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Abstract: Pregnant individuals are exposed to acetaminophen and caffeine, but it is unknown
how these exposures interact with the developing gut microbiome. We aimed to determine
whether acetaminophen and/or caffeine relate to the childhood gut microbiome and whether
features of the gut microbiome alter the relationship between acetaminophen/caffeine and
neurodevelopment. Forty-nine and 85 participants provided meconium and stool samples
at 6–7, respectively, for exposure and microbiome assessment. Fecal acetaminophen and caf-
feine concentrations were quantified, and fecal DNA underwent metagenomic sequencing.
Caregivers and study staff assessed the participants’ motor and cognitive development using
standardized scales. Prenatal exposures had stronger associations with the childhood micro-
biome than concurrent exposures. Prenatal acetaminophen exposure was associated with a
trend of lower gut bacterial diversity in childhood [β = −0.17 Shannon Index, 95% CI: (−0.31,
−0.04)] and was marginally associated with differences in the relative abundances of features
of the gut microbiome at the phylum (Firmicutes, Actinobacteria) and gene pathway levels.
Among the participants with a higher relative abundance of Proteobacteria, prenatal expo-
sure to acetaminophen and caffeine was associated with lower scores on WISC-IV subscales.
Acetaminophen during bacterial colonization of the naïve gut is associated with lasting alter-
ations in childhood microbiome composition. Future studies may inform our understanding of
downstream health effects.
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1. Introduction

Acetaminophen, the only analgesic and antipyretic recommended during pregnancy,
is used by at least two-thirds of pregnant people and is also one of the most frequently
used medications in childhood [1–3]. Recent evidence suggests potential adverse neu-
rodevelopment resulting from exposure, including impaired cognition and increased risk
of attention deficit-hyperactivity disorder [4,5], although findings are inconsistent [6,7].
Similarly, physicians recommend that caffeine intake in pregnancy be limited to less than
200 mg per day [8]. This recommendation is partially due to evidence from animal models
suggesting that high-dose prenatal exposure causes decreased brain weight, neural tube
and central nervous system defects, and adverse behavioral outcomes [9–11], but epidemi-
ologic human studies are inconclusive [12–14]. Studies of childhood caffeine consumption
are limited, but it is estimated to average 0.3–1 mg/kg/day in the United States [15].

Factors that confer resilience or susceptibility to these exposures may explain dis-
crepancies in prior findings but have been understudied. One such factor is the gut
microbiome, the myriad microorganisms that reside in the gastrointestinal tract [16]. Some
bacteria contribute to the metabolism of potentially neurotoxic compounds, including
acetaminophen [17], while others may alleviate harmful effects by producing beneficial
compounds. In contrast, pathogens may exacerbate adverse associations. By examining
microbial features that alter the relationships of caffeine and acetaminophen with neu-
rodevelopment, we may begin to understand the inconsistencies of prior studies. Further,
we may identify bacterial species or byproducts that can be used therapeutically to re-
duce adverse effects when exposure is unavoidable due to limited antipyretic options
in pregnancy.

Bacteria colonize the naïve infant gut after birth, and their ability to establish commu-
nities is affected by the environment they experience, including chemical exposures [18–20].
Acetaminophen and caffeine cross the placenta [21–23], undergo limited metabolism by
the fetus [24,25], and thus accumulate in meconium, making it an ideal matrix to assess
exposure experienced by early colonizers of the gut microbiome. Although the infant
gut microbiome is highly variable, early exposures can have lasting impacts that are de-
tectable into childhood [26]. Additionally, with the ingestion of acetaminophen and caffeine
continuing into childhood, stool remains an informative exposure matrix for microbiome
studies. Few studies have examined whether either acetaminophen or caffeine at any
age is associated with changes in the microbiome, and none have examined prenatal
exposure [27–30].

We aimed to understand the role of the childhood gut microbiome in the associations
of two of the most common medications/exposures in pregnancy, acetaminophen, and
caffeine, with neurodevelopment in the GESTation and Environment (GESTE) cohort.

