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Abstract

Background: Wild type Staphylococcal a-hemolysin (a-HL) assembly on target mammalian cells usually results in necrotic
form of cell death; however, caspase activation also occurs. The pathways of caspase activation due to binding/partial
assembly by a-HL are unknown till date.

Results: Cells treated with H35N (a mutant of a-HL that remains as membrane bound monomer), have been shown to
accumulate hypodiploid nuclei, activate caspases and induce intrinsic mitochondrial apoptotic pathway. We have earlier
shown that the binding and assembly of a-HL requires functional form of Caveolin-1 which is an integral part of caveolae. In
this report, we show that the caveolae of mammalian cells, which undergo a continuous cycle of ‘kiss and run’ dynamics
with the plasma membrane, have become immobile upon the binding of the monomer. The cells treated with H35N were
unable to recover despite activation of membrane repair mechanism involving caspase-1 dependent activation of sterol
regulatory element binding protein-1.

Conclusions: This is for the first time we show the range of cellular changes and responses that take place immediately after
the binding of the monomeric form of staphylococcal a-hemolysin.
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Introduction

Binding of pore forming toxins such as staphylococcal a-HL can

cause significant changes in cellular signaling of many cell types

[1,2]. The water soluble form of this protein binds to the target cell

as a monomer which then recruits other such monomers (which

have undergone conformational changes in a similar fashion) to

form a non-lytic, pre-pore assembly. This pre-pore assembly then

undergoes further conformational changes to form a heptameric,

mushroom like transmembrane pore to destabilize the membranes

[3]. Formation of transmembrane pores on the target cells result in

osmotic imbalance of the cell leading to death by necrotic pathway.

a-HL’s assembly on Jurkat cells resulted in necrotic form of cell

death even though caspases were found to be active [4,5]. An

intriguing question that remained unanswered as to how the

caspases are activated by a-HL’s assembly? The answer probably

lies in the nature of the structural form of a-HL that is present on the

cell surface as the presence of functional pore on the target cell

membrane is anticipated to result in osmotic imbalance and

necrotic form of cell death. Theoretically, when a-HL binds to the

target cell, all the three forms, viz., the cell bound monomer, the

non-lytic pre-pore and the lytic pore can be present as only a

fraction of the bound a-HL undergoes all the conformational

changes to form the lytic pore. The precise nature of disturbances in

the cellular signaling, caused by the other two non functional forms,

i.e. the membrane bound monomer and the non-lytic pre-pore

forms of a-HL are still not clear. In order to understand the changes

in cellular signaling due to the membrane bound monomeric form

of a-HL, we have employed a mutant, viz., H35N (Histidine 35

mutated to Aspargine) that cannot assemble beyond membrane

bound monomer although it folds like the wild type protein. The

Histidine-35 of a-HL is essential for efficient inter-protomer

interactions during the oligomerization [6]. In the present study,

we demonstrate that the H35N arrests the dynamics of caveolae at

the cell surface, initiates the membrane repair pathway. Probably

due to absence of adequate repair response, the target cells induced

apoptosis via the intrinsic mitochondrial pathway.

Materials and Methods

Annexin-V-FITC apoptosis detection kit was obtained from

Calbiochem. FITC conjugated active anti-Casapse-3 monoclonal
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antibody detection kit was obtained from BD-Pharmingen. Propi-

dium iodide, Hoechest 33342, LDH kit and trypan blue were

obtained from Sigma Chemical Co., USA. Cav-1(pY14) mouse

monoclonal antibody, Anti-PARP(cleaved) antibody were procured

from BD Biosciences. Phospho p38, SREBP-1, caspase-1, anti-Actin

antibody and zVADfmk were from Santacruz Biotech. p38,

Caveolin-1, caspase-3, cytochrome C antibody and all the corre-

sponding HRP conjugated secondary antibodies were bought from

Cell Signaling Technologies. JC-1 dye was obtained from Molecular

Probes. Fluorescein Active caspase-9 staining kit was purchased from

Biovision. Lipofectamine 2000 was purchased from Invitrogen.

Purification of H35N and a-HL
The mutant of a-HL in which the Histidine 35 of a-HL

replaced with Aspargine (viz. H35N) was constructed as described

earlier [6]. a-HL and H35N were cloned and expressed in E. coli

JM109(DE3) under the control of T7 promoter and purified as

described earlier [7,8].

Cell culture and toxin treatment
A431 and HeLa cells were cultured in DMEM medium

containing 10% FCS in the presence of Penicillin-G and

Streptomycin sulfate. Cells at approximately 60–80% confluency

were treated with the H35N (8 mg/ml) or a-HL (800 ng/ml) in the

complete DMEM unless specified otherwise.

Morphological studies on A431 cells
Monodispersed cells after 10–12 hr of plating were incubated

with H35N (8 mg/ml) or a-HL (800 ng/ml) in complete media for

10 hr and photographed under light microscopy.

Immunoblot analysis
Cells were incubated with a-HL (800 ng/ml) or H35N (8 mg/ml)

for the desired time at 37uC, following which adherent and floating

cells were recovered and washed with cold PBS (pH 7.4). The cell

pellet was resuspended in lysis buffer (150 mM NaCl, 1% NP-40,

1 mM EDTA, 1 mM PMSF, 2 mM Sodium orthovanadate and

protease inhibitor cocktail) and the supernatant was passed through

20 gauge syringe for 15–20 times, nuclei and cell debris were

pelleted at 14,000 g for 20 min. The supernatant was estimated for

protein amount and electrophoresed on 12% SDS-PAGE for Cav-1,

p38, caspase-3 and Caspase-1and 15% SDS-PAGE for cytochrome

C. For PARP proteolysis 10% SDS-PAGE gel was used.

Flow cytometric detection of apoptotic cells by
Propidiumiodide staining

For the hypodiploid nuclei, cells after treatment with the toxins

for the mentioned time, were harvested by trypsinisation and

washed twice in cold PBS followed by fixation with chilled 70%

ethanol for 1 hr and spun at ,1500 g for 5 min. The cell pellet

was washed twice with cold PBS and treated with RNaseA (50 mg/

ml) for 30min at 37uC. The cells were chilled on ice for 10 min

and stained with Propidium Iodide (50 mg/ml) for 1 hr and

analysed by FACS vantage flow cytometer and 10,000 events were

measured for each sample. For the analysis of morphological

changes, cells were treated with H35N or pre-treated with

zVADfmk for 2 hr followed by H35N treatment and stained with

PI (2 mg/ml) for 5 min. Live cells were analyzed by FACS.

