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The massive use of non-renewable energy resources by humankind to fulfill their energy demands is

causing severe environmental issues. Photocatalysis is considered one of the potential solutions for

a clean and sustainable future because of its cleanliness, inexhaustibility, efficiency, and cost-

effectiveness. Significant efforts have been made to design highly proficient photocatalyst materials for

various applications such as water pollutant degradation, water splitting, CO2 reduction, and nitrogen

fixation. Perovskite photocatalyst materials are gained special attention due to their exceptional

properties because of their flexibility in chemical composition, structure, bandgap, oxidation states, and

valence states. The current review is focused on perovskite materials and their applications in

photocatalysis. Special attention has been given to the structural, stoichiometric, and compositional

flexibility of perovskite photocatalyst materials. The photocatalytic activity of perovskite materials in

different photocatalysis applications is also discussed. Various mechanisms involved in photocatalysis

application from wastewater treatment to hydrogen production are also provided. The key objective of

this review is to encapsulate the role of perovskite materials in photocatalysis along with their

fundamental properties to provide valuable insight for addressing future environmental challenges.
Introduction

Rapid industrialization and population growth resulted in
increased energy resources utilization and release of harmful
pollutants. The increased human activities are depleting the
energy resources and polluting our ecosystem. The toxic gasses
in the air are causing respiratory diseases, and the direct
disposal of industrial and organic waste into the water reser-
voirs is causing water-borne diseases. Nearly 663 million people
in the world have no access to clean water. The amount of CO2

in the atmosphere is also increasing due to rapid industriali-
zation. The increased concentration of CO2 is causing is global
warming and is the leading cause of acid rain, which is
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dangerous for all living things on the earth. The current decade
2021–2030, is the decade of ecosystem system restoration.
Therefore, it is essential to pay attention to clean ways to tackle
environmental issues. The new global challenge is the
achievement of ecological sustainability. The research focus of
this era is oriented toward the way to achieve the eco-friendly
system.1–6

The blissful gi of Mother Nature, the Sun is an ultimate
renewable energy resource that irradiates 3.85 yotta joule (YJ) of
energy yearly on the earth's surface. Sunlight is one of the best
routes to deal with environmental issues owing to its cleanness
and abundant availability. Sunlight can be utilized as an energy
medium by photovoltaic, photoelectrochemical catalysis, or
photocatalysis in daily activities.7,8

Photocatalysis is dened as the science of employing a cata-
lyst that uses light to speed up the chemical reaction. In pho-
tocatalysis, the photocatalyst material is used, and the energy of
the light acts as a source to generate electron–hole pair. The
photogenerated electron–hole pair then initiates the redox
reaction at the surface of the photocatalyst. This redox reaction
can be utilized to degrade water pollutants and convert abun-
dant earth elements (H2O, CO2, and N2) into fuel (pure H2, or
organic fuel like CH4, CH3OH, and NH3). The conversion of
water into the fuel (H2) by using light and photocatalyst
RSC Adv., 2022, 12, 7009–7039 | 7009
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material is known as photocatalytic water splitting. The
conversion of CO2 into the hydrocarbons is known as CO2

reduction, and conversion of nitrogen into NH3 is called
nitrogen xation. All these application deals with the viable way
to clean the environment. The main challenge while dealing
with photocatalysis is the region of operation of the photo-
catalyst in the solar spectrum. Most photocatalysts operate
under UV radiations, which is only 5% of the sunlight reaching
earth. Therefore, suitable photocatalysts are required to
respond to the extensive range of the solar spectrum.9–18
Fig. 1 Perovskite structure.
History of photocatalysis

The word catalysis was rst used in 1836 by the Jöns Jakob
Berzelius, derived from the Greek word “kata”, meaning down
or loosen. Catalysis is the process of fasting or accelerating the
reaction in the presence of the catalyst. The catalyst itself
doesn't participate in the reaction but increases the reaction
rate. The term photocatalysis rst appeared in 1911, when
Eibner studied the effect of light irradiation on transition metal
oxide (ZnO) for the decolorization of Prussian blue. Photo-
catalysis term also appeared simultaneously in the title of the
article investigating the degradation of the oxalic acid in the
presence of the uranyl salts upon light irradiation. In 1921
Edward Charles Cyril Baly studied the production of formalde-
hyde using colloidal uranium salts and ferric hydroxides as
a catalyst. Soon aer, in 1924, the Baur and the Perret at the
ETH of Zurich reported the effect of light irradiation on the ZnO
suspension and observed that ZnO suspension enhanced
reduction of Ag+ salts to Ago upon irradiation. The mobility for
the TiO2 as a photosensitizer for the dyes was rst studied by
Doodeve and Kitchener in 1938. This work reported that TiO2

upon light irradiation decolorized the dyes, and TiO2 remains
unchanged during the process.19–22

Many researchers from 1940 to 1972 investigated different
parameters of the photocatalyst. Photocatalysis gained signi-
cant attention when electrochemical photolysis of the water was
done by using titanium dioxide under UV irradiation. The oil
crisis in 1973 also changed the social and economic status of
the western world. The rst time, the shortage of fossil fuels
became a signicant issue, which led to an unprecedented
increase in the efforts for alternative energy resources,
including photocatalysis. The application of photocatalysis is
not limited to energy fuels but can also clean the environment.
Much attention has been given to photocatalysis during the last
two decades due to its wide range of applications.21,23

Photocatalysis has its application in the pollutant degrada-
tion and production of fuel. Material can be an excellent pho-
tocatalyst if it is responsive to light, especially (UV or visible),
biologically and chemically inert, has low cost, and exhibits
adsorption and absorption capacity. Normally the metal oxide
semiconductors are used in the application of the photo-
catalyst. Perovskite materials, due to their unique optical
properties, also gained importance in the application of pho-
tocatalyst during the last decade.24,25
7010 | RSC Adv., 2022, 12, 7009–7039
Perovskite oxide based materials