2. Materials and Methods
2.1. Study Participants

Patients were recruited to the GESTE cohort in early pregnancy or at the time of birth
between 2007 and 2009 at the University of Sherbrooke, Quebec, Canada (cohort description
Supplemental Methods). When the children were aged 6–7 years old, they underwent
a battery of neurocognitive tests. In addition, a convenient sample of children provided
stool samples for microbiome analysis. This analysis included children with stool samples
at age 6–7 that underwent metagenomic sequencing, completed the neurocognitive tests,
and had exposures assessed in the meconium (prenatal, n = 49) and/or stool at age 6–7
(cross-sectional, n = 85). Written informed consent was obtained from parents. All of the
study protocols were approved by the Institutional Review Boards of the University of
Sherbrooke, Harvard T.H. Chan School of Public Health, and Columbia University.
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2.2. Exposure Assessment

Meconium was collected from infants who passed it after birth at the hospital and
stored at −80 ◦C, and the stools were collected by caregivers at the participants’ homes
when they were 6–7 years old. Caffeine and acetaminophen were extracted from the feces
and quantified as previously described [6,31]. Caffeine exposures were log2 transformed
for all analyses to reduce the influence of outlier concentrations. Approximately half of the
meconium and 90% of the childhood stool had non-detectable exposure to acetaminophen;
thus, we dichotomized exposure as exposed (detected) and non-exposed (below the limit
of quantification, LOQ). The details on the LOQ for both exposures are available in the
Supplemental Methods.

2.3. Microbiome Assessment

Total DNA was extracted from childhood stool using established protocols [32].
Metagenomic sequencing was conducted at New York University’s Langone Genome
Technology Center. After preprocessing and quality control as previously described [32],
bacterial species and their pathways were annotated with MetaPhlAn 3 and HUMAnN 3
(MetaCyc) [33], respectively, and normalized to relative abundance tables (i.e., divided by
the total number of reads for each sample) [34]. Bacterial alpha diversity was quantified
with the Shannon [35] and Pielou [36] Indices, calculated from species relative abundance
tables with the phyloseq package [37]. Species beta diversity was measured with UniFrac
(weighted and unweighted) [38], Bray-Curtis [39], and Jaccard [40] distances.

2.4. Neurodevelopmental Assessment

When the participants were 6–7 years old, caregivers completed the Questionnaire
sur le Trouble de L’Acquisition de la Coordination (QTAC), the French equivalent of the
Developmental Coordination Disorder Questionnaire. Through this, they compared their
child’s motor development to their peers [41]. In addition, a trained member of the study
staff administered five subtests from the Wechsler Intelligence Scale for Children, 4th
edition (WISC-IV) to the children, including Block Design, Coding, Digit Span, Information,
and Vocabulary [42]. To assess an underlying component of intelligence not captured by
individual subtests, we created a summary score of the five completed subtests (sum of
five subtests; WISCsum).

2.5. Statistical Methods

The covariates were selected based on their potential to confound the association
between the exposures and the microbiome based on prior knowledge. In final analyses,
we adjusted for sex, ever breastfeeding, mode of birth (vaginal or caesarean), and family
income (Supplemental Methods). In sensitivity analyses, we adjusted for maternal IQ
(Supplemental Methods) and for both exposure windows concurrently. The alpha diversity
indices were linearly regressed against caffeine or acetaminophen, adjusting for covariates.
A Benjamini–Hochberg false discovery rate (FDR) of q < 0.1 was considered statistically
significant [43]. Differences in beta diversity related to caffeine and acetaminophen were
tested with the adonis function, a permutational analysis of variance [44]. Microbiome
Multivariable Association with Linear Models (MaAsLin2) was used to determine whether
acetaminophen or caffeine showed a trend of association (q < 0.1) with bacterial phyla,
species, or pathways with a prevalence above 10% [45].