Flow cytometric detection of active caspase-3 and
Caspase-9

Cells incubated with toxin for different time points, harvested

by mild trypsinisation, followed cold PBS wash and finally

Figure 1. H35N induces morphological changes and increase in
sub G1 population in A431 cells: Cells were left untreated (A) or
treated with H35N for 10 hr (B) or a-HL for 10 hr (C). After 10 hr, the
cells were viewed using phase contrast microscope (D) A431 Cells were
treated with H35N or a-HL for the indicated time points and stained
with propidium iodide as mentioned in material and methods and
hypodiploid nuclei was analyzed by flow cytometry.
doi:10.1371/journal.pone.0006293.g001
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resuspended in cytofix/cytoperm solution (part of FITC conju-

gated active anti caspase-3 antibody monoclonal antibody

detection kit purchased from BD Pharmingen) and incubated

on ice for 20 min. The cells were washed twice with perm wash

buffer at room temperature, the antibody was added as per the

manufacturer’s protocol and incubated for 30 min at room

temperature followed by washing once with perm wash buffer and

resuspended in 0.4 ml of wash buffer and analyzed by flow

cytometry. Activation of caspase-9 was determined using

caspglow fluoroscein caspase-9 staining kit (Biovision). Cells were

harvested by mild typsinisation and washed with PBS. According

to the manufacturer’s protocol FITC-LEHD-FMK was added to

these cells and incubated for 45 min at 37uC followed by washing

twice with PBS. The cells were resuspended in 300 ml of wash

buffer and analyzed by flow cytometry using FL-1 green channel

and 10,000 events were measured for each sample.

Annexin-V-Propidium iodide dual staining
Floating and adhered cells were harvested together by mild

trypsinisation after toxin treatment, washed twice with PBS and

incubated with FITC conjugated annexin-V (0.5 ml/16104 cells)

and PI (10 mg/ml). In each sample, dual parameter dot plot of red

versus green fluorescence signal was obtained and at least 10,000

events were measured.

Detection of the mitochondrial membrane potential
(DYm)

The mitochondrial membrane potential was analyzed using the

JC-1 dye. Both floating and adherent A431 cells after treatment

were harvested together by mild trypsinisation and washed twice

with cold PBS. The pellet was resuspended in PBS containing JC-1

(7 mg/ml) and incubated in dark at 37uC for 20 min. The resultant

cells were washed twice with PBS, resuspended in 0.4 ml PBS and

analyzed by Becton Dickinson FACS system. A minimum of

10,000 cells per sample were analyzed.

Immunofluorescence analysis
For Hoechst staining, cells were treated with H35N or a-HL or

pretreated with zVADfmk (50 mM) for 2 hr followed by H35N

treatment for the indicated time points. The cells were fixed with

Paraformaldehyde (3.7%) for 10 min at room temperature

followed by washing with PBS (pH 7.4). The cells were stained

with 1 mM Hoechst 33342 in PBS for 15 min at 37uC. The

unbound stain was removed by washing twice with PBS. For

SREBP-1 staining, the cells were fixed with 3.7% paraformalde-

hyde for 10 min at room temperature, permeabilised with 0.1%

NP-40 for 5 min. Blocked with 3% BSA and labeled with anti

SREBP-1 monoclonal antibody followed by Cy-2 conjugated

secondary antibody. The cover slips were scanned using Zeiss

Laser scanning microscopy. The nuclei were stained with DAPI.

Trypan blue staining
A431 or HeLa cells were left untreated or treated with H35N

(8 mg/ml) or pretreated with zVADfmk (50 mM) for 2 hr followed

by addition of H35N (8 mg/ml) for the indicated time points and

the cells were mildly trypsinised for few minutes following

inactivation of trypsin in complete media. The cells were

thoroughly washed with PBS. Equal numbers of cells were stained

with trypan blue (0.2%) for 2 min and stained cells and total cells

were counted on hemocytometer.

Subcellular fractionation
Cytosolic lysates were prepared in a buffer containing 250 mM

sucrose, 20 mM HEPES-KOH (pH 7.4), 10 mM KCl, 1.5 mM

Na EGTA, 1.5 mM EDTA, 1 mM Magnesium Chloride, 1 mm

DTT and protease inhibitor cocktail. Cells were kept in the above

buffer for 30 min at 4uC followed by homogenization at 4uC and

spun at 10,000 g at 4uC. The supernatant was further spun at

18,000 g for 30 min at 4uC to yield cytosolic extract. Cytosolic

extract (60 mg) was electrophoresed on 15% SDS-PAGE.