Perovskite material was rst discovered in 1839 in the Ural
Mountains by the German scientist Gustave Rose. The mineral
was named perovskite aer Russian mineralogist Count Lev
Aleksevish von Perovski.26–28 The rst discovered perovskite
material was CaTiO3.29 The basic chemical formula of the single
perovskite is ABX3, where A and B are cations while X is an
anion. Normally, A is alkaline earth metals or lanthanides, B is
the transition metal, and X is oxygen or any halide. The perov-
skite is known as perovskite oxide when the anion is oxygen and
is known as perovskite halide when the anion is a halide. In
single perovskite, the coordination number of A site is 6, the
coordination number of B site is 12, and the coordination
number of O anion is 6. In single perovskite, the perfect struc-
ture of the BO6 octahedral connection results in the cubic
lattice.30–33 The structure of single perovskite is shown in Fig. 1.

The tolerance factor can indicate the distortion and the
crystallographic structure of the perovskite material. The
tolerance factor of the single perovskites ions was dened
by V. M Goldschmidt in 1926. The tolerance factor of the
perovskite structure tells the stability of the perovskite structure
and the compatibility of the ions in the crystal structure.34–39 The
tolerance factor is a dimensionless quantity given by eqn (1).38,40

t ¼ rA þ rX
ffiffiffi

2
p ðrB þ rXÞ

(1)

In eqn (1), rA and rB are the ionic radii of the electropositive
ions, while rX is the radius of the oxygen or halide ions.41 The
perovskite structure can be divided into octahedral hexagonal,
tetragonal, and ideal cubic structures on the basis of the toler-
ance factor. When the tolerance factor is between 0.9 and 1, the
structure is the ideal cubic structure with the length of the unit
cell (a) as:42

a ¼ rA þ rO ¼
ffiffiffi

2
p

ðrB þ rXÞ (2)

In non-ideal cases, the tolerance factor deviates from 1,
which shows the mismatch in the A–O and B–O bond lengths.
The corundum structure (a-Al2O3) and its derivative are
© 2022 The Author(s). Published by the Royal Society of Chemistry
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considered when the tolerance factor is less than 0.75.43 The
stable bixbite polymorph (a-Mn2O3) is favored when the factor
decreases. If the tolerance factor is greater than 1, the structure
of perovskite is hexagonal close-packed (HCP), and [BO6]-
octahedra share faces with the hexagonal c-axis.30,44

The sum of the charges of cations and anion of the perov-
skite structure should equal one for perovskite material to be
electrically neutral. Different cations having different ionic radii
and valences can be doped in the structure of perovskite
material by employing the method of partial substitution at A
and B-site. Deciency at A and B-site cations and excess or
deciency of oxygen anions can change the composition of ions
and the non-stoichiometry phenomenon.45,46

Double perovskite structures were used at a signicant scale
in the 1980s. The double perovskite exhibits structure that is
twice the single perovskite. The coordination number of the A
and B cation is the same as that of the single perovskite. Double
perovskites are generally of two types depending upon the types
of the cations A0A00B2O6 (double A-site) or A2B0B00O6 (double B-
site).47,48 The double perovskite strain energy depends on the
charge difference between the two types of B cations (B and B0).
There are three ways to arrange the B-type cation based on the
charge difference between B and B0. The arrangement is
random if the charge difference is one (DQ ¼ 1).49 The most
common arrangement of the double perovskite is the rock-salt
arrangement, also called elpasolite structure, in which the
cations change in all three dimensions, and it dominates when
the charge difference between the B and B0 is greater than 2 (DQ
> 2). Due to the difference in the charge size of the B cation in
the rock salt order, the crystal symmetries are less than their
single perovskite structure. Another arrangement is the layered
arrangement of the B and B0, where the cations can change in
only one dimension (Fig. 2).50–54

The perovskite structures are preferred due to their struc-
tural and compositional exibility.

Structural exibility

The ideal single perovskite structure is with the high symmetry
of Pm�3m. It comprises a highly exible network built up from
chains of corner-sharing [BO6] octahedra with A cations occu-
pying the resulting holes with cubic octahedral symmetry. The
symmetry of the structure can be transformed into the tetrag-
onal, hexagonal, octahedral, monoclinic, triclinic, and
Fig. 2 Double perovskite structures.

© 2022 The Author(s). Published by the Royal Society of Chemistry
rhombohedral structures by changing the size of cations or
anions in the structure. Double perovskites generally have
a double B site. Double perovskites are modied single perov-
skite; the high symmetry ideal single perovskite with the space
group of Pm�3m is reduced to Fm3m in double perovskite. The
double perovskite structure with double B site has two elements
in the corner linked and has alternatively arranged BO6 and
B0O6 octahedra double A site.55,56

The tolerance factor of both single and double perovskite
changes by altering the size of cations or anions in the perov-
skite. The resulting lattice distortion affects the dielectric,
electronic, magnetic, and optoelectronic properties. The lattice
distortion also inuences the movement and excitation of the
photo-generated charge carrier under the inuence of
light.27,57–59 The sintering temperature also affects the structure
of the perovskite material. The structure generally becomes
ideal cubic at high temperatures, and as the temperature goes
down, the octahedral rotation in the perovskite changes to
lower symmetry.60,61

Octahedral tilting also has an indispensable role in the
structural exibility of single and double perovskite structures.
Octahedral tilting is the rotation along with the orthogonal
symmetry of the BO6; Glazier explained the octahedral tilting in
1972. Currently, there are twenty-three different perovskite
structures available depending on the octahedral tilt.62,63

The ferroelectric properties of the perovskite structure are
also dependent on the octahedral tilting. Octahedral tilting
breaks the centro-symmetry, which affects the ferroelectricity.
The bandgap of the perovskite can also be changed by changing
the octahedral tilting. Calculation of the electronic structure of
the oxide perovskites on the tilted phase depicts that bandgap
due to the different tilt can change up to the 0.2 eV and is even
more signicant in the case of halide perovskites.30,64,65