We have previously reported no association between acetaminophen exposure and
QTAC/WISC-IV scores [6], but we hypothesized that features of the microbiome might
modify the relationships between prenatal acetaminophen or caffeine and neurodevelop-
ment. To limit multiple testing penalties, we screened the most abundant (top 10%) bacterial
species (n = 34), pathways (n = 36), and all phyla (n = 9) for interactions with caffeine and
acetaminophen using linear regression. Model fit was assessed using likelihood ratio tests.
All of the statistical analyses were conducted in the R statistical environment (v4.0.2; R
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Core Team, Vienna, Austria). Code is available at https://github.com/YikeShen (accessed
on 27 June 2022).

3. Results

The population characteristics among the participants included in the analysis were
similar to the full cohort examined at age 6–7 years (Table 1). The GESTE cohort is relatively
homogeneous in demographics (primarily upper-middle-class French-Canadians). The
mean maternal age at recruitment was 29 years, and more than half of the participants were
nulliparous. Breastfed children (87.8%) were overrepresented in the analytical population.
The average family income was higher at follow-up than at delivery, but our analytical
cohorts were similar to the full cohort. The percentage of the participants with detectable
levels of acetaminophen in their meconium was similar in the overall and analytical
populations (Table 1). All of the participants had detectable levels of caffeine in the
meconium, with a median concentration of 390 ng/g meconium in the pilot population
compared to 399 ng/g meconium in all children with available meconium who were
followed to an age of 6 years (Table 1). The median caffeine concentration was significantly
lower in childhood (24 ng/g stool, 100% detection), and fewer (10%) participants had
detectable levels of acetaminophen (Table 1).

Table 1. Characteristics of the GESTE meconium analytic population (N = 49), cross-sectional analytic
population (n = 85), population with meconium (N = 197), and overall population (N = 365) at
6–7-year-old follow-up [expressed as mean ± SD or n (%), unless specified otherwise].

Full Cohort
(n = 365)

Population with
Meconium

(n = 197)

Meconium
Analytic

Population
(n = 49)

Cross-Sectional
Analytic

Population
(n = 85)

Family Characteristics
Maternal Age at Recruitment
(years) 29.1 ± 4.44 29.4 ± 4.45 29.1 ± 3.85 28.9 ± 4.09

Maternal Pre-pregnancy Body
Mass Index (kg/m2)

Available 25.3 ± 5.95 25.4 ± 5.85 25.5 ± 6.30 25.2 ± 6.01
Missing 68 (18.6) 13 (6.6) 12 (24.5) 16 (18.8)

Family Income (CAD a)
Available 70,800 ± 41,200 71,600 ± 47,300 69,600 ± 34,600 93,900 ± 47,100 b

Missing 20 (5.5) 14 (7.1) 4 (8.2) 6 (7.1) b

Parity
Nulliparous 205 (56.2) 113 (57.4) 26 (53.1) 46 (54.1)
Parous 158 (43.3) 83 (42.1) 23 (46.9) 39 (45.9)
Missing 2 (0.5) 1 (0.5) 0 (0) 0 (0)

Birth Characteristics
Gestational Age (weeks) 39.1 ± 1.43 39.1 ± 1.44 39.4 ± 1.09 39.4 ± 1.18
Birth Mode

Vaginal 299 (81.9) 162 (82.2) 40 (81.6) 68 (80)
Caesarean Section 66 (18.1) 35 (17.8) 9 (18.4) 17 (20)

Child Sex
Male 199 (54.5) 107 (54.3) 25 (51.0) 44 (51.8)
Female 166 (45.5) 90 (45.7) 24 (49.0) 41 (48.2)

Child Birthweight (g) 3400 ± 486 3370 ± 484 3440 ± 419 3460 ± 445
Breast Feeding Status

Ever breastfed 284 (77.8) 159 (80.7) 43 (87.8) 68 (80.0)
Never breastfed 65 (17.8) 30 (15.2) 4 (8.2) 14 (16.5)
Missing 16 (4.4) 8 (4.1) 2 (4.1) 3 (3.5)

