinity (genetically close individuals).

Calculating the local Fisher transformation
matrix TLFDA

As described above, mi and mj are n-dimensional vec-
tors of genetic distances for the i-th and j-th individ-
uals, respectively. Let ny represent the sample size for

population y so that n = ∑c
y=1ny. Furthermore, let A

(w)

i,j

represent the within-population affinity and A
(b)

i,j repre-

sent the between-population affinity. Let S
m

be the local

mixture scatter matrix defined by S
m = S

(w) + S
(b)

. The

local within-population scatter matrix S
(w)

and the local

between-population scatter matrix S
(b)

can be obtained
as follows.

S
(w) = 1

2

∑n

i,j=1
A

(w)

i,j

(
mi − mj

) (
mi − mj

)T, (4)

S
(b) = 1

2

∑n

i,j=1
A

(b)

i,j

(
mi − mj

) (
mi − mj

)T, (5)

A
(w)

i,j =
{ Ai,j

ny
, if yi = yj = y

0, if yi �= yj.

}
, (6)

A
(b)

i,j =
{

Ai,j

(
1
n − 1

ny

)
, if yi = yj = y

1
n , if yi �= yj.

}
, (7)

As opposed to linear discriminant analysis (LDA) in
which the within-group scatter and the between-group
scatter are obtained using the group centroids and their

overall average, here the scatter matrices in S
(w)

and S
(b)

are weighted by the affinities. In this case, genetically dis-
tant individuals within a population have less influence

on S
(w)

and S
(b)

.
We define the local mixture scatter matrix as S

(m) ≡
S

(w) + S
(b)

; thus,

S
(m) = 1

2

∑n

i,j=1
A

(m)

i,j

(
mi − mj

) (
mi − mj

)T, (8)

A
(m)

i,j ≡
{

Ai,j
n , if yi = yj

1
n , if yi �= yj.

}
, (9)
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Therefore,
S

(m) = 1
2

∑n
i,j=1A

(m)

i,j (mimi
T + mjmj

T − mimj
T − mjmi

T)

= ∑n
i=1(

∑n
j=1 A

(m)

i,j )mimi
T − ∑n

i,j=1 A
(m)

i,j mimj
T (10)

Equation (10) can be expressed in matrix form as

S
m = ML

(m)
MT, (11)

where L
(m) ≡ Q

(m) − A
(m)

, and Q
(m)

is the n-dimensional
diagonal matrix with the i-th diagonal elements being

Q(m)

i,i ≡ ∑n
j A

(m)

i,j . Likewise, S
(w)

can be expressed as S
(w) =

ML
(w)

MT, where L
(w) ≡ Q

(w) − A
(w)

, and Q
(w)

is the n-
dimensional diagonal matrix with the i-th diagonal ele-

ment being Q
(w)

i,i = ∑n
j A

(w)

i,j .

Using S
(w)

and S
(b)

, the local Fisher transformation
matrix TLFDA can be defined as [33],

TLFDA = argmax
T ∈ Rd×m

[
tr

((
TTS

(w)
T

)−1
TTS

(b)
T

) ]
, (12)

TLFDA is the ratio of between-population (S
(b)

) and

within-population (S
(w)

) variances, also known as the
F-statistic in LDA, which is used to find the best
transformation matrix to maximize Fisher’s criterion
[29].

Solution of the eigenvalue decomposition
problem to obtain TLFDA

Noting that M is a symmetric matrix, TLFDA is obtained by
solving [32, 33],

ML
(b)

Mϕ = λML
(w)

Mϕ, (13)

where L
(b)

= L
(m)− L

(w)
.

In practice, Eq. (13) cannot be solved because L
(w)

is
always singular. Therefore, Sugiyama [32] proposes regu-

larizing ML
(w)

M and solving instead.

ML
(b)

Mϕ = λ
(
ML

(w)
M + εIn

)
ϕ, (14)

where I is the identity matrix and ε is a small constant
used to regularize the within population distances to
provide a more stable matrix.

Using neural networks to evaluate performance
of dimensionality reduction methods and to
assign individuals to their geographic origin
The three methods we compared are aimed at select-
ing and combining the input variables into a reduced
number of features that capture most of the genetic
structure information present in the original dataset.
Each method produces a distinct set of reduced fea-
tures that cannot be directly compared. However, each
set contains information about the geographic origin
of individuals in the sample, and therefore, they can
be used to assign individuals to source populations or

geographic coordinates. Therefore, in order to compare
the performance of the three methods, we implemented
an artificial neuronal network that uses the top two or
three features as predictors of each individual geographic
or population origin and then calculates the accuracy
of each method to assign individuals of known origin.
To achieve this goal, we use synthetic data generated
through a simulation study covering a wide range of
population structure scenarios (see below).

Based on the above-described rationale, we imple-
mented a neural network (Figure 1) and used it as a
classifier to assign individuals to populations or as a
regression to predict the individuals’ geographic origin
(latitude and longitude). Neural networks have been
well explained in a series of studies [39–45]. A typical
single hidden layer neural network consist of an input
layer, a hidden layer and an output layer, with nodes
in the hidden layers transforming the information
between layers using a non-linear activation function
(see Supplementary Information). The neural network is
optimized based on a loss function that measures the
fit of the predicted output to the true value. In the case
of classification, we constructed a single-layer neural
network with a logistic activation function to assign
individuals to populations and used Shannon entropy
as the loss function. In the case of regression problems,
we used three hidden layers and a logistic activation
function with the mean squared error as the loss
function. More details about the neural networks and its
tuning and fitting are given in Supplementary Methods
available online at http://bib.oxfordjournals.org/.