Membrane and nuclear extract were prepared as described by

Figure 2. H35N induces condensation of nuclei assessed by Hoechst 3342 staining: A431 and HeLa cells were treated with H35N or a-HL
for 24 hr as indicated in the figure. The cells were analyzed using 407 nm laser in confocal microscope. Lower panels show merged image of Hoechst
staining with phase contrast.
doi:10.1371/journal.pone.0006293.g002
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Wang et al [9]. All operations were carried out at 4uC. Briefly cells

were harvested, washed twice with PBS and centrifuged at 1800 g

for 10 min, pellets were suspended in buffer A (10 mM HEPES-

KOH at pH 7.6, 1.5 mM Mgcl2, 10 mM KCl, 0.5 m DTT,

1 mM EDTA, 1 mM EGTA) supplemented with protease

inhibitor, disrupted by dounce homogenization and centrifuged

at 1000 g for 10 min. The resulting crude nuclear pellet was

extracted with buffer B (20 mM HEPES-KOH at pH 7.6, 25%

{v/v} glycerol, 0.5 mM Nacl, 1.5 mM Mgcl2, 1 mM EDTA,

1 mM EGTA) supplemented with protease inhibitor and centri-

fuged either at 25,000 g for 30 min. The supernatant was

designated as nuclear extract. The supernatant from the initial

low speed centrifugation (above) was spun at 100,000 g for 1 hr.

The membrane fraction was washed with buffer B by centrifuga-

tion at 100,000 g to obtain a washed membrane pellet. The pellet

was resuspended in 1% (w/v) SDS contaning 10 mM Tris-HCl

pH 6.8, 100 mM NaCl. After incubation for 15 min at room

temperature, the mixtures were centrifuged at 100,000 g for

30 min at 15uC. The supernatant was designated as membrane

fraction. 80 mg of each fractions were analysed by SDS- PAGE

followed by Western blotting using SREBP-1 monoclonal

antibody.

LDH release assay
A431 cells were treated in serum free medium for the given time

points and then the media was removed and spun at 2000 g for

10 min to pellet down cells, if any. The LDH release in the media

was assayed using in vitro LDH release kit from Sigma by following

manufacturer’s protocol. The reaction mixture was added in

double the volume of the media and was kept in dark for 45 min

and then the reaction was stopped by adding 1/10 volume of 1 N

HCl to each well. The absorbance was measured at 490 nm.

TIRF recording of HeLa and A431 cells transiently
transfected with Cav-1-GFP

HeLa or A431 cells (2.56105) were plated in pre-washed cover

slips and at 60–80% confluency, the medium was exchanged with

fresh, serum free medium without antibiotics. The cells were

transfected with Cav-1-GFP DNA (1 mg) using Lipofectamine

2000 (Invitrogen, USA) as per the manufacturer’s suggestions.

Before 12–14 hr of the TIRF recording, the cells were transferred

to phenol red free DMEM medium and just before the recording

the cover glass was transferred to an Atto chamber and placed in

about 800 ml of the same medium. The cells were examined for

background and optimal expression of Cav-1-GFP. We have

routinely selected cells that showed sub-optimal to optimal

expression of Cav-1-GFP to observe clear, distinct dynamics as

shown in the videos (over expression leads to excessive signal at the

cell surface which obstructs the observations). Video streams of

caveolae dynamics were acquired in an Olympus IX-81 TIRF

microscope. The Cav-1-GFP was excited with a 488 nm Ar laser

and the emission signal was collected through emission filter specific

for GFP and images were recorded with a Cascade 512B camera

after adjusting the total internal reflection angle. A 100X, PlanApo,

N.A. 1.4, TIRF objective was used for all acquisitions. All the

recordings were made using 10 MHz digitizer with EM gain of

3(4X) and exposure time of 50 msec. The laser power was adjusted

with neutral density filters present in-line which provided about

20% of the full power. The shutter of the Ar laser was open only

during the recording (90-100 frames at 22–24 frames per second)

and all other parameters such as laser intensity, EM gain of the

camera, exposure time, frame rate and length of recording

remained constant throughout the experiment. Video were

recorded before treatment and after treatment with H35N (5 mg/

Figure 3. H35N induces caspase-3 activation, caspase-9
activation, PARP cleavage: (A) A431 cells were incubated with
H35N, a-HL for the mentioned time and active caspase-3 level was
measured by using FITC labeled anti active caspase-3 antibody as
mentioned in materials and methods. The graph represents the average
of two independent experiments. (B) Following treatment of A431 cells
with H35N or a-HL or H35N+zVADfmk for the indicated time points, the
cells were processed for flow cytometry as mentioned in materials and
methods. The graph is a representation of the average of two
independent experiments. (C) A431 cells were left untreated or treated
with H35N. The cell lysate was prepared as described in materials and
methods and subjected to immunoblotting using PARP antibody which
recognizes the cleaved PARP only. The lower panel represents actin as
loading control. The position of the molecular weight is indicated on
the left.
doi:10.1371/journal.pone.0006293.g003
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ml) or W179C (5 mg/ml) or a-HL (500 ng/ml) for 2–3 hr. Each

TIRF video presented in this work is a representative of at least 4–6

independent measurements. The motion data was analyzed by

ImageJ and Microsoft Excel together.

Results and Discussion

Considering the nature of the action of pore forming toxins on

mammalian cell membranes, we anticipated that mere binding,

without pore formation, should not result in either cell death or

substantial changes in the signaling pathways of target cells

except initiating steps for repairing the membrane damage, if

any. The present study is aimed at understanding the full range of

changes that take place and their influence on cellular signaling

soon after the binding of the staphylococcal a-HL to target cells.

We have carried out the present study with the help of H35N

mutant of a-HL, an oligomerization deficient mutant of the

toxin. The H35N does not assemble beyond the membrane

bound monomeric stage on target cells as it cannot form efficient

inter-protomer interactions to form a pre-pore [8]. Earlier studies

have shown that low doses of a-HL treatment of Jurkat T cells

resulted in caspase activation via mitochondrial pathway and

oligonucleosomal DNA fragmentation. Furthermore, the cell

death was not inhibited by zVADfmk or overexpression of Bcl-2

and the process was concluded to be independent of death

receptor pathway [4].

a-HL and H35N are cytotoxic to the target cells
In the present study, the morphology of A431 cells after H35N

treatment showed an extensive rounding and cell shrinkage as

compared to the untreated cells (Fig. 1A, B & C). We have also

observed that both a-HL and H35N were found to be cytotoxic to

A431 and HeLa cells in a dose dependent manner (data not

shown). The percentage of cell death caused by H35N was about

65% and that caused by a-HL was about 75% in 30 hr for A431

cells and a similar magnitude of cytotoxicity was also observed for

HeLa cells. Moreover, treatment of A431 cells with H35N resulted

in accumulation of hypo-diploid DNA and a time dependent

increase in the sub-G1 population of cells, while a-HL treatment

did not exhibit a significant sub-G1 peak (Fig. 1D), demonstrating

that the cell death caused by H35N is mechanistically different

from that caused by a-HL.