Neurological Outcomes
WISC-IV c: Block Design 9.54 ± 2.92 9.43 ± 2.88 10.4 ± 2.99 10.3 ± 2.98
WISC-IV: Coding 10.5 ± 2.94 10.5 ± 2.92 10.8 ± 2.56 11.1 ± 2.67
WISC-IV: Digit Span 9.40 ± 2.58 9.39 ± 2.61 10.0 ± 2.26 9.81 ± 2.18
WISC-IV: Information 9.55 ± 2.29 9.37 ± 2.28 9.45 ± 2.17 9.81 ± 2.23
WISC-IV: Vocabulary 10.4 ± 2.70 10.1 ± 2.76 10.3 ± 3.29 10.6 ± 2.97
WISC-IV Summary Score 49.4 ± 8.36 48.9 ± 8.17 51.0 ± 7.70 51.7 ± 7.86
QTAC d 61.0 ± 8.91 61.6 ± 8.32 62.2 ± 8.20 62.1 ± 8.11

https://github.com/YikeShen
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Table 1. Cont.

Full Cohort
(n = 365)

Population with
Meconium

(n = 197)

Meconium
Analytic

Population
(n = 49)

Cross-Sectional
Analytic

Population
(n = 85)

Maternal Intelligence Quotient
>95 percentile 30 (61.2)
≤95 percentile 19 (38.8)

Exposure of Interest
Caffeine (median [25th percentile,
75th percentile]; ng/g meconium) - 399 [2.82, 5170] 390 [15.3, 3110] 24.7 [0.184, 231] e

Acetaminophen
Detected - 100 (50.8) 20 (40.8) 7 (8.2) b

Not Detected - 97 (49.2) 29 (59.2) 78 (91.8) b

a Canadian dollars. b Family income at year 6–7 follow-up. c Wechsler Intelligence Scale for Children, 4th edition.
d Questionnaire sur le Trouble de L’Acquisition de la Coordination. e Exposure concentrations in year 6–7 children stool.

Prenatal acetaminophen exposure was associated with lower alpha diversity us-
ing multiple indices [e.g., β = 0.17 lower Shannon Index comparing exposed to unex-
posed (95% CI: −0.21, −0.09), q = 0.044; Figure 1, Table S1]. At the phylum level, pre-
natal acetaminophen exposure showed a trend of association with lower relative abun-
dance of Firmicutes [β = −0.09 comparing exposed to unexposed (95% CI: −0.16, −0.03),
q = 0.062] and higher relative abundance of Actinobacteria [Figure 2, Table S2, β = 0.183,
(95% CI: 0.03, 0.34), q = 0.085], but there were no associations at the species level (Table S3).
In sensitivity analyses co-adjusting for cross-sectional exposure, the associations were
of a similar magnitude (Table S2). The microbiomes of children exposed to prenatal ac-
etaminophen had higher relative abundance of genes in the succinate fermentation to
butanoate pathway [Figure 3, Table S4, MetaCyc Pathway ID: PWY-5677; β = 0.33, (95%
CI: 0.17, 0.49), q = 0.072]. In contrast, prenatal caffeine exposure was not significantly
associated with alpha diversity or the relative abundance of bacterial species, phyla, or
functional pathways (Figures 1 and 3, Tables S1, S2, S5 and S6). Neither prenatal exposure
was associated with differences in beta diversity (Table S7). In general, cross-sectional
exposure was not associated with differences in the microbiome, even when restricting to
subjects with meconium exposures, although caffeine exposure in stool at age 6–7 years was
associated with an increased relative abundance of three pathways (Table S6): methionine
synthesis [MetaCyc Pathway ID: PWY-5345; β = 0.24 (0.12, 0.35), q = 0.018], assimilatory
sulfate reduction [MetaCyc Pathway ID: SO4ASSIM-PWY; β = 0.24 (0.12, 0.36), q = 0.018],
and sulfate assimilation and cysteine synthesis [MetaCyc Pathway ID: SULFATE-CYS-PWY;
β = 0.24 (0.12, 0.35), q = 0.018].