Simulation study
To compare the performance of KLFDAPC over the exist-
ing commonly used approaches (PCA, DAPC), we sim-
ulated four scenarios that differ in spatial structure:
island model, stepping stone model, hierarchical island
model and hierarchical stepping stone model using the
coalescent-based simulator fastsimcoal2 [46, 47].

For each model, we simulated 16 populations com-
prising 2000 haploid individuals (equivalent to 1000
diploid individuals). The island model (Supplementary
Figure S1A available online at http://bib.oxfordjournals.
org/) (including hierarchical island model, Supplemen-
tary Figure S1B available online at http://bib.oxfordjourna
ls.org/) and stepping stone model (Supplementary
Figure S1C available online at http://bib.oxfordjournals.
org/) (including hierarchical stepping stone model, Sup-
plementary Figure S1D available online at http://bib.oxfo
rdjournals.org/) differ in the composition of aggre-
gates (regions) and migration pattern. The hierarchical
island model consists of four regions with each region
comprising four populations. The hierarchical stepping
stone model consists of two regions with each region
comprising eight populations.

Under all scenarios, we simulated 44 independent
chromosomes with 100 Kb DNA sequences per chro-
mosome with a constant mutation rate of u = 1 × 10−8
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Figure 1. A neural network model for assigning individual membership and predicting the individual geographic coordinates. This framework is based
on training a supervised neural network on the reduced genetic features from a dimensionality reduction technique (such as PCA, DAPC and KLFDAPC)
given population labels or individual geographic coordinates. The reduced feature matrix (n × d, n is sample size and d is the number of reduced features)
obtained from the genetic data are used as the predictor variables (A). If the population labels are provided (B), they are used as the response variable
to carry out classification training through neural network (C). The individuals are assigned to the corresponding populations with an optimal neural
network model. If the individual geographic coordinates are provided (B), the geographic coordinates are used as the response variable to carry out the
regression training with neural network (C). An optimal neural network model is found and trained to predict the individual geographic coordinates.
Finally, the accuracy of the reduced features for assigning individuals to correct populations or for predicting individual geographic coordinates is
assessed (D) from the optimal neural network model.

per bp per generation, which is typical of humans [48],
virus [49], yeast and nematodes [50], and a recombination
rate of r = 1 × 10−8 per bp per generation, which is typical
of mammals such as humans, but also of plasmids
[51], bacteria [52] and human pathogens [53]. In the
case of the non-hierarchical scenarios (island model
and stepping-stone model), we assumed migration
rates between populations to be 0.001, which leads to
Nm = 1 allowing for the maintenance of polymorphism
in each local population thanks to the influx of migrants
(c.f. [54]). In the case of the hierarchical island and
hierarchical stepping stone models, migration rate
between pairs of populations within regions was also
0.001. However, migration between populations from
different regions was set to 0.0001 (Nm = 0.1) to generate
a strong hierarchical subdivision whereby migration
from another region cannot, on its own, counteract the
effect of genetic drift in any local population. The four
scenarios and the respective parameter values used in
the simulations are presented in Supplementary Table S1
available online at http://bib.oxfordjournals.org/.

We carried out 10 independent simulations for
each scenario and sampled 200 individuals from each
population. In total, we obtained 3200 individuals from 16
populations under each spatial scenario. Each scenario
generated more than 27 000 polymorphic sites. We
removed monomorphic SNPs and filtered the SNPs with a
MAF > 0.05 and randomly selected 10 000 sites (biallelic)
for downstream analysis.

For each scenario, we first carried out a PCA on the
genotype matrix. We then found the number of PC axes
and σ that maximized discriminatory power as explained
below (see Supplementary Methods available online at
http://bib.oxfordjournals.org/). DAPC was implemented
using lda function from MASS package [55], which is

initially employed by dapc function in adegenet pack-
age [56]. DAPC and KLFDAPC were conducted using the
source population names as the group labels.

Tuning KLFDAPC parameters
Both DAPC and KLFDAPC require to find the optimal
number of PCs as input. We chose the number of PCs
that has the highest cumulative discriminatory power
(accuracy) for population assignment (see above). More
precisely, and as described above, we implemented a
neural network classifier that in this particular step
used PCs as predictive variables to assign individuals
to populations under the various spatial scenarios we
explored. Then, we evaluated the discriminatory power
of the classifier as the number of PCs increased. As
Supplementary Figure S2 available online at http://
bib.oxfordjournals.org/ shows, the cumulative discrim-
inatory power reached an asymptote as the number
of PCs increased from 5 to 20. We found that 20 PCs
could correctly discriminate all 16 populations under all
scenarios with an accuracy of 1.

Once the optimal number of PCs was found, we then
applied a similar procedure to tune σ . In this case, we
carried out KLFDAPC analyses of the simulated data
based on the 20 top PCs and increasing values of σ (= 0.2,
05, 1, 2, 5). We then used the two and three first reduced
features obtained from these analyses as predictive
variables of the above described neural network classifier
that assigned individuals to populations. When using
only two reduced features (Supplementary Figure S3
available online at http://bib.oxfordjournals.org/), the
effect of σ is not straightforward. Overall, the power
decreases as σ increases but under the island model, it
reaches a minimum at σ = 2 and then increases again,
while under the hierarchical island model there is a

http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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steady and rapid decrease in power. On the other hand,
under the stepping stone model, the decrease is very
slow and the power remains above 90% under all σ

values. The decrease in power is less clear under the
hierarchical stepping stone model, but here again it
remains above 90% under all σ values. Note, however,
that when using three reduced features, there is a
much clearer pattern of steady decrease in power as
σ increases (Supplementary Figure S4 available online at
http://bib.oxfordjournals.org/).