The large distortion in the perovskite lattice can break the
structure and result in low dimension perovskite formation (1D,
2D). The distortion in the crystal structure affects the BO6

octahedral, breaks the B–O bond, and forms a 1D/2D perovskite
derivative. In 1D wires with linear or zigzag conguration, the
BO6 octahedral network can be edge-sharing, face-sharing, or
corner-sharing. While in the case of a 2D stacked-layer, the BO6

octahedra are edge-sharing. Low dimension perovskites are
helpful in the application of photocatalysis due to their high
surface to bulk ratio.65–67
RSC Adv., 2022, 12, 7009–7039 | 7011
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Stoichiometric and compositional exibility. The perovskite
structure exhibits a high degree of stoichiometric and compo-
sitional exibility. Theoretically, 346 different kinds of ABO3,
264 are experimentally investigated. The ABO3 perovskite
structure is divided into ve groups depending upon the A and
B site charges that are A1+B5+O3, A

2+B4+O3, A
3+B3+O3, A

4+B2+O3,
and A5+B1+O3. Theoretically, there are 105 possible material
double perovskite, out of which 103 double perovskites are
experimentally investigated. For material to be double perov-
skite, the charge balance of all the charges present in the
structure should be equal to 12. Double perovskite allows the
elements with high valence shells to accommodate in structure,
thus expanding the compositional exibility.49,68

Perovskites' compositional exibility is oen represented by
their ease of alloying on A and B sites. Normally, the mixing
element in semiconductors is isovalent, while in perovskite, the
mixing element is non-isovalent. The simplicity of cation mix-
ing in perovskite materials makes it easy to alter its chemical
and physical characteristics. The double perovskite structure
also shows interesting properties like half-metallicity, high-
temperature ferromagnetism, and many magnetic interac-
tions. The infrastructure of the complicated oxide unit cell
depends upon the electronic conguration and the atoms
located at the A and B-site. The B-site atoms are considered to be
more critical than A-sited cations. The size of the A2+ cation is
larger compared to the A3+ cation. As the A3+ cation has
a smaller size, it limits the size of B-site cations. More than one
thousand double perovskite materials are reported in the liter-
ature, all of which are prepared at ambient pressure. Some new
materials were synthesized at high pressure. More than 720
compounds are reported as the divalent A-site compounds and
200 as trivalent A-site.30,69–71

The structural network of BO6 octahedra can be maintained
in the presence of vacancies at A, B, and O sites because of the
perovskite's excellent structural and compositional exibility.
Applications of the perovskite materials are broad due to these
vacancies, and therefore, they carry applications in photo-
catalysis, photovoltaics, supercapacitors, batteries and fuel
cells, etc.30

Stability of perovskite oxide materials. The challenge to
make use of perovskite photocatalyst materials come from two
signicant restraints: (1) chemical instability in polar solvents
and (2) vulnerability of the surface to transform with chemical
Fig. 3 Applications of perovskite materials.
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species present in solution. Recent progress in this eld
improved these issues and illustrated different courses of
actions to make use of perovskite materials in photocatalytic
processes.72 There are two main stability issues; (1) intrinsic
stability–stability issues, and (2) extrinsic stability–stability
issues of perovskite. Intrinsic stability involves structural
stability, electronic band structure, and thermodynamic phase
stability. In contrast, extrinsic stability encompasses interaction
with water molecules and pathways of degradation, thermo-
chemical stability, light induced ion redistribution, light
stability, photochemical degradation, and oxidation/photo-
oxidation of charge-transporting layers and perovskites.73

Perovskite material and photocatalysis. Perovskite materials,
due to their structural, compositional, and stoichiometric ex-
ibility, are considered promising materials for photocatalysis
(Fig. 3). Perovskites-based photocatalysts operate in UV, IR, and
visible regions. There are three different sites of alteration in
perovskite material which makes tuning of the bandgap in
perovskite material easy. In this review, the applications of the
perovskite material in photocatalysis are discussed in detail.74,75

General reaction mechanism of photocatalysis. The light
interacts with the surface of the nano photocatalyst, which
generates the electron (e�) and hole (h+) pair. The photo-
generated electron–hole pair then initiates the redox reaction at
the photocatalyst's surface. There are three steps involved in the
mechanism of photocatalysis. The rst one is photo-excitation,
provided that the energy of the light source should be high
enough to overcome the bandgap. The second step is trapping
the electron–hole pairs to increase the recombination time. The
recombination of photoinduced charges produces heat, which
decreases the efficiency. The third and nal step is the degra-
dation of the pollutant by the reactive species produced due to
a redox reaction or the production of the fuel.76–79 The general
reaction mechanism for all the reactions is given by;

1st step: photoexcitation of photocatalyst

Photo catalyst + hv / e� + h+ (3)

2nd step: trapping of electron and hole:

e�/etrap
�

hþ/htrap
sþ (4)
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Oragnics (pollutant) + radicals / degarded pollutant (5)

The nal step varies for each application of photocatalysis
and governing equations:

For water splitting:

H+ + e� / H2 (6)

For CO2 reduction:

H+ + e� + CO2 / fuel (H2 + CH4) (7)

For nitrogen xation:

6H+ + 6e� + N2 / NH3 (8)

The photogenerated electron–hole pair can be used in
various applications depending upon the redox potential for the
applications, as depicted in Fig. 4.