Figure 5. H35N mediates cytochrome C release: H35N induced
cytochrome C release assessed by immunoblotting. A431 cytosolic
lysate was prepared post treatment with H35N or a-HL for indicated
time using protocol mentioned in materials and methods section.
Lower panel represents total actin.
doi:10.1371/journal.pone.0006293.g005

Figure 4. Effect of H35N on mitochondrial membrane potential
using JC-1 staining: A431 cells either left untreated or treated with
H35N (8 mg/ml) or a-HL (800 ng/ml) for the mentioned time was stained
with JC-1 following manufacturer’s protocol as mentioned in materials
and methods and assessed by flow cytometry. Here FL-1 H signifies green
fluorescence whereas FL-2H represents red fluorescence. One represen-
tative experiment of the two independent sets of experiments is shown.
doi:10.1371/journal.pone.0006293.g004

Apoptosis by a-Toxin Monomer
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Figure 6. H35N induced cell death and changes in nuclear morphology in presence of pan-caspase inhibitor zVADfmk: (A) A431 cells
either left untreated or treated with H35N (8 mg/ml) or zVADfmk (50 mM) for 2 hr followed by addition of H35N (8 mg/ml) for the indicated time
which were then mildly trypsinised and viable cells were counted after staining with trypan blue as mentioned in materials and methods. Percentage
of stained cells were plotted. The graph represents one of the two independent experiments. (B–D) Cells were treated as mentioned above, stained
with PI (2 mg/ml) for 5 min. The samples were analyzed by flow cytometry and atleast 10,000 events were acquired for each sample. (B) control (C)
H35N treated cells (D) H35N+ zVADfmk treatment. Apoptotic cell morphology was detected by decrease in forward scatter. (E) Cells post treatment
for the following time points were fixed and stained with Hoechst 33342 as mentioned in materials and methods. The lower panel shows merged
image of Hoechst staining with phase contrast.
doi:10.1371/journal.pone.0006293.g006
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H35N mediates Chromatin condensation in A431 and
HeLa cells

Chromatin condensation, a marker event of apoptosis, was

monitored by Hoechst 33342 staining. A431 or HeLa cells

incubated with H35N for 24 hr distinctly showed condensed

nuclei in comparison to the untreated cells (Fig. 2). a-HL treated

A431 cells did not exhibit any nucleus condensation, demonstrat-

ing that H35N induced cell death is mechanistically distinct from

the a-HL induced death (Fig. 2).

H35N activates caspases, induces PARP cleavage
In view of this unanticipated cell death, we have investigated

the nature of cell death in detail. Immunoblotting analysis

showed cleaved forms of caspase-3 (17 and 20 kD) appeared after

12 hr of H35N treatment which were consistent with the bands

seen in case of Cisplatin treatment (500 mM), a potent apoptosis

inducer (data not shown). In contrast, a-HL showed no caspase-3

cleavage. The presence of active caspase-3 was also confirmed by

FITC labeled active anti-caspase-3 monoclonal antibody staining in

A431 cells. In comparison to the untreated cells, a seven fold

increase in the active caspases-3 in H35N treated cells was seen in

24 hr (Fig. 3A) while a-HL showed negligible increase in active

caspase-3. In order to elucidate whether or not the mitochondrial

pathway was responsible for H35N induced caspase-3 activation,

untreated or a-HL or H35N treated A431 cells were examined for

the presence of active caspase-9. Similar to caspase-3 activation,

H35N induced time dependent increase (,70% in 24 hr) in FITC-

LEHD-FMK staining in A431 cells (Fig. 3B). In contrast, a-HL

treated cells showed just ,25% caspase-9 activity in 24 hr. Also,

A431 cells pretreated with zVAD-fmk, a broad spectrum caspase

inhibitor, inhibited the caspases-9 activation induced by H35N

(Fig. 3B). Caspase-3 activation was further confirmed by PARP

proteolysis (Fig. 3C).

H35N induces mitochondrial pathway of apoptosis
To determine whether mitochondria were affected by H35N,

we first examined the depolarization of mitochondrial membrane

potential by measuring the fluorescence emission shift (red to

green) of the DYm sensitive cationic JC-1 dye. JC-1 is readily

taken up by mitochondria of healthy cells as a monomer. This

uptake increases the concentration of the JC-1 inside the

mitochondria leading to the formation JC-1 aggregates which

appear greenish red, whereas, depolarized mitochondria do not

accumulate JC-1 which remains in the cytoplasm as green

colored monomer. Therefore, increase in green to red ratio

symbolizes depolarization of mitochondria. H35N treatment

showed a time dependent increase in green/red fluorescence

intensity of A431 cells loaded with the JC-1 dye (Fig. 4). It is

known that cytochrome C release from intermembraneous space

of mitochondria into the cytosol is one of the key event in the

activation of caspase-9, which subsequently initiates the caspase

cascade. Since H35N induces the activation of caspase-9, we also

investigated for the cytochrome C release in the cytosolic fraction

after H35N treatment in order to define the upstream event in

H35N induced apoptosis. Immunoblot analysis clearly showed a

time dependent increase in cytochrome C release whereas a-HL

showed a marginal increase in cytochrome C release as seen in

Fig. 5. The mitochondrial membrane depolarization and release

of cytochrome C signify that the apoptotic cell death, induced by

H35N, proceeds via an intrinsic pathway. Hence, our observa-

tions on apoptotic cell death are consistent with the earlier

observations that described apoptotic death of Jurkat T cells by

low doses of a-HL [4].