Based on this tuning process, we present most
KLFDAPC results based on the top 20 PCs and σ = 0.5 but
we also present results for varying σ to visually explore
how this parameter affects the clustering of samples
in geographic and reduced feature (kernel-induced)
space.

Comparing methods performance using
simulated data
As mentioned before, we implemented a neural network
to assign individuals to source populations based
on the top two or three reduced features obtained
from each dimensionality reduction method. We then
estimated the neural network accuracy and Cohen’s
Kappa coefficient (κ) to assign individuals to the labelled
populations using the information provided by the
reduced features (Supplementary Methods available
online at http://bib.oxfordjournals.org/).

The use of DAPC and KLFDAPC assumes that popu-
lation labels assigned to individuals correspond to dis-
crete demographic units. However, in practice, individu-
als sharing the same habitat patch may represent genetic
mixtures, which can introduce errors in the assignment
of individuals to populations using the neural network.
To compare the performance of DAPC and KLFDAPC
under this particularly difficult scenario, we generated
synthetic data under a hierarchical island model and
then created genetically mixed regions consisting of pop-
ulations from two different regions (see Figure 4A). The
DAPC and KLFDAPC analyses were carried out using
the first 20 PCs, and in the case of KLFDAPC, a sigma
value of 5.

Application to real datasets
We tested the performance of all three approaches to
predict the geographic locations of individuals using
two datasets, the European populations from POPRES
datasets [57] (dbGaP accession number phs000145.v4.p2)
and the Han Chinese populations from CONVERGE data
[58] (http://www.ebi.ac.uk/ena/data/view/PRJNA289433).
The details on data quality control can be found in Sup-
plementary Methods available online at http://bib.oxford
journals.org/. To assess the performance of the three
approaches (PCA, DAPC and KLFDAPC) in inferring
the geographic origin, the predictive performance (R2

observed values versus the predicted values) between
different methods was assessed using model resampling
with neural network regression. We also used standard

methods to compare the predictive power of PCA, DAPC
and KLFDAPC: (i) correlation analysis and (ii) Procrustes
analysis. Details of testing using each metric can be
found in Supplementary Methods available online at
http://bib.oxfordjournals.org/.

Results
Discriminatory power
We assessed the discriminatory power of KLFDAPC
for population delineation using the simulated sce-
narios (Methods and Supplementary Figure S1 avail-
able online at http://bib.oxfordjournals.org/), includ-
ing two non-hierarchical spatial models (the clas-
sic island model, Supplementary Figure S1A avail-
able online at http://bib.oxfordjournals.org/, and step-
ping stone model, Supplementary Figure S1C avail-
able online at http://bib.oxfordjournals.org/) and two
hierarchical spatial models (the hierarchical island
model, Supplementary Figure S1B available online at
http://bib.oxfordjournals.org/, and hierarchical stepping
stone model, Supplementary Figure S1D available online
at http://bib.oxfordjournals.org/). We first carried out
PCA on the genotype matrix of 3200 sampled individuals
under all simulated scenarios. Based on the tuning step
described above, we retained the first 20 PCs to conduct
the DAPC and KLFDAPC analyses. In addition, we set
the KLFDAPC parameter σ to 0.5 (but also present some
results using other values). In a first step, we present
2D and 3D plots as the representation of population
genetic structure (Figure 2 and Supplementary Figure S5
available online at http://bib.oxfordjournals.org/). We
then tested the predictive power of the three approaches
to assign individuals to the sampled populations using
neural networks (Figure 3).

All methods successfully discriminated between
regions under the hierarchical spatial scenarios (hierar-
chical island model, Figure 2B, F and J, and hierarchical
stepping stone model, Figure 2D, H and L). However,
PCA and DAPC both failed to clearly delineate local
populations under all four scenarios (Figure 2A–H).
In contrast, KLFDAPC clearly distinguished genetic
stratification among local populations under the step-
ping stone model based on the first two reduced
features (Figure 2K and L) and under the hierarchical
stepping stone model based on the first three reduced
features (Supplementary Figure S5 available online at
http://bib.oxfordjournals.org/). In this latter case, the
first reduced feature discriminated between the two
higher level regions in the hierarchy while the second and
third reduced features together discriminated among
populations within regions. The second reduced feature
discriminated among populations within region 1 while
the third feature discriminated among populations
within region 2. Overall, KLFDAPC performed better
in identifying the populations under the isolation-by-
distance models (the stepping-stone and hierarchical
stepping-stone model) than under the island models

http://www.ebi.ac.uk/ena/data/view/PRJNA289433
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Figure 2. Analyses of simulated data under four spatial scenarios (A, E, I: island model; B, F, J: hierarchical island model; C, G, K: stepping stone model;
D, H, L: hierarchical stepping stone model) using PCA, DAPC and KLFDAPC. (A–D) Genetic structures of four spatial scenarios inferred from PCA; (E–H)
genetic structures of four spatial scenarios inferred from DAPC; (I–L) genetic structures of four spatial scenarios inferred from KLFDAPC, with σ = 0.5.
The first 20 PCs were used in DAPC and KLFDAPC analyses. The same colour in the scatter plots represents the same region. Individuals are grouped by
population names.