When testing whether the most abundant phyla, species, or pathways modified the
association between exposure to acetaminophen/caffeine and neurodevelopmental scores,
we found that the relative abundance of Proteobacteria modified the neurodevelopmental
effects of both acetaminophen and caffeine (Figure 4). The participants with detectable
concentrations of acetaminophen had slightly higher scores on WISC-IV subtests, as pre-
viously reported, [6] but this benefit was weakened among those with higher levels of
Proteobacteria (Table S8). In contrast, higher concentrations of caffeine related to lower
scores on several WISC-IV subtests, and these effects were exacerbated among children
with higher levels of Proteobacteria (Table S9). No species (Tables S10 and S11) or functional
pathway (Tables S12 and S13) modified the exposure–outcome relationship. Adjusting for
maternal IQ did not meaningfully change the interpretation of results (Tables S8–S13).
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(b) 6–7-year-old stool (n = 85) and alpha diversity. Diversity was measured with Shannon Diversity
Index and Pielou Evenness Index. Whiskers represent 95% confidence intervals. Models are adjusted
for whether the child was ever breastfed, sex, mode of birth, and family income.
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Figure 3. Association between (a) prenatal (n = 49) and (b) childhood exposure (n = 85) to caffeine
or acetaminophen and relative abundance of functional pathways. Effect estimates for caffeine
are expressed per doubling of exposure. Effect estimates for acetaminophen are comparing ex-
posed to unexposed. Models are adjusted for whether the child was ever breastfed, sex, mode of
birth, and socioeconomic status. Point size is proportional to average relative abundance of the
represented pathway. Pathways with an FDR q-value < 0.1 are labeled. Full names: L-methionine
biosynthesis = Superpathway of L-methionine biosynthesis (by sulfhydrylation); Sulfate assimilation
and cysteine biosynthesis = Superpathway of Sulfate assimilation and cysteine biosynthesis.
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Figure 4. Interaction between meconium concentrations of caffeine and acetaminophen with Pro-
teobacteria (n = 49). Models are adjusted for whether the child was ever breastfed, sex, mode of birth,
and socioeconomic status. In (a–c), solid lines show the association when acetaminophen is detected,
and dashed lines show the association when acetaminophen is not detected. In (d–e), solid lines
show the association when caffeine is at the 75th percentile, dashed lines show when caffeine is at
the 50th percentile, and dash-dot lines show when caffeine is at the 25th percentile. Subfigures (a,d)
show the association between Proteobacteria and WISC-IV Digit Span scores; subfigure (b) shows
the association between Proteobacteria and WISC-IV Information scores; subfigures (c,e) show the
association between Proteobacteria and WISC-IV summary scores.

4. Discussion

In this preliminary study of the potential role of the microbiome as a modifier of
the associations between prenatal exposure to non-prescription consumer products and
neurodevelopment, we found suggestive evidence that certain childhood gut bacteria
may modify the association between caffeine/acetaminophen and cognitive development.
Additionally, prenatal acetaminophen exposure was associated with alterations in the gut
microbiome in childhood. These findings, if confirmed in larger and more diverse cohorts,
may explain differences in the prior literature and suggest therapeutic interventions in
cases where exposure is unavoidable.