The selection of the photocatalyst material for the particular
application is crucial and an important step to achieve better
results.80 The semiconductor material is selected by balancing
the band edge potential of the semiconductor material with the
reaction potential. The main hurdles in photocatalysis are the
less recombination time of the photoinduced electron–hole pair
and absorption wavelength corresponding to the photocatalyst
material. Most materials are UV activated, and in the solar
spectrum, the UV region is only 5%; therefore, for enhanced
photocatalytic activity, the material bandgap should be
responsive to visible and NIR radiations along with the high
recombination time of electron–hole pair.81,82

In the perovskite structure, there are three sites of the
alteration (A site, B site, and O site). The doping at these sites
can enhance light absorbance in the visible and NIR regions by
bandgap alteration. The recombination time can also be
addressed by employing the different strategies that includes
tuning of bandgap and repression of electron–hole recombi-
nation. To solve both light absorption and recombination time
problems, a new innovative solution known as defect
Fig. 4 Redox potential required for the various photocatalytic
applications.10

© 2022 The Author(s). Published by the Royal Society of Chemistry
engineering has been proposed.8,83–85 The strategies for tuning
the bandgap are;

(i) Bandgap engineering
(ii) Repression of electron–hole pair recombination
(iii) Defect engineering
The bandgap of the various perovskite materials is given in

Table 1.
Bandgap engineering. Most perovskite materials respond to

UV light due to their wide-bandgap. The conduction band of
perovskite materials contains d-orbital, slightly above or equal
to zero eV. The valence band has the 2p orbital, due to which
energy of the valence band in perovskite material is generally
greater than 3 eV. The perovskite bandgap provides enough
redox potential to execute different photocatalytic reactions,
like H2 generation, CO2 reduction, contaminants degradation,
and nitrogen xation. The donor and acceptor impurities in the
perovskite crystal structure can adjust the bandgap. The donor
and acceptor impurities in a perovskite can tune the material's
bandgap. The doping at the cations or anions at different sites
of perovskite structure enhances the photocatalytic activity by
introducing the intra-band energy levels; the shallow and deep
intraband energy levels trap the photogenerated electron–hole
pair. Doping also reduces the bandgap of the perovskite mate-
rial (Fig. 5).30,95

In perovskite material, doping of the transition metals (d-
electrons rich cations) led to the production of donor impuri-
ties in the perovskite structure. The high atomic energy of the
transition metal ensures better electron mobility without
changing conduction band minima of perovskite host
material.96

The doping at the different sites of the perovskite structure
changes the absorption peak of the material, thus increasing
the light absorption. Doping also tailors the material's bandgap
and increases the efficiency of the photocatalyst material.
Incorporating a new transition energy level in the perovskite
structure improves the higher wavelength absorption without
changing the intrinsic absorption properties of the material.
Hybridization of orbital in perovskite structure and formation
heteroatom due to the doing changes the absorption spectra of
material. The hybridization decreases the bandgap and there-
fore increases the absorption of light. Thus, the doping changes
the bandgap and increases the recombination time.83,97–99

The bandgap of pure SrTiO3 is 3.25 eV, and doping with
noble metals like Ru, Rh, Au, etc., introduces the intra-band
Table 1 Bandgap of some perovskite materials

Material Bandgap (eV) Ref.

SrTiO3 3.20 86
NaTaO3 4.0 87
CaTiO3 3.62 88
BiFeO3 2.40 89
LaFeO3 2.00 90
NaNbO3 3.48 91
LaCoO3 2.1 92
Bi2WO6 2.70 93
La2Ti2O7 3.28 94

RSC Adv., 2022, 12, 7009–7039 | 7013



Fig. 5 Effect of doping on the bandgap.
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local states, making the doped SrTiO3 a suitable photo-
catalyst.100 The Ru doping introduces the intra-band energy
state between conduction band (Ti 3d) and valence band (O 2p,
Sr 4p). The ionic radius of Ru is greater than Sr and nearly
equals Ti; therefore, the Ru substitutes Ti atom in SrTiO3. Ru
doping at the B site of the SrTiO3 introduces the local states and
increases the photocatalytic performance. The doping of noble
metals in SrTiO3 makes it a Vis-IR responsive photocatalyst.86

Similarly, doping the bismuth (Bi) or copper (Cu) at A site of
SrTiO3 introduces the intra-band energy level and reduces the
bandgap. The change in the absorption shi was also reported
due to the change in the bandgap with doping.101 It is reported
that doping of the sulfur at the O site of the ABO3 introduces the
intraband energy level at 1.23 eV. Researchers also noted that
doping the nitrogen at the O site of the perovskite material
increases photocatalytic activity.102,103

The amount and the quantity of the dopant should also be
optimized to impede the recombination of the photogenerated
charge carrier. Synthesis methods for preparing the perovskite
material also affect the bandgap, recombination of charges, and
migration properties of photocatalyst.104,105

Repression of the photogenerated electron–hole pair recombi-
nation. The movement of photoinduced charge carriers at the
photocatalyst's surface initiates the redox reaction at the surface
of the photocatalyst. The recombination of charge carriers can
occur either at the surface or in bulk. The recombination
reduces efficiency, so it must be repressed.106–108

The crucial step in photocatalysis is selecting the material,
which depends upon the absorption coefficient of the photo-
catalyst material. The absorption coefficient of photocatalyst
depends upon the bandgap and photon energy.109–111 The inci-
dent light generates the electron–hole pair below the catalyst
surface, known as the absorption length. The development of
the space charge region takes place at the phase of the solid–
liquid interface, and if the absorption extent exists in the space
charge region, the photoinduced electron–hole pair can be
easily separated. However, in the case of the bulk material, the
recombination rate will be high.112,113 Aer separating the
photo-induced charges, the next step is the migration of the
7014 | RSC Adv., 2022, 12, 7009–7039
charge carriers. The migration mainly depends on the mate-
rial's symmetry and diffusion length. Diffusion length is the
distance that photogenerated charges travel without recom-
bining or scattering. Diffusion length is the governing factor for
controlling the movement of the charges in the absence of the
potential gradient. Separation of the photogenerated charges
beyond the charge separation region is feasible with materials
whose diffusion length is longer. The diffusion length is
multiple of the lifetime of the charge carrier and diffusion
constant, and it should be of high value to generate the
maximum photogenerated charge carriers.114–116 The limiting
factor for the range of charge space region is the particle size.
The width of the charge space region should not surpass the
particle's radius, and therefore the use of nano-size crystals
improves the photocatalytic activity.108,117,118