(classical island model and hierarchical island model),
where populations within regions tend to overlap
(Figure 2).

To quantitatively compare the performance of each
method (PCA, DAPC and KLFDAPC) in describing genetic
structuring, we implemented an artificial neural network
that used the first three reduced features obtained
from each method to assign individuals to populations
(see Methods and Supplementary Information). We
then assessed the classification accuracy of each set
of reduced features in terms of classification accuracy
and Cohen’s Kappa coefficient [59]. Consistent with the
graphical representation of the spatial structures, the
discriminatory accuracy and Cohen’s Kappa coefficient
(κ) for KLFDAPC were much higher than those achieved
by PCA and DAPC under all scenarios (Figure 3). Note
that the accuracy and κ of all methods with three
reduced features improved over those obtained when

only two axes were used (Supplementary Figure S6
available online at http://bib.oxfordjournals.org/) but
the strongest improvement was observed for KLFDAPC.
We therefore recommend considering more features
(i.e. the first three features in Supplementary Figure S5
available online at http://bib.oxfordjournals.org/) to
fully characterize population structure under complex
scenarios.

As Supplementary Figure S7 illustrates, the pattern of
local genetic aggregation is sensitive to the parameter σ .
KLFDAPC introduces non-linear genotypic associations
using a Gaussian kernel in which σ controls the
strength of dispersal/aggregation of the local structure.
Lowering the σ values of KLFDAPC could increase the
discrimination of discrete clusters, thus increasing the
ability of KLFDAPC to delineate distinct aggregates
(Supplementary Figs S4 and S7 available online at
http://bib.oxfordjournals.org/).
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Figure 3. Discriminatory power of three approaches using the first three reduced features as the explanatory variables to distinguish populations. (A)
Island model, (B) hierarchical island model, (C) stepping stone model and (D) hierarchical stepping stone model. Accuracy and Kappa were estimated after
‘10-fold-10-repeats’ adaptive cross-validation. Comparison between models was tested using a pairwise t-test based on results of 100 cross-validation
resamples. Different letters indicate the statistical significance at the 0.05 level. P-value adjustment: Bonferroni.

In summary, KLFDAPC outperformed PCA and DAPC
in discriminating population genetic structure. Further-
more, in the case of stepping stone models, KLFDAPC was
able to characterize a spectrum of genetic structure from
continuous genetic gradients to discrete clusters with
appropriate kernel parameter values (i.e. σ in Gaussian
kernel). Therefore, we recommend users to vary kernel
parameter values to explore how it influences the results.

The effects of hidden substructure
on the delineation of regions under
hierarchically structured scenarios
An important problem when using supervised learning
is the effect of group mislabelling due to hidden sub-
structure. This can happen, for example when sampling
takes place in wintering or feeding areas that can receive
migrants from several different regions. To investigate
this issue, we considered a scenario where four breed-
ing grounds contributed each to two different feeding
grounds (see Figure 4A). Thus, each feeding ground con-
sisted of genetic mixtures of two distinct genetic clusters.
Figure 4B shows that DAPC was unable to group individu-
als according to the region where they bred. On the other
hand, KLFDAPC correctly grouped together individuals
from the same breeding region. This difference is due to
the different way in which the two methods calculate the
within-class scatter matrix (i.e. the distance between the
position of each sample in multidimensional space and

the average position of the class). More precisely, DAPC
simply uses the class centroid while KLFDAPC takes into
account the genetic affinity between samples.

Analysis of POPRES data
We tested the performance of PCA, DAPC and KLFDAPC to
predict the geographic locations of European individuals
using POPRES data. The first two PCs of the POPRES data
only accounted for 0.29% and 0.15% of the total SNP
variance, respectively. These two PCs were remarkably
aligned with the map of Europe (Figure 5A and D; Table 1,
PC1 versus longitude, R = 0.872, PC2 versus latitude,
R = 0.873), as previously reported [11]. DAPC and KLFDAPC
analyses using the top 20 PCs also provided accurate
geographic representations of the genetic samples
(Figure 5B, C, E and F). Moreover, DAPC and KLFDAPC
improved the alignment of genetic samples with their
locations. For example, DAPC and KLFDAPC rectified
the projected geographic locations between Turkey (TR)
and Albania (AL) by bringing them close to each other,
while also locating PL (Poland) to its correct position
and IR and UK samples closer to their correct location
(Figure 5; Supplementary Table S2 available online at
http://bib.oxfordjournals.org/, PC1 versus longitude,
R = 0.872; KLFDAPC1 versus longitude, R = 0.886; PC2
versus latitude, R = 0.873; KLFDAPC2 versus latitude,
R = 0.934; the difference in R2 between PCA and KLFDAPC
was significant as indicated in Supplementary Table S2
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Figure 4. Population structure inference when sampled regions are genetic mixtures. (A) Graphical representation where each blue circle represents a
region consisting of four breeding grounds. Each blue oval represents a feeding ground composed of individuals from two different regions. Small circles
represent populations and are coloured according to the region they belong to. (B) Results obtained with DAPC; (C) results obtained with KLFDAPC.

available online at http://bib.oxfordjournals.org/). KLF-
DAPC uses a Gaussian kernel to take into account
non-linear associations between samples, where σ

determines the decay in the association [32]. Increasing
σ from 1 to 5 induced a gradual change of the projected
locations between Cyprus (CY) and south-east European
countries, as well as Russia (RU) and north-east European
countries (Supplementary Figure S9 available online at
http://bib.oxfordjournals.org/).
KLFDAPC performed better at predicting the geographic
locations of POPRES individuals than PCA and DAPC

(Tables 1 and 2; Supplementary Table S2 available online
at http://bib.oxfordjournals.org/). Overall, lower σ values
tend to aggregate individuals into compact clusters,
while high σ values make the individuals more scattered.