Figure 7. Annexin V and propidium iodide staining of A431
cells upon H35N treatment: A431 cells treated with H35N (8 mg/ml)
for the indicated time points followed by double staining with
propidium iodide and annexin V-FITC and analysed by flow cytometry
as mentioned in materials and methods. FL-1H (green) represents
annexin V fluorescence and FL-2H (red) is indicative of propidium iodide
staining. One representative experiment of the two is shown.
doi:10.1371/journal.pone.0006293.g007
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Caspase inhibition could not prevent H35N induced cell
death

In order to examine whether H35N induced cell death was

dependent on caspases, cells were left untreated or treated with the

pan caspase inhibitor zVAD-fmk followed by H35N treatment and

the cell death was assessed by trypan blue staining. Cell death could

not be inhibited by broad spectrum caspase inhibitor, zVADfmk as

depicted in Fig. 6A. However, we have also examined the

morphology of the H35N induced cell death in presence of

zVADfmk by FACS analysis. The decrease in the forward light

scatter of cells treated with H35N in presence of zVADfmk indicated

that the cell death resembled apoptosis (Fig. 6B-D). In light of this

observation, we have also investigated the nuclear morphology of

the H35N treated cells in presence of zVADfmk. Interestingly, we

observed that there was only partial nuclear condensation in

presence of zVADfmk in H35N treated cells as compared to H35N

treated cells without zVADfmk, which displayed chromatin

condensation along with nuclear shrinkage (Fig. 6E). One possible

candidate that mediates partial nuclear condensation without

shrinkage is Apoptosis Inducing Factor (AIF) [10,11]. It is believed

that once mitochondria are irreversibly permeabilised, cell death

proceeds regardless of caspase activity. AIF is a mitochondrial

flavoprotein which localizes in mitochondrial intermembrane space

where it performs oxidoreductase function. However, when the

mitochondrial membrane gets depolarized, it is released into the

cytosol, gets translocated to the nucleus and triggers high molecular

weight DNA (50 kb) fragmentation [10,11]. The mitochondrial-

nuclear translocation of AIF was not prevented by broad spectrum

caspase inhibitor zVADfmk nor did it prevents its lethal effect

indicating that this protein is involved in caspase independent cell

death [12]. Furthermore, it has already been shown that the low

dose of a-HL which efficiently induce caspase activation in Jurkat T

cells, markedly induced high molecular weight DNA breaks along

with oligonuleosomal DNA fragmentation [5]. The pan caspase

inhibitor zVADfmk inhibited the oligonucleosomal DNA fragmen-

tation but it could not prevent the accumulation of a-HL induced

high molecular weight DNA fragments [5]. Hence, in light of these

observations and the fact that the H35N induced mitochondrial

depolarization leads to the release of mitochondrial proteins, we

speculate that H35N also induces translocation of AIF. In summary,

these observations suggest that H35N induced cell death is not solely

dependent on caspase involvement.

H35N induces translocation of Phosphatidylserine
Phophatidylserine translocation occurs in almost all cell types

undergoing apoptosis. Under typical apoptotic conditions, the

dying cells first stain positive for annexin V(early apoptotic

condition) and then results in an increase in annexin V- propidium

iodide double positive population(late apoptotic cell death). Cells

treated with H35N for 12 hr or more exhibited an increase in

annexin V and propidium iodide uptake but did not produce

annexin V single positive cells (Fig. 7). The reason as to why H35N

treatment of A431 cells did not result in a dramatic increase in

annexin V single positive cells, but resulted predominantly in

annexin V-propidium iodide double positive cells was not clear.

Although, an identical observation was reported earlier where the

Figure 9. H35N induces phosphorylation of Cav-1 and p-38: (A)
Persistent phosphorylation of Cav-1 was detected in cells by
immunoblotting following treatment of A431 cells with H35N or a-HL
for time points mentioned. TGF-a treatment was taken as positive
control. The lower panel represents total Cav-1 as loading control. (B)
A431 cells either left untreated or treated with H35N or a-HL for the
indicated time points followed by immunoblotting by phospho-p38
antibody. The lower panel shows total p38.
doi:10.1371/journal.pone.0006293.g009

Figure 8. Effect of H35N on LDH release: Cells were incubated with
purified H35N or a-HL for the indicated time points and release of LDH
in the media was measured using LDH kit. The release of LDH by the
cells treated with lysis buffer provided in the kit was considered as
100%. One representative experiment out of the two is shown.
doi:10.1371/journal.pone.0006293.g008
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caspase activating doses of a-toxin did not result in an increase in

population of annexin V single positive cells but resulted in

annexin V- propidium iodide double positive cells only [5].

Membrane integrity is intact in case of H35N but not
with a-HL

The necrotic form of cell death was also examined by

quantitation of LDH release in the extracellular medium, a

marker for membrane integrity. In case of H35N treatment, there

was no significant release of LDH in the early hours of treatment,

i.e., ,8 hr, but, in ,24 hr we could see substantial release of this

marker, which is expected at later stages of apoptosis (Fig. 8). In

contrast, a-HL showed considerable release of LDH in ,8 hr.

All these observations suggest that the induction of apoptosis by

a-HL was due to the presence of the monomeric form of a-HL.