The perfection in the crystal structures affects the lifetime of
the photogenerated charge carrier. The potential gradient also
affects the photocatalytic activity because it efficiently separates
the photo-induced charges through the support interfaces
between the semiconductor–semiconductor, semiconductor–
metal, and semiconductor-conductor surfaces, forming the
heterojunctions. Therefore, it is necessary to introduce the
potential gradient for attaining better efficiency of photo-
catalytic material. Furthermore, combining the two semi-
conductors with different bandgaps represses the electron–hole
pair recombination. Co-catalyst can also enhance efficiency by
introducing active sites and better charge transfer.79,119–126

Charge transfer mechanism. Charge transfer mechanisms are
of different types, depending on the photocatalyst system. The
coupling of two photocatalyst semiconductor materials gives
the heterojunction, further categorized into three types. The
heterojunction type formed by the semiconductor materials
depends on their bandgap.119,127 The three types of hetero-
junctions are type I, type II, and type III. The combination of the
semiconductor materials forms the Z-scheme, p–n junction,
and the Schottky junction based on the type of the semi-
conductor used (Fig. 6).121,128,129

Type I, a heterojunction known as straddling gap hetero-
junction, involves one semiconductor photocatalyst (SP I) with
© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 6 Charge transfer mechanisms (a–f) in two coupled semiconductors.
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a highly negative conduction band and highly positive valence
band while the bands of the other photocatalyst semiconductor
(SP II) lie within it. The drawback of type I heterojunction is that
the charges accumulate on the semiconductor with a lower
bandgap which is not favorable.127,130

In type II, the conduction and valence band of the one
semiconductor SPI lies above the conduction and valence band
of the SPII. The charge separation of the photogenerated elec-
tron–hole pair is efficient in type II because of the electron's
downward movement from the conduction band of SPII and an
upward movement of the holes from SPI's valence band.131,132

In type III heterojunction, the valence and conduction bands
difference is more than type II. The photogenerated electrons of
the SPI unite with the photogenerated hole of SPII. The SSPII
electron and the SPI hole innate the redox reaction in the
semiconductor photocatalyst.120,130

The understanding of the Z-scheme is necessary to under-
stand the heterojunction. In Z-scheme, two semiconductor
photocatalyst materials are linked in a way that they form the
letter Z. The electrons from the conduction band of the SPII
trans into the valence band of the SPI. SPI acts as a reduction
site, and SPII serves as an oxidation site. Due to the redox
potential between the two semiconductors, the inbuilt electric
eld allows efficient charge separation. The direct Z-scheme
involves the contact at the interface of two semiconductor
materials. In contrast, the indirect Z-scheme involves mediators
that allow the charge transfer between the two semiconductor
materials. The mediator can be solid or liquid. The iron-based
mediators are more commonly used.133–135
© 2022 The Author(s). Published by the Royal Society of Chemistry
The heterojunction can also be formed by combining the p
and n-type of the semiconductor materials. A free-electron from
n-type semi-conductor material migrates toward the p-type
semiconductor material upon contact. The migration of free
electrons results in the formation of oppositely charged inter-
faces. This migration also strengthens the inbuilt electric eld
at the contact of the p–n junction. The built-in electric eld
facilitates the migration of the photogenerated charge carrier
aer light irradiation, which increases the photocatalytic
performance (Fig. 7).136,137 Examples of semiconductor–semi-
conductor photocatalyst are SnO2–TiO2, CdS–TiO2, Bi2O3–

Bi2WO6 and Bi2WO6–TiO2, etc.138

The increased charge separation of metal–semiconductor
photocatalysts arises from the transfer of the electron across the
interface of metal–semiconductor. Metal improves photo-
catalytic performance because it provides active sites and
facilitates the separation and transfer of photoinduced charge
carriers. When a metal (having a high work function) couples
with semiconductor, the electrons ow from the semiconductor
to the metal until their Fermi levels get aligned, resulting in
upward bending of band edges in semiconductor and accom-
panied by the band bending, formation of Schottky barrier
takes place at the metal–semiconductor interface (Fig. 8). The
electron from the conduction band of the semiconductor
material migrates to the co-catalyst and causes charge separa-
tion, and increases the photocatalytic activity.139–141 The prom-
inent examples of metal–semiconductor photocatalysts are Au/
TiO2, Au/ZnO, Ag/ZnO, Ag/TiO2, etc.142
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Fig. 7 Schematic energy band structure and electron–hole pair separation in the p–n heterojunction.126
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Defect engineering. Defect engineering is a suitable and easy
way to enhance the photocatalytic efficiency of perovskite
materials. Substituting the different materials can introduce
defects in the perovskite materials in the perovskite structure.
These defects act as a site to trap the charge carriers and thus
enhance the separation of charge carriers and increase the
photocatalytic efficiency. These defects can be a vacancy of an
extra atom that results in the formation of the line or screw
dislocation.143–145

In perovskite materials, three different alteration sites allow
the introduction of the defects or vacancies. The doping at the A
and B site cations introduces the dislocation but does not allow
structural changes. The structural changes can introduce
vacancies at the A site or O site. The vacancy at the B site is
challenging to introduce due to the BO6 octahedra. Further-
more, it is thermodynamically unfavorable to introduce the
vacancy at the B site due to the high charge value and the small
B site cation size.146,147