When predicting the individual origin via a neural net-
work model using the first two reduced features as the
predictor variables, KLFDAPC performed the best among
the three methods to predict the individual longitude
and the latitude (Tables 1 and 2). DAPC and PCA showed
similar power in predicting the individual geographic
locations (Tables 1 and 2). Overall, KLFDAPC showed
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Figure 5. Genetic structure of POPRES dataset represented by the first two reduced features from PCA (A), DAPC (B) and KLFDAPC (C), and projected
individual geographic locations within Europe based on PCA (D), DAPC (E) and KLFDAPC, with σ = 5 (F). The solid circles are the centroid of individuals
from the same country. Country abbreviations: AL, Albania; AT, Austria; BA, Bosnia-Herzegovina; BE, Belgium; BG, Bulgaria; CH, Switzerland; CY, Cyprus;
CZ, Czech Republic; DE, Germany; ES, Spain; FR, France; GB, United Kingdom; GR, Greece; HR, Croatia; HU, Hungary; IE, Ireland; IT, Italy; KS, Kosovo; MK,
Macedonia; NO, Norway; NL, Netherlands; PL, Poland; PT, Portugal; RO, Romania; RS, Serbia and Montenegro; RU, Russia; Sct, Scotland; SE, Sweden; TR,
Turkey; YG, Yugoslavia.

Table 1. Performance of different methods to predict individual locations as measured by a MLP approach with cross-validation
(POPRES data)

Longitude Latitude Correlation between observed and predicted
location using the optimal MLP model

Methods RMSE R 2 MAE RMSE R 2 MAE RD1 versus
longitude

P value RD2 versus
Latitude

P value

PCA 6.683 0.550 5.276 2.283 0.867 1.644 0.756 2.20E−16 0.937 2.20E−16
DAPC 6.956 0.553 5.477 2.313 0.867 1.687 0.542 2.20E−16 0.930 2.20E−16
KLFDAPC (σ =1) 7.333 0.594 5.783 2.794 0.839 2.195 0.819 2.20E−16 0.831 2.20E−16
KLFDAPC (σ =2.5) 6.996 0.584 5.430 2.314 0.870 1.706 0.672 2.20E−16 0.873 2.20E−16
KLFDAPC (σ =5) 6.253 0.616 4.799 2.027 0.886 1.428 0.796 2.20E−16 0.947 2.20E−16

The best statistic is marked in bold. Abbreviations, RMSE: Root Mean Square Error; MAE: Mean Absolute Error; R2: R2 is coefficient of determination.

superior predictive power than PCA and DAPC in pre-
dicting individual geographic locations from European
populations (Tables 1 and 2).

Traditional summary statistics measuring the perfor-
mance of the three approaches in inferring individual
geographic locations are presented in Supplementary
Tables S2 available online at http://bib.oxfordjournals.org/.
Procrustes correlation is strongest for KLFDAPC with
σ = 2.5, but the individual correlation between reduced

features after Procrustes transformation and lati-
tude or longitude are strongest for KLFDAPC with
σ = 1 (Supplementary Table S2 available online at
http://bib.oxfordjournals.org/).

Analysis of CONVERGE data
We also assessed the efficacy of our method to infer
the individual geographic origin for a large Han Chi-
nese population from the CONVERGE dataset. The
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Table 2. The difference of R2 (observed value versus predicted value) between different methods estimated by a MLP model for
predicting the individual longitude and latitude (POPRES data)

PCA DAPC KLFDAPC_ σ _1 KLFDAPC_ σ _2.5 KLFDAPC_ σ _5

RD1 versus longitude
PCA 3.47E−06 2.83E−02 −3.14E−03 −1.91E−02
DAPC 1 2.83E−02 −3.15E−03 −1.91E−02
KLFDAPC_ σ _1 0.0097 0.021 −3.15E−02 −4.61E−02
KLFDAPC_ σ _2.5 1 1 <0.05 −1.60E−02
KLFDAPC_ σ _5 0.011 0.026 2.26E−05 0.084

RD2 versus latitude
PCA −0.0038 −0.044 −0.0342 −0.0663
DAPC 1 −0.041 −0.0305 −0.0625
KLFDAPC_ σ _1 0.625 0.570 0.0102 −0.0218
KLFDAPC_ σ _2.5 1 1 1 −0.032
KLFDAPC_ σ _5 0.01901 0.01102 1 0.41398

p values marked with bold indicate statistically significant differences between two methods at the p < 0.05 level. Upper diagonal: estimates of the difference.
Lower diagonal: P-value for H0: difference = 0. R2 (true value versus predicted value) was estimated after 5-fold cross-validations, repeated five times. Comparison
between models was tested using a pairwise t-test between 100 resamples. P-value adjustment: Bonferroni.