Based on the present and published data so far, the reason for

caspase activation might be as follows: when a-HL binds to the

target cells, only a fraction of the protein converts to lytic pore,

while a substantial amount of protein remains as membrane

bound monomer and as non-lytic, pre-pore. In the absence of both

the pre-pore and the functional pore, our data clearly highlights

the activation of the intrinsic apoptotic pathway. Hence, it is

possible that the membrane bound monomer activates the intrinsic

apoptotic pathway while a successful functional pore assembly

results in classical, necrotic form of death. However, the causes for

the induction of apoptotic pathway are unclear, as the H35N can

neither undergo large scale conformational changes nor it is

efficient in inducing membrane damage.

Link between a-HL binding and caveolae
In our earlier work, we have provided several evidences by

biochemical analysis and molecular modeling that the a-HL can

interact with the scaffolding domain of Caveolin-1 (Cav-1; amino

acids 81–101) through its 9 amino acid binding motif

‘W179GPYDRDSW187’ [13]. Firstly, a-HL targets itself to the

lipid rafts of mammalian cells after binding, as it was detected in

Figure 10. Changes in caveolae dynamics mediated by a-HL and its mutant: (A) HeLa Cav-1-GFP transfected cells were visualized before
and after treatment with a-HL (500 ng/ml) for 45 min or H35N (5 mg/ml) for 2 hr using TIRF microscope (100X) oil based objective. One
representative frame of each video is shown and the bar represent 10 mm.
doi:10.1371/journal.pone.0006293.g010
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Cav-1 enriched membrane fractions and it co-precipitated with

Cav-1. Secondly, purified Cav-1 blocked the hemolysis of red

blood cells caused by a-HL. Furthermore, treatment of A431 cells

with a-HL resulted in clustering of Cav-1 at cell-cell contacts and

depletion of cholesterol in A431 cell membranes completely

arrested the assembly of a-HL [14,15]. Theoretically, the Cav-1

matches the dimensions and the stoichiometry of a-HL for a

possible, facile assembly of its b-barrel, thereby; Cav-1 can act as

an anchor for the a-HL beneath the cell surface through protein-

protein interactions. Hence, the presence of Cav-1 at the cell

membrane can form a basis for susceptibility or resistance of the

target cells towards a-HL.

It has been reported in the literature that cell shrinkage was

required for tyrosine phosphorylation of Cav-1 and p38 MAP

kinase activation [16]. In the light of cell shrinkage observed by

H35N treatment, we have examined the changes in the

phosphorylation of Cav-1 and p38. Interestingly, we observed

that the H35N treatment resulted in the phosphorylation of Cav-1

at tyrosine-14 and p38 MAP kinase as shown in Fig. 9, which may

signify stress.

a-HL and H35N immobilize the dynamic caveolae
The caveolae of mammalian cells exist as static platforms as well

as undergo a continuous cycle of ‘kiss and run’ dynamics with the

plasma membrane [17]. The kiss and run dynamics of Cav-1-

GFP, observed by us in HeLa cells, by Total Internal Reflection

Fluorescence Microscopy (TIRFM) was in complete agreement

with the motion seen in the videos on HeLa cells shown by

Pelkmans and Zerial [17]. While a few caveolae remain static

(permanently docked with the plasma membrane), several

caveolae undergo fusion and detachment with the plasma

membrane within a small volume beneath it (Video S1). In view

of our earlier observations which suggested a possible interaction

of a-HL with Cav-1, we have examined the dynamics of caveolae

since Cav-1 is an important structural component of caveolae.

Interestingly, upon a-HL treatment, the kiss and run dynamics

was completely arrested at the cell surface within 30 to 45 min

(Video S1 vs. Video S2 and Fig. 10) while there was no detectable

membrane damage (data not shown). Similar results were also

observed with the H35N treatment after 2 hr (Video S3 vs. Video

S4 and Fig. 10). The caveolae which normally move ,735 to

1050 nm2 (area wandered by caveolae vesicles was 0.18 to

0.256 mm2/sec) remained confined to ,105 to 315 nm2 (area

wandered by caveolae vesicles after treatment was 0.025 to

0.076 mm2/sec) after a-HL or H35N treatment (Fig. 11A & B). In

contrast, W179C, a mutant form of a-HL (which has a mutation

in Cav-1 binding motif) did not affect the caveolae dynamics

(Video S5). The number of caveolae that remain arrested at the

plasma membrane increased by ,65% upon H35N treatment

while we could not observe any increase in the membrane arrested

caveolae or change in the nature of motion of caveolae (either slow

or rapid movement or internalization) in case of treatment with

W179C (Caveolin-1 binding deficient mutant of a-HL). The

H35N had an identical effect on A431 cells as the caveolae

dynamics were arrested to the similar magnitude (Video S6). It

should be noted that the H35N treatment did not result in 100%

loss of dynamics like a-HL (Video S2 vs. Video S4) as prolonged

incubation with H35N resulted in membrane rounding and cell

shrinkage. As a result of these morphological changes, the basal

membrane moves away from the cover glass to the limits of

evanescent wave excitation range (within ,200 nm from the cover

glass) which is not amenable to TIRF recording. Till date, the

significance of kiss and run dynamics of caveolae and the fate of

cell when intervened by an artificial means remain largely

unknown. In the present study, for the first time we have shown

the interference in the caveolae dynamics by an extrinsic protein.

Thus, blockade of Cav-1 dynamics appears to be the first event

that the target cell recognizes for initiation of appropriate counter

measures.