The vacancies at the A site can be induced by substituting the
A-site cation with a cation of the high or low valence. The sub-
sisted single perovskite oxide formula is: A1�xAxBO3 and the
oxygen-decient vacancy can be created by doping the sulphur
or nitrites. The second approach is doping at the B site, in which
the reduction of the B site produces oxygen vacancy. In recent
years, many defect-rich perovskite materials with excellent
photocatalytic activity have been reported. Fig. 9 represents
different strategies for bandgap tunning of perovskite
materials.30,148,149

The potential of semiconductor photocatalyst mainly
depends on the electron injection capacity of the material,
which is controlled by the energies of valence (EVB) and
conduction bands (ECB). Therefore, to investigate the possible
applications of semiconductors, it is crucial to have an under-
standing of the ECB and EVB band edges. In a semiconductor, the
7016 | RSC Adv., 2022, 12, 7009–7039
Fermi level (EF) determines the electrochemical potential of
electrons. At thermodynamic equilibrium, EF tells the occupa-
tion of the energy levels, but thermodynamic equilibrium can
be perturbed by external bias or irradiation due to injection or
photogeneration of holes and electrons. Therefore, the quasi-
Fermi levels dene the non-equilibrium densities of electrons
in conduction band and holes in valence band. Generally, the
quasi-Fermi level for the majority carriers approximates the
equilibrium EF because of the negligible increase of density of
majority carriers. However, the quasi-Fermi level can be shied
because of the small minority carriers at equilibrium.150

When a semiconductor is in contact with another phase, the
ionic interactions at the interface of the two phases cause an
electrostatic adjustment in the material. To attain the equilib-
rium, especially at the semiconductor/electrolyte interface, the
electrons ow from the phase of more negative EF to the other,
in which the semiconductor EF matches the electrolyte EF,redox.
This forms a space charge layer (SCL) in the semiconductor
phase, which is associated with the upward bending of the band
edges in the n-type semiconductor (Fig. 10c) and downward
band bending in the p-type semiconductor (Fig. 10d). The SCL
contributes to an internal electric eld in the semiconductor,
where majority carriers are forced away from the interface of
semiconductor/electrolyte. Such an SCL accounts for one of the
three distinct double layers, in addition to the Helmholtz layer
and Gouy–Chapman layer, which are commonly present at the
interface of semiconductor/electrolyte.150

Recyclability of perovskite photocatalyst. Reusability is
crucial for a photocatalyst, reecting its superiority in the
photocatalysis domain. It is worth mentioning that commonly
available or used photocatalysts are homogeneous photo-
catalysts that cannot be recycled in the developed methods.
Moreover, their practical applications are limited because of
complex synthesis approaches, the high cost of noble metals,
conditions of air-free reaction, andmodest activity. Therefore, it
© 2022 The Author(s). Published by the Royal Society of Chemistry
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is essential to develop an easily produced heterogeneous pho-
tocatalyst that also exhibits the property of easy catalyst sepa-
ration along with recyclability. The researchers have recently
started reporting heterogeneous perovskite photocatalyst in
photocatalytic organic synthesis. The perovskites-catalyzed
selective oxidation of benzyl alcohols to aldehydes under
visible light irradiation has been reported by a group of
researchers. Another group reported the photoredox CsPbBr3-
catalyzed oxidative coupling of thiols to disuldes and cross-
dehydrogenative coupling of dialkyl H-phosphonates with
tertiary amines to a-phosphoryl tertiary amines. Yan and their
fellows also reported the a-acylmethylation of aldehydes start-
ing from aldehydes and a-bromo ketones catalyzed by CsPbBr3
under light. The same group also used CsPbBr3 photocatalyst
for the formation of C–C bond via C–H activation, formation of
C–N, and C–O via N-heterocyclization, and arylesterication. A
group of researchers prepared a heterogenous perovskite pho-
tocatalyst and used it at least ve times without noticeable
degradation in its activity.151,152
Applications of photocatalysis

There are numerous photocatalysis applications, but during the
last couple of decades, a lot of focus has been given to appli-
cations having environmental applications such as wastewater
treatment, nitrogen xation, CO2 reduction, air purication,
and water splitting. All of these applications except air puri-
cation have been discussed in the current article.
Degradation of water pollutants

Rapid industrial growth, mainly the textile industry, produces
increased chemical wastes in the water. Industrial chemical
wastes or pollutants are known as dyes. The dyes produced by
the textile industry can impede plant growth, impair photo-
synthesis, and its accumulation in soil disturbs the food chain.
The textile dyes in water also cause genetic problems and
cancer. The dyes in water aggravate the regulatory functions of
the different glands in humans and can also have adverse
effects, like infertility and immune suppression in humans. The
traditional ways to clean the dyes in water give rise to massive
sludge because of adsorbent usage, which can further cause
bacterial infections and skin problems. The photocatalytic
degradation of the containments in the water is more reliable
than the traditional methods. Recycling the adsorbents in
conventional methods generally generates secondary pollut-
ants, and recycling adsorbents also requires harsh
conditions.153–156

The use of the photocatalyst is an eco-friendly way to degrade
these water pollutants. The photocatalytic techniques utilize the
advanced oxidation process (AOP) for degradation. The inter-
action of the light with the photocatalyst generates electron–
hole pair. Generally, oxygen is employed as an electron scav-
enger to increase the recombination time for enhanced photo-
catalytic activity. The redox reaction of the photogenerated
electron–hole pair gives reactive species such as (OH*, OH�,
H+), and these reactive species then attack the organic
© 2022 The Author(s). Published by the Royal Society of Chemistry
pollutants and degrade them into low molecular weight prod-
ucts (environmentally friendly products) within no time.153,157,158

The heterogeneous design and the self-cleaning surface of
the catalyst make recyclability much easier. The reactions occur
at the catalyst's surface, followed by the desorption of the
materials; thus, this method is known as a sustainable solution
to address the water contamination crisis.159,160