CONVERGE data consist of individuals from 24 out of 33
administrative divisions (19 provinces, 4 municipalities
and 1 autonomous region) across China. We used the
individual-level birthplace information at the province
level to denote the geographic origin of each sample [13].

PCA performed poorly in recapitulating the geography
of individuals, as PC1 corresponded poorly to both
latitude and longitude (Supplementary Table S3 avail-
able online at http://bib.oxfordjournals.org/, Figure 6A
and D; PC1 versus longitude R = 0.0508, PC1 versus
latitude R = −0.351). However, we can still observe a sig-
nificant North–South gradient (Supplementary Table S3
available online at http://bib.oxfordjournals.org/,
Figure 6A and D; PC2 versus latitude R = 0.6404). Com-
pared to PCA, the reduced features obtained from
DAPC better represented the genetic gradients along
latitude and significantly aligned with East China on
the map, where most of the participants were born
(Figure 6B and E; Supplementary Table S3 available
online at http://bib.oxfordjournals. org/). Notably, KLF-
DAPC (σ = 0.5) presented a clear ‘boomerang’ shape for
the genetic structure with Shanghai (Sh), Zhejiang (ZJ),
Jiangsu (JS) at the vertex of the boomerang structure.
Compared with PCA and DAPC, KLFDAPC with σ = 0.5
displayed clear correlation with latitude (South–North
axis) and aligned significantly better with geography
(KLFDAPC2 versus latitude R = 0.7357, Supplementary
Table S3 available online at http://bib.oxfordjournal
s.org/, Figure 6 and Supplementary Figure S10 available
online at http://bib.oxfordjournals.org/). The spread of
samples on the map increases as σ increases, but this
made the inferred individual locations inaccurate, for
example, as σ increased, individuals were placed out of
their birth places (on the sea, Supplementary Figure S10
available online at http://bib.oxfordjournals.org/). Increas-
ing σ values also made the populations indiscernible,
especially for populations that are both genetically and
geographically related, such as Shanghai, Jiangsu and
Zhejiang (Supplementary Figure S10 available online at
http://bib.oxfordjournals.org/).

Due to the limitation of sample collection (samples are
mainly collected from eastern, coastal China provinces),
there was a poor correlation between the first reduced
genetic feature and longitude. We note that PC did
worse at predicting longitude while DAPC and KLFDAPC
improved predictive accuracy but still performed poorly
at predicting longitude (Table 3). All methods failed to
accurately predict individual longitude using neural
networks (Table 3). However, they still performed well
in predicting the individuals’ latitude (Table 3). The
predictive power analysed using neural networks showed
that PCA did worst in predicting the individual latitude
among these three approaches (R2 = 0.727, Table 3).
Even though DAPC (R2 = 0.740) did better than PCA
(P = 5.97E−07), KLFDAPC (σ = 0.5, R2 = 0.767) performed
significantly better than both PCA (P = 2.2E−16) and DAPC
(P = 2.2E−16) (Tables 3 and 4). In addition, the predictive
power R2 obtained from neural networks is higher
than the conventional linear correlation coefficient
(Table 3; Supplementary Table S3 available online at
http://bib.oxfordjournals.org/).

In summary, KLFDAPC with a σ value of 0.5 out-
performs PCA and DAPC in all aspects when pre-
dicting the individual geographic origins of Han Chi-
nese people using the CONVERGE dataset (Tables 3
and 4; Supplementary Table S3 available online at
http://bib.oxfordjournals.org/), suggesting that genetic
features produced by KLFDAPC seem to be a better
surrogate for geographic coordinates than PCs.

Discussion
The availability of large genomic databases has pushed
researchers to put aside model-based methods in favour
of non-parametric approaches, such as PCA [22, 60]
and DAPC [28]. In this study, we introduced KLFDAPC,
a non-linear approach for inferring population genetic
structure and individual geographic origin. Using a
neural network with KLFDAPC reduced features as
predictive variables, we tested the performance of
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Figure 6. Genetic structure of Han Chinese people from the CONVERGE dataset represented by the first two reduced features from PCA (A), DAPC (B)
and KLFDAPC (C), and projected individual geographic locations within China based on PCA (D), DAPC (E) and KLFDAPC, with σ = 0.5 (F). The solid circles
represent the centroid of individuals from the same province. Province abbreviations: Shanghai, SH; Liaoning, LN; Zhejiang, ZJ; Tianjin, TJ; Hunan, HUN;
Sichuan, SC; Shaanxi, SAX; Heilongjiang, HLJ; Jiangsu, JS; Shandong, SD; Henan, HEN; Hebei, HEB; Beijing, BJ; Guangdong, GD; Jiangxi, JX; Shanxi, SX;
Hubei, HUB; Guangxi Zhuangzu, GX; Chongqing, CQ; Fujian, FJ; Gansu, GS; Jilin, JL; Anhui, AH; Hainan, HAN.