Till date, two serine/threonine kinases (KIAA0999 and

MAP3K2) have been shown to regulate the caveolae/raft

Figure 11. Histogram representation of changes in caveolae
dynamics caused by a-HL and its mutant: The panels (A) and (B)
respectively represent histograms of movement of the caveolae spots
before and after treatment of a-HL and H35N. The X- axis represents the
distance in mm and the Y- axis represents the frequency in per cent of
caveolae at a given bin value.
doi:10.1371/journal.pone.0006293.g011
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Figure 12. H35N induces translocation of SREBP-1 to the nucleus: HeLa cells were treated with H35N or a-HL for the following time points
and stained with SREBP-1 antibody as mentioned in materials and methods. The extreme left panel shows nuclear staining. The middle panel refers to
SREBP-1 staining. The extreme right panel represents the merged image of SREBP-1 with DAPI staining.
doi:10.1371/journal.pone.0006293.g012
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mediated endocytosis and SV-40 entry [17]. Silencing of these

kinases drastically reduced the kiss and run dynamics leading to

accumulation of caveolar structures at the cell surface. Probably

these kinases may ‘man and sense’ the dynamics of caveolae. The

spatio-temporal relationships of these kinases with respect to the

caveolae dynamics after H35N treatment are still to be understood

and the effector downstream signals generated by the blockade of

caveolae dynamics need further investigation.

Our studies are also in agreement with the observations known to

date on caveolae kiss and run dynamics [17]. For example, upon

exposure of cells to phosphatase inhibitor such as okadaic acid

(video S10 in ref [17]), there was an increase in the number of

docking events of caveolae at the cell surface. Conversely, activation

of phosphatases (shifting of the equilibrium between phosphoryla-

tion and dephosphorylation reaction towards dephosphorylation)

should result in blockade of caveolae dynamics. In our earlier

report, partial assembly of a-HL was shown to elevate the activity of

receptor like protein tyrosine phosphatase s, which belongs to LAR

family of protein tyrosine phosphatases [18]. Thus, during the

course of a-HL’s assembly on the cell surface, the membrane bound

monomer can arrest the dynamics of caveolae, while the partially

assembled form is responsible for the activation of a phosphatase

which might accelerate the blockade of the dynamics of caveolae.

It is evident from the literature that the phosphorylation of Cav-

1 plays an important role in cell proliferation, stress and apoptosis

[16,19]. Cav-1 is transiently phosphorylated during growth factor

signaling, extracellular stresses such as high osmolarity, H2O2 and

UV light [16,19]. However, treatment with H35N resulted in

persistent phosphorylation of Cav-1 and cell death. Here, an

important question arises: Is the persistent phosphorylated form of

Cav-1 responsible for the initiation of the intrinsic pathway of

apoptosis? Recently, it has been reported that taxol induced

apoptosis required Cav-1 phosphorylation and it was found to be

persistent [20]. This finding is in line with our observation,

wherein, we show that the H35N treatment results in persistent

phosphorylation of Cav-1 followed by mitochondrial destabliza-

tion leading to apoptosis via an intrinsic pathway. Thus, there

exists a possible link between the dynamic caveolae, persistently

phosphorylated form of Cav-1 and the cell death. In summary, a-

HL might have evolved as a smart molecule - which when

succeeds in forming functional pore, kills the cell by necrosis and

when it fails to proceed beyond membrane bound monomer; it

gradually paralyses the cell by apoptosis.

H35N leads to activation of SREBP-1
The observed blockade of caveolae dynamics by H35N takes

place in about 2 hr after binding and the process of cell death was

initiated in about 8 hr. It is important to know the event that

occurs between 2 hr and 8 hr. The blockade of caveolae dynamics

by a-HL and H35N, described above, might be one of the first

events that occur after binding of the toxin to the membrane. At

this stage, we anticipated either of the two major events to occur:

1. The toxin treated cells may undergo a repair mechanism. 2.

And if the repair mechanism is not adequate to mount an effective

survival response, the cell death might get initiated. Recently,

Gurcel et. al have shown that binding of a-HL on HeLa cells

initiated the activation of caspase-1 via the inflammasome

pathway by translocation of Sterol Regulatory Element Binding

Protein (SREBP) to the nucleus which in turn promotes cell

survival upon toxin challenge. SREBPs are membrane bound

transcription factors that regulate the expression of genes

harboring the sterol reponse elelment (SRE) in their promoter

region which are involved in cholesterol and fatty acid

biosynthesis. SREBPs reside in the ER and are converted into

the mature form by S1P and S2P. Mature SREBPs then migrate

to the nucleus and induce the transcription of lipogenic genes

which in turn promote cell survival in response to the toxin

induced damage of cell membrane. An important point to note

from the work presented by Gurcel et. al is that they have used low

concentration of the toxin under which all cells excluded

propidium iodide for 10 hr. We would like to emphasize here

that after the binding of the toxin to the cell surface, only a fraction

of the a-HL converts itself to the heptameric form (membrane

damageable form) while a substantial portion of the bound a-HL

remains as a membrane bound monomer and some as pre-non-

lytic pore. Hence, the presence of the membrane bound monomer

in their experiments is inevitable. In order to examine the role of

the membrane bound monomer’s ability to induce membrane

damage, we examined the activation and translocation of SREBP-

1 protein in HeLa cells post H35N treatment. We observed that

after 7 hr of H35N treatment, there is noticeable translocation of

the SREBP-1 protein to the nucleus as compared to control

(Fig. 12). The translocation of SREBP-1 from ER to the nucleus

was further confirmed by immunoblotting. In Untreated cells, full

length SREBP-1 was found in the membrane fraction and the

amount of full length SREBP-1 decreased upon H35N treatment

from the membrane fraction with the appearance of mature

SREBP-1 in the nuclear fraction (Fig. 13A).

Figure 13. H35N mediated SREBP-1 translocation by immuno-
blotting and caspase-1 activation: (A) HeLa cells were treated with
H35N. Membrane and nuclear fractions were prepared and probed with
SREBP-1 antibody. (B) HeLa cells were treated with H35N or a-HL for the
following time points followed by immunoblotting with caspase-1
antibody. The lower panel refers to total actin.
doi:10.1371/journal.pone.0006293.g013
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H35N triggers activation of caspase-1
SREBP-1 activation is mediated through caspase-1 [21]. Once

activated, caspase-1 induces the intermediate targets which then

mediate the processing of SREBPs by S1P and S2P. We therefore

analysed the effect of H35N on caspase-1. As shown in Fig. 13B,

H35N treatment lead to the processing of procaspase-1 with time.