The photocatalytic activity can not only be monitored by
investigating the absorption spectra of the dye molecule but
also involves the investigation of the mineralized products
formed due to the cleavage of the chromosphere. The miner-
alized products can be investigated by measuring the chemical
oxygen demand (COD) and total organic carbon (TOC). The
photocatalytic reaction for degradation of the containments
occurs in an aqueous environment. The irradiation of the light
on the aqueous system (consisting of photocatalyst + polluted
water) generates photogenerated electron–hole pair in water.
The oxygen or different impurities are added as an electron
scavenger to increase the recombination time.25,104,161,162 The
photogenerated electron–hole pair then migrates towards the
surface of the photocatalyst and induces the reactive ions (such
as OH*, O2�*, etc.). The redox potential of the created reactive
ion species depends upon the bandgap of the photocatalyst.
The reactive ion species then degrade the contaminant into the
smaller fragments, which are then changed into green
compounds. The degradation of the contaminants takes place
at the surface of the catalyst. Initially, the dye gets adsorbed at
the catalyst surface, and aer the degradation product gets
desorbed, the new pollutant is adsorbed, and this process
continues until no contaminant is le. The overall reaction
mechanism is shown in (Fig. 11).30,76,135,163,164

Many perovskite materials are used as a photocatalyst, but
titanium, bismuth, and ferrite-based single and double perov-
skite are widely reported due to their excellent photocatalytic
properties.165 The rst reported perovskite material CaTiO3

exhibited photocatalytic activity and degraded pollutants. The
wide bandgap of CaTiO3 (3.0–3.5 eV) responds only to the UV
light and efficiently degrade the brilliant green (BG), methyl
blue (MG), and rhodamine B (RHb).88,166 The synthesis route
and the morphology of the CaTiO3 structure change the
bandgap and thus affect the photocatalytic performance for
pollutant degradation. CaTiO3 nanocuboid showed the excel-
lent photodegradation of the RhB dye upon visible light irra-
diation. Zirconium (Zr) doping at the Ti site of CaTiO3 generates
oxygen vacancies, producing defects and increasing photo-
catalytic activity by changing the lattice structure.167,168 The re-
ported photocatalytic activity of the Zr doped CaTiO3 is thirteen
times greater than the un-doped CaTiO3. Fe-doped CaTiO3

efficiently degraded the methyl blue using the visible light
source.166 The doping of the Fe in the CaTiO3 increased the
absorption ability of CaTiO3. The photocatalytic activity also
depends upon the calcination temperature and the irradiation
time of the light. Fe-doped CaTiO3 showed 100% photo-
degradation of the methyl blue at optimum condition
(temperature, irradiation time, and light source).169 BaTiO3,
SrTiO3, and other titanium-based perovskite materials have also
shown better photodegradation of the pollutants.101,102,170
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Fig. 8 Schematic of the Schottky barrier.126

Fig. 9 Strategies for tuning bandgap.
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Ferrites-based perovskite (AFeO3, where A can be La, Bi, Ca,
Sr, Gd, etc.) attracted researchers due to their low cost and small
bandgap compared to the titanium-based perovskite.171 The
widely used ferrite-based perovskite is bismuth ferrite (BiFeO3).
The small bandgap (2.0–2.77 eV), excellent stability, and strong
photoabsorption of BiFeO3 allow the efficient photodegradation
of organic dyes from textile and pharmaceutical industries
under visible light.172–174 The pure BiFeO3 in the sunlight
showed 69% photodegradation of methyl blue. The doping at
different sites of BiFeO3 has shown better results. Sc doped
BiFeO3 showed 100% photodegradation of the methyl blue in 3
hours under sunlight. The improved efficiency was attributed to
improved ferroelectric properties due to lattice distortion
7018 | RSC Adv., 2022, 12, 7009–7039
produced by doping.98 Mesh of BiFeO3 showed 98% photo-
degradation of the methyl blue within 4 hours. The excellent
photocatalytic activity of BiFeO3 was due to the high interaction
of the dye molecules and photocatalyst. Bi0.90La0.10Fe0.95-
Mn0.05O3 showed 97% photodegradation of Congo-red within 2
hours under the sunlight.25

Tantalite-based perovskite is also reported for the degrada-
tion of water pollutants. Due to excellent photochemical
stability, sodium tantalite (NaTaO3) showed photocatalytic
degradation properties. The efficiency of the NaTaO3 based
photocatalytic system is quite less due to the wide bandgap of
the material. Still, the doping of nonmetals increases its effi-
ciency by creating a local state between the conduction and
© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 10 Energy levels of the semiconductor/electrolyte interface before (a and b) and after contact (c and d).150

Fig. 11 Photocatalytic pollutant degradation.
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valence band. The reported photodegradation of methyl blue is
95.21% by nitrogen-based NaTaO3 photocatalyst using sunlight
as an irradiation source.175,176 Different perovskite materials
used for photocatalytic pollutant degradation are given in Table
2.

Photocatalytic water splitting. Hydrogen is considered
a green and clean fuel and one of the best alternatives to fossil
© 2022 The Author(s). Published by the Royal Society of Chemistry
and other non-renewable energy resources. The photocatalytic
splitting of the water produces H2 and O2 oxygen by the four-
electron process. The overall reaction of water splitting is
depicted in eqn (9).