Prenatal acetaminophen showed a trend of association with lower microbial diversity
in childhood, accompanied by decreased relative abundance of Firmicutes and increased
relative abundance of Actinobacteria. Higher taxonomic diversity is generally thought
to indicate a healthier system in adults, as it contains greater functional diversity to com-
plement the host’s response to exposures [46]. Infants have low taxonomic diversity that
increases with the introduction of solid foods [47]. Similarly, vaginally delivered infants
have relatively low levels of Firmicutes and high levels of Actinobacteria compared to later
samples [26]. It is possible that prenatal exposure to acetaminophen delays the maturation
of the gut microbiome to a more adult-like composition. This hypothesis should be explored
with more regular exposure assessment and microbiome sampling. In addition, the reason
that no species level associations were detected could be due to the relatively small sample
size. Future investigations with a larger sample size could help elucidate differences at the
species level. Prenatal acetaminophen was associated with an increased relative abundance
of genes in the pathway of succinate fermentation to butanoate. Metatranscriptomic or
metabolomic analyses could inform whether there are functional differences as a result of
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differences in the relative abundance of this pathway and whether there are downstream
health consequences.

In contrast, we did not observe any associations between prenatal caffeine exposure
and gut microbial features. While no epidemiologic studies of changes in the gut micro-
biome resulting from caffeine exposure have been reported, rats who consumed caffeinated
coffee with their chow experienced an increase in Enterobacteriaceae and Clostridium lep-
tum [27]. These results may be due to other chemical compounds found in coffee (e.g.,
antioxidants), but another study found that rats treated with high, repeated doses of
caffeine (not reflective of the fetal experience) had increased Lactobacillus compared to
untreated rats [28]. It is possible that our study was underpowered to detect these changes
or that caffeine exposure in the naïve gut is not relevant to later microbiome composition.
Although we did not observe differences in species or phylum relative abundance related to
caffeine exposure, several gene pathways had increased relative abundance with increasing
exposure. For example, concurrent exposure was associated with an increased relative
abundance of methionine synthesis genes. This may be in response to increased methyl
group availability, as caffeine metabolism requires demethylation. In vitro models may
inform the underlying mechanism of this and other associations.

The associations of both acetaminophen and caffeine with cognitive domains were
modified by the relative abundance of Proteobacteria in the childhood gut. Proteobacteria
includes many notorious pathogens, including Escherichia, Shigella, and Salmonella, all in the
Gammaproteobacteria. An elevated relative abundance of the phylum is associated with
worse cognitive performance or impairment in clinical [48,49], population-based [50,51],
and animal studies [52], in addition to being considered a marker of gut dysbiosis [53]. Our
findings suggest that in addition to the direct negative relationship between Proteobacteria
relative abundance and cognitive scores observed in prior studies, it may modify the
associations of caffeine and acetaminophen with cognition in an adverse manner. In the
case of acetaminophen, Proteobacteria weakened the beneficial impact of acetaminophen on
short-term memory, general knowledge, and our measure of overall cognition. In contrast,
in the case of caffeine, Proteobacteria exacerbated the adverse impact of caffeine on memory
and cognition. This may suggest that Proteobacteria acts through similar pathways (e.g.,
immune response or oxidative stress) as caffeine and acetaminophen in their associations
with cognition [53–55].

There is substantial interest in the microbiome as a mediator of health effects. We
did not uncover bacterial features at 6–7 years that indicate they may mediate the
caffeine/acetaminophen-cognition association (i.e., no feature associated with an ex-
posure that is also associated with cognition in our cohort). However, our study is
underpowered to detect small effects and does not discount the possibility that the
microbiome mediates these or other associations between chemicals and health out-
comes. Importantly, our findings highlight the need to consider whether features of the
microbiome, especially Proteobacteria, can alter host response to exogenous exposures,
including pharmaceuticals. Because Proteobacteria are overrepresented in the micro-
biomes of patients with inflammatory bowel diseases [56] and cognitive decline [50,51],
compared to healthy controls, this could be particularly important when designing
precision medications for these outcomes.