Although many details of this pathway still remain to be

elucidated, our data indicate that the cells, post H35N treatment,

initiated the survival pathway to recover from the H35N induced

damage. It must be mentioned here that the notable event that

occurred after the binding of H35N was loss of caveolae dynamics

(Fig. 10). Hence, it is reasonable to speculate that the loss of

caveolae dynamics or dys-regulated dynamics of caveolae was

sensed as damage by the host cell.

We believe that the repair response seen in case of HeLa cells

was inadequate, hence the reason for initiation of apoptosis by the

host cell. Based on the published data so far, it is not clear

regarding the initial events and/or the nature of yet to be

identified intermediate events that activate the inflammasome

pathway. In the present study, we have also treated HeLa cells

with a-HL and within 45 min there was a complete blockade of

caveolae dynamics. Thus, our work provides valuable insight into

the first steps of this pathway. Although, there are several missing

links between caveolae trafficking and inflammasome activation.

In brief, the data available on the cell membrane repair and its

consequences have been summarized in the schematic represen-

tation shown in Fig. 14. When a-HL binds as membrane bound

monomer, the caveolae are arrested at the cell surface within 2 hr.

This marks the beginning of stress in the form of Caveolin-1 and

p38 phosphorylation. Once the cell senses the stress, it activates

the Caspase-1 between 2-7 hr which results in translocation of

SREBP-1 from ER to nucleus to initiate the transcription of

lipogenic genes. If this attempt is successful, the affected cell might

survive. In case, the cell’s responses are inadequate, it probably

can not restore the caveolae dynamics and eventually the

apoptotic death pathway gets initiated after 8 hr via the intrinsic

mitochondrial pathway. p38MAP kinase activation is also shown

to activate the survival pathway in non immune cells [22]. It is

Figure 14. Summary of observations known till date regarding the membrane repair mechanism: When a-HL begins to assemble, the
caveolae are arrested at the cell surface within 45 min. The assembly proceeds through irreversible formation of pre-pore and the final
transmembrane pore. Once the cell senses the membrane damage, it activates the inflammasome pathway by activating Caspase-1 and processing
and translocation of SREBP from ER to Nucleus to initiate the transcription of lipogenic genes. If this attempt is successful, the cell is expected to
survive. In case the cell’s responses are inadequate, it appears to activate apoptotic death pathway. The big arrows (dash shaded) are the work of
Gurcel et al [21]. The Filled big arrows are the information derived from this work. The big arrows (grey dotted) are the overlapping observations of
Gurcel et al and this present work. The thin dashed arrows are the pathways that are still to be understood.
doi:10.1371/journal.pone.0006293.g014

Apoptosis by a-Toxin Monomer

PLoS ONE | www.plosone.org 13 July 2009 | Volume 4 | Issue 7 | e6293



assumed that the pathway observed by us is same as that of the one

shown by Gurcel and co-workers since vital events observed by all

of us are same. It is not clear about the exact role of KIAA0999

and MAP3K2 kinases (which are involved in controlling the

dynamics of caveolae) at this point of time including its link to the

inflammasome pathway activation. In summary, it is becoming

clear that caveolae trafficking plays a far greater role in the

regulation of cell proliferation and death than is currently known.

Supporting Information

Video S1 TIRFM video of HeLa cells expressing Cav-1-GFP

before treatment with a-HL. The video shows normal ‘kiss-and-

run’ dynamics of caveolae similar to that of the dynamics reported

by Pelkmans and Zerial [1]. The EM gain settings used during the

recording was 3420.

Found at: doi:10.1371/journal.pone.0006293.s001 (3.37 MB

MPG)

Video S2 TIRFM video of HeLa cells expressing Cav-1-GFP

after a-HL treatment. The cells in Video S1 were treated with a-

HL (500 ng/ml) for 45 min and TIRFM video was recorded as

described in methods sections. Note the accumulation of caveolae

at the cell surface (bright spots of Cav-1-GFP). The EM gain

settings used during the recording was same as video 1.

Found at: doi:10.1371/journal.pone.0006293.s002 (3.62 MB

MOV)

Video S3 TIRFM video of HeLa cells expressing Cav-1GFP

before H35N treatment. The normal kiss-and-run dynamics of

caveolae is similar to that of video 1. The EM gain settings used

during the recording was 3849.

Found at: doi:10.1371/journal.pone.0006293.s003 (7.22 MB

MOV)

Video S4 TIRFM video of HeLa cells expressing Cav-1-GFP

after H35N treatment. The cells in Video S2 were treated with

H35N (5 mg/ml) for 3 hr and TIRFM video was recorded as

described in methods sections. The blockade of caveolae dynamics

is seen on the cell surface though it is not 100% as in case of a-HL.

The EM gain setting was same as video 3.

Found at: doi:10.1371/journal.pone.0006293.s004 (6.52 MB

MOV)

Video S5 TIRFM video of HeLa cells expressing Cav-1-GFP

after W179C treatment. HeLa cells expressing Cav-1-GFP were

treated with W179C (5 mg/ml) for 3 hr and TIRFM video

recorded as described above. Note that there is no change in the

caveolae dynamics. The EM gain settings were 3784.

Found at: doi:10.1371/journal.pone.0006293.s005 (5.25 MB

MOV)

Video S6 TIRFM video of A431 cells expressing Cav-1-GFP

after 3 hr treatment with H35N. The A431 cells expressing Cav-1-

GFP were treated with H35N (5 mg/ml) and TIRFM video was

recorded as described above. Note the blockade of caveolae

dynamics at the cell surface similar to that of video 4. The EM

gain settings were 3869.

Found at: doi:10.1371/journal.pone.0006293.s006 (6.16 MB

MOV)
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