2H2O / 2H2 + O2 DG
� ¼ +237 kJ mol�1 (9)
RSC Adv., 2022, 12, 7009–7039 | 7019



Table 2 Reported perovskite materials for photocatalytic pollutant degradation

Material Morphology
Bandgap
(eV) Pollutants/dyes Light source Degradation rate

CaTiO3 (ref. 177) Bare �3 MO UV light 54% aer 60 minutes
CaTiO3–graphene

178 Composites �3 MO UV light 98% aer 60 minutes
C doped SrTiO3 (ref. 179) Cubic particle, nanorod,

nanotube
Less than
3.2

MB, MO, RhB, phenol,
and BPA

Visible light 95% of MB, MO, RhB, and
70% of phenol and BPA aer
3 hours irradiation

S–SrTiO3 (ref. 180) Powder <3.2 2-Propanol 500 W-Xenon lamp Aer 60 min of irradiation,
80% of propanol is converted
into acetone

Cu doped SrTiO3 (ref. 181) Nanoparticle 2.96 Methyl blue Visible light 66% within 120 minutes
Fe doped SrTiO3 (ref. 182) — 2.6 Tetracyclin TC Visible light 71.6% in 80 minutes
Mn-doped SrTiO3 (ref. 183) Nanocubes 2.76 Tetracyclin TC Visible light 66.7% in 60 minutes
N doped NaTaO3 (ref. 184) Cubic 2.48 MB, MO UV-visible light 95.1% in 60 minutes
Ag/AgGaO2 (ref. 185) Composite MB Visible light 95% in 180 minutes
LaFeO3 (ref. 186) Nanoparticle 2.36 MB Visible light 100% aer 60 minutes
Z-scheme MoS2/CaTiO3 (ref.
187)

Nanospheres 3.23 TC Simulated solar
light

70% in 60 minutes

p–n type (30–60% Ag3PO4)/
NaTaO3 (ref. 188)

Crystalline 2.32–3.78 RhB Visible light 87% in 25 minutes

BiOI/KTaO3 p–n
heterostructure189

Composite 1.76–2.23 RhB and phenol Visible light 91% aer three cycles

BiFeO3/BiVO4 (ref. 190) Nanocomposites 2.23 RhB Visible light 69% within 120 minutes
In2S3/NaTaO3 (ref. 191) Composite 2.1–4.0 TC Stimulated solar

irradiation
53.2% for 20 wt% In2S3/
NaTaO3 within 180 minutes

(10 wt%) LaFeO3/SnS2 (ref.
192)

Composite Z-scheme
heterojunction

2.11 TC Visible light 28.8% in 120 minutes

(1.7 wt%) Ag–KNbO3 (ref. 193) Nanowires 2.2–3.35 RhB UV-visible 95% with UV in 90 minutes
and 65% with VIS in 120
minutes

7% Ni-doped BiFeO3 (ref. 194) Nanoparticle �2.28 MB Visible light 92% within 60 minutes
LaNiO3 (ref. 195) — 2.26 MO Visible light 74.5% aer 5 hours
(5 wt%)NiS/LaFeO3 (ref. 196) LFO nanoparticle NiS

nanosheets (heterostructure)
1.2–2.0 MO Simulated sunlight 90.9% higher than pure LFO

NaTaO3/rGO (1.5%)197 Composite 3.87 MB 8 W UV lamp 95% aer 90 minutes
N-doped NaTaO3 (ref. 176) Cubic Less than

3.94
MO Visible light 95.21% aer 14 hours

(50% wt) BiFeO3/V2O5 (ref.
198)

Nanoplates 2.05–2.19 MB Visible light 96% aer 120 minutes

BiFeO3/25% wt ZnFe2O4 (ref.
199)

Nanocomposites 2.2–1.96 MB Visible light 96% aer 30 minutes

Sm and Mn doped BiFeO3 Nanoparticles 1.45–2.08 MB, MV Visible light 65%,64% aer 2 hours
Carbon dots/BaZrO3 (ref. 200) Hybrid nano nanomaterial 4.8 MB UV light 90% aer 60 minutes
Z-scheme LaCoO3/g-C3N4-
60 wt% (ref. 135)

Composites 2.46 Phenol Visible light 85% in 5 hours

CuS/Bi2WO6 (ref. 201) Composites 1.76–2.69 RhB Visible light 90.0% in 50 min
Bi2WO6 (ref. 202) — 2.7–2.85 EBT Visible light 74% in 180 min
Sm-doped Bi2WO6 (ref. 203) — 2.4–2.5 RhB Visible light 98.4% in 30 min
(0.3 : 1) Bi2WO6/ZnO

204 Flower-like composite 2.6–3.2 MB, TC Visible light 98.4% for MB in 120 min,
90% for TC in 120 min

Bi2MoO6 (ref. 205) Nano sheets 2.6–2.9 MB Visible light 90% of MB in 120 min
BiFeO3/Bi2Fe4O9 (ref. 206) Nanobers 1.96–2.15 RhB Visible light 65% in 1.5 h
2% Ag/Bi2WO6 (ref. 207) 3D hierarchical hybrid

material
— RhB, TC Visible light 100% in 50 min/90% in 70

min
CQD/Bi2WO6 (ref. 208) Composite 2.6 MO, BPA Visible/IR light (94.1%/18.3%) in 120/

90 min, (99.5%/25.5%) in 60/
90

g-C3N4/Bi2WO6 (ref. 209) Nanosheets 2.69 Ibuprofen Visible light 96.1% in 60 min
Bi2WO6/RGO

210 Microsphere 2.3–2.69 Phenol, MO, RhB,
SMM, SN

Sunlight 65.5% in 480 min, 78.5% in
480 min, 99.5% in 480 min,
70.9% in 480 min, 57.6% in
480 min

La2NiO4/ZnO
211 Heterosystem 1.87–3.1 MO Sunlight 99.9% in 60 min

SnSe/LaNdZr2O7 (ref. 212) Composites 1.69–3.34 Foron blue Visible light 86.3% in 60 min
m-Bi2O4/Bi2O2CO3 (ref. 213) Composite 1.53–2.0 RhB Visible light 95.3% in 50 min
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The positive Gibbs free energy shows that with the help of
some external stimuli, the reaction proceeds in the forward
direction. The use of some sacricial layer (or agent) in
combination with the photocatalyst material produces
hydrogen and oxygen, and the reaction is known as hydrogen or
oxygen evolution reaction. The process of producing hydrogen
and oxygen from water by using semiconductor photocatalyst
material and light as an irradiation source to innate the reaction
is known as photocatalytic