Table 3. Performance of different methods to predict individual locations as measured by a MLP approach with cross-validation
(CONVERGE data)

Longitude Latitude Correlation between observed and predicted
location using the optimal MLP model

RMSE R 2 MAE RMSE R 2 MAE RD1
versus
longitude

P value RD2
versus
latitude

P value

PCA 37.637 0.003 20.310 5.688 0.530 4.460 NA NA 0.7274 2.2E−16
DAPC 35.000 0.038 16.641 5.682 0.549 4.460 NA NA 0.7409 2.2E−16
KLFDAPC_σ_0.5 36.236 0.018 18.071 5.615 0.592 4.398 NA NA 0.7670 2.2E−16
KLFDAPC_σ_1 35.416 0.012 17.403 5.638 0.558 4.442 NA NA 0.7471 2.2E−16
KLFDAPC_σ_2.5 34.220 0.006 16.625 5.650 0.557 4.457 NA NA 0.7459 2.2E−16
KLFDAPC_σ_5 34.730 0.015 16.854 5.714 0.553 4.496 NA NA 0.7427 2.2E−16

The best statistic is marked in bold. Note that models fitted with longitude have larger RMSE and smaller R2 compared to those fitted with latitude. NA was
produced due to the uneven distribution of the samples along longitude when sampled from the space by neural networks. MAE: Mean Absolute Error; RMSE:
Root Mean Square Error; R2: R2 is coefficient of determination.

KLFDAPC for inference of individual population mem-
bership and geographic origin. We showed that KLFDAPC
outperformed both PCA and DAPC in population struc-
ture discrimination and in predicting individual geo-
graphic origin using simulated scenarios and empirical

population datasets (Figs 2 and 3). Analyses of the
POPRES dataset showed that all three methods retrieved
a strong correspondence between genetic structure
and geography, but KLFDAPC outperformed both other
methods in inferring the individual geographic
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Table 4. The difference of R2 (observed values versus predicted values) between different methods estimated by a MLP model for
predicting the individual latitude (CONVERGE Data)

PCA DAPC KLFDAPC_σ_0.5 KLFDAPC_σ_1 KLFDAPC_σ_2.5 KLFDAPC_σ_5

PCA −0.019 −0.062 −0.028 −0.027 −0.023
DAPC 5.97E−07 −0.043 −0.009 −0.009 −0.004

KLFDAPC_σ_0.5 2.2E−16 2.2E−16 0.034 0.035 0.040
KLFDAPC_σ_1 5.99E−13 0.450 2.2E−16 0.0008 0.0056
KLFDAPC_σ_2.5 1.12E−12 0.514 2.2E−16 1 0.0048
KLFDAPC_σ_5 8.93E−13 1 2.2E−16 1 1

p values marked with bold indicate statistically significant differences between two methods at the p < 0.05 level. Upper diagonal: estimates of the difference.
Lower diagonal: P-value for H0: difference = 0. R2 (observed values versus predicted values) was estimated after 5-fold cross-validations, repeated five times.
Comparison between models was tested using a pairwise t-test between 100 resamples. P-value adjustment: Bonferroni. All models failed to predict the longitude
because of the small variance between individuals and poor correlation between features and longitude.

locations (Tables 1 and 2; Supplementary Table S2
available online at http://bib.oxfordjournals.org/). When
applying the three methods to the Han Chinese pop-
ulation, PCA exhibited poor performance in char-
acterizing the
individual geography. Both DAPC and KLFDAPC provided
a much better alignment between genetic structure
and geography and remarkably improved the predictive
accuracy of individual geographic origin compared to
PCA (Figure 6). Again, KLFADPC outperformed both
PCA and DAPC in predicting the individual geography
in the CONVERGE dataset (Tables 3 and 4). Overall,
our study highlights the remarkable performance of
KLFDAPC in identifying population genetic structure
and in predicting individual geographic origin. We thus
propose that KLFDAPC, which extracts the non-linear
genetic features and also allows for within-population
hidden structuring, may be a useful alternative to PCA
and DAPC for many population genetics studies.

There are model-based alternatives to the machine
learning methods we considered in our study. However,
they generally require users to define a non-linear func-
tion modelling the slope of allele frequency across geo-
graphic locations [14, 15]. Any pre-specified paramet-
ric function is unlikely to sufficiently capture complex
geographic patterns in genetic variation, such as mul-
tiple modes or peaks in the allele frequency surface
as reported by Yang et al. [14]. In contrast, KLFDAPC
is a non-parametric method that can incorporate both
non-linear genetic associations between individuals and
hidden sub-structuring within populations. It does not
require a non-linear function being defined but only
needs to choose an appropriate kernel.

One particular feature of KLFDAPC that differentiates
it from PCA and DAPC is the need to specify the value
of the kernel parameter, for example σ in the Gaussian
kernel used in our study. Our simulation study suggests
that values between 0.2 and 5 provide optimal results
under most scenarios. However, we consider that it is
useful to vary this parameter to explore genetic struc-
turing at different spatial scales. Our simulation study
showed that low values of σ help to clearly delineate
different regions in hierarchically structured scenarios,
while larger values tend to highlight within-region struc-
turing. Also, real-data analyses showed that increasing

σ tends to produce more scattered or continuous pat-
terns (Supplementary Figs S9 and S10 available online
at http://bib.oxfordjournals.org/). Thus, by tuning σ , it
is possible to maximize the power to predict individual
geographic origin and, therefore, to better account for
population stratification and spatial effects in GWAS
analyses.