The associations of caffeine and acetaminophen with the microbiome may differ when
considering prenatal and mid-childhood exposure due to windows of microbial susceptibil-
ity to these exposures or due to differences in the exposure matrix. Fecal concentrations of
exposure represent the environment of the gut bacteria more directly than other biomarkers,
thus are an intriguing option for microbiome studies. However, meconium begins to accu-
mulate in the second trimester and captures cumulative exposure over the last six months
of pregnancy [57], while stool accumulates over a much shorter period (~24 h), capturing
more acute exposures [58]. This is captured by the differences in caffeine concentrations
between meconium and stool in our study. In addition to differences arising from acute
vs. chronic exposures, meconium captures exposure in the naïve gut, which may have
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a larger impact on long-term microbiome composition by altering the suitability of the
gut environment for early colonizers of the intestine. Future animal studies with repeated
exposure or epidemiological studies with more frequent exposure assessment could inform
windows of susceptibility of the pediatric gut microbiome.

Our study should be considered within the context of its limitations. Due to the
small sample size, we could adjust for a limited number of confounders. We prioritized
confounders of the association between exposure and the microbiome and selected those
that likely have the strongest confounding effects. Ideally, we would control for factors
that confound the association between caffeine exposure and neurodevelopment and
factors that confound the association between the microbiome and neurodevelopment.
Our exposure assessment assay only quantified concentrations of the parent compounds
(acetaminophen/caffeine) and not their metabolites. Both caffeine and acetaminophen
are known to cross the placenta, whereas the metabolites are more rapidly excreted, and
the fetus has limited capacity to metabolize either compound [23,59,60]. Therefore, we
captured the majority of fetal exposure from the second trimester (when meconium begins
accumulating) to birth. An assessment of the early-life microbiome in relation to prenatal
acetaminophen/caffeine exposure may reveal transient disturbances in the microbiome
that relate to neurodevelopment during a sensitive window. Our cross-sectional exposure
data reduce the possibility that our findings result from correlations between prenatal and
childhood exposures. There is potential for reverse causation due to our fecal samples and
cognitive measures being collected at the same age.

This novel study also has many strengths. This is one of the first studies to examine
the effects of chemicals on the developing microbiome and the first to examine prenatal
pharmaceutical exposure. As such, it is particularly interesting and innovative that we
measured exposure in the meconium, a matrix that represents the naïve gut environment
that bacteria colonize in early life. Further, we used a quantitative measure of exposure to
acetaminophen and caffeine rather than relying on maternal reports of intake during preg-
nancy. Self-report may be under-reported due to the perception of caffeine consumption
during pregnancy as a risk behavior or subject to recall bias in cases where the exposure
data are collected retrospectively. The longitudinal design and temporality of associations
remove the possibility of reverse causation, a common concern of microbiome epidemi-
ology studies. Our use of metagenomic sequencing to profile the childhood microbiome
allowed us to examine many aspects of the microbiome, including functional potential,
which may result from exposure or modify the exposure–outcome relationship.

5. Conclusions

In conclusion, we identified an association between prenatal exposure to acetaminophen
and gut microbiome composition in mid-childhood. Larger studies are needed to confirm
these results and examine the mechanisms by which in utero exposures affect long-term
gut microbiome development. Specifically, studies should collect perinatal maternal and
infant microbiome samples to determine whether exposures are associated with the maternal
taxa, which are then passed to the infant or if exposures act on the microbiome by affecting
what taxa are able to colonize the naïve gut. In addition, we found evidence that certain
bacteria may modify the relationships between exogenous exposures and health outcomes, a
possible explanation for discrepancies in prior studies on these exposures. The potential for
the microbiome to confer resilience or susceptibility to toxic exposures should be explored
more fully, including varying exposures, windows of exposure, and outcomes. Overall, this
study positions the microbiome as a critical, modifiable feature for future environmental
health studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijerph19159357/s1, Supplemental Methods, Table S1. Associations of acetaminophen and
caffeine with childhood bacterial diversity, Table S2. Associations of acetaminophen and caffeine
exposure with bacterial phylum relative abundance, Table S3. Difference in bacterial species rel-
ative abundance comparing those exposed to acetaminophen to unexposed, Table S4. Difference
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