We found that, in analyses of the CONVERGE data,
PCA tended to provide a poor indication of the correct
geographic origin of individuals. A previous study of the
population structure of Han Chinese people based on the
CONVERGE dataset filtered ∼30% of individuals on the
basis of poorly imputed genotype in order to reveal strong
correlation between the first two PCs and longitude and
latitude [13]. In our study, we were able to demonstrate
much stronger correlation between reduced genetic fea-
tures and geography using KLFDAPC compared to PCA,
while retaining all 10 461 individuals in the analysis. This
result suggests that KLFDAPC is more robust to varying
data quality issues such as missing or poorly imputed
genotypes than conventional PCA. In particular, missing
genotypes is a common problem in genomic studies. The
k-nearest neighbour algorithm is often used for imputing
missing genotypes [61–63]. Note that KLFDAPC uses the
k-nearest neighbour algorithm (KNN) to calculate the
local genetic affinity, which could strongly decrease the
influence of genotyping errors on inference. Therefore,
KLFDAPC overcomes this artefact experienced by PCA
by preserving the non-linear genetic features and local
genetic affinity.

A common problem with supervised or population-
based methods such as LDA and FST is the requirement
for pre-grouping. Pre-grouping might be subjective or
arbitrary, as we rarely know if some individuals in a
group might have immigrated recently from other groups
or some individuals within a group have unknown
origin, which introduce bias to the inference [64] and
could mask important evolutionary processes such as
migration and cross-breeding [65]. Our results showed
that DAPC suffers from this problem as it minimizes the
within-group variation based on the group means and
can thus lead to erroneous assignment of individual to
populations (Figure 4). Thus, extensive genetic mixing or
admixing can represent a great challenge for DAPC and
lead to inaccurate representations of genetic structure.
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Unlike DAPC and other within-group minimizing/av-
eraging approaches, KLFDAPC is less affected by pre-
grouping (Figure 4). The main reason is that KLFDAPC
computes the within- and between-population affinity
based on the KNN weight, minimizing the influence
of ‘local outliers’ (i.e. migrants) on the inference of
population structure. Therefore, KLFDAPC can preserve
the multimodal genetic structure within populations and
overcomes the problems caused by the group-mean (or
group-centroid)-based method.

Existing studies propose to use neural network
approaches for population assignment [66, 67] and
prediction of geographic origin [68] using genetic data.
Guinand et al. [66] show that assignment tests based on a
neural network classifier with one hidden layer generally
outperforms the other methods. In Supplementary Meth-
ods available online at http://bib.oxfordjournals.org/, we
show that a KLFDAPC-based single-layer neural network
largely outperforms the method of Guinand et al. [66]. The
most likely explanation is that when using individuals’
genotypes as input, a single hidden layer may not be
capable of extracting all the information present in
the raw data. Using instead the reduced features of
KLFDAPC overcomes this limitation. Another way of
improving the accuracy of individual assignment based
on genotype data is proposed by Battey et al. [68], who
used a neural network with several hidden layers to
predict the individual locations based on allele counts
and known locations.

Besides predicting the individual geographic origin,
we also implemented a genome scan approach to
identify genomic regions involved in local adaptation
based on KLFDAPC (https://xinghuq.github.io/KLFDAPC/
articles/Genome_scan_KLFDAPC.html). Many ecological,
evolutionary and medical datasets are complex and
may exhibit hidden genetic structuring. We expect that
KLFDAPC would be very helpful in these particular
situations. First, population structure integrating mul-
timodal structure within large populations could correct
spurious results in inferring individual geographic origin
(c.f. Han Chinese example in our study). The genetic
structure with a non-linear outlier identification model,
such as neural network (as opposed to linear regression
models in pcadapt [69] and LFMM [70]), would provide a
better characterization of genomic regions under natural
selection or involved in adaptation. Therefore, KLFDAPC
could improve the power of detecting loci under selection
or involved in local adaptation. Also, KLFDAPC could
also be used to correct for stratification in genome-wide
association studies, which so far have done so using PCA.

Machine learning algorithms, from simple general lin-
ear regression [71], PCA [22, 60], to random forest [72],
extreme gradient boosting [73], as well as neural net-
works [74], have enabled us to capture the systematic
signatures of biological or genetic patterns from genomic
samples, allowing for the association of genes to pheno-
types/diseases and facilitating molecular-based medical
applications [75–77]. KLFDAPC represents a new addition

to the population genomics toolbox but it is also poten-
tially applicable to other Omics data throughout the
biological sciences, including applications in medicine
and agriculture.

Key Points

• Most species’ genetic diversity exhibits geographic pat-
terns and several methods have been proposed to char-
acterize it. Through a simulation study and real-data
analyses, the limitations of the commonly used methods,
PCA and DAPC, for spatial genetic data analysis were
revealed.

• A supervised machine learning method, KLFDAPC, is
introduced to rectify the limitations of PCA and DAPC
by capturing non-linear information and preserving the
multimodal space of samples.

• KLFDAPC outperformed PCA and DAPC in discriminatory
power and in predicting the geographic origin of individ-
uals.

• KLFDAPC can be useful for geographic ancestry infer-
ence, design of genome scans and correction for spatial
stratification in GWAS.

• KLFDAPC is freely available at https://xinghuq.github.io/
KLFDAPC/index.html.
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(http://www.ebi.ac.uk/ena/data/view/PRJNA289433). Scripts
for analysing the POPRES and CONVERGE datasets are
available at https://github.com/xinghuq/KLFDAPC/tree/
sm/Scripts. The package KLFDAPC used for analysis is
available at https://xinghuq.github.io/KLFDAPC/.

Ethics approval and consent to participate
The access, storage and usage of the human genetic data
(POPRES and CONVERGE) were approved by the School of
Biology Ethics Committee, University of St Andrews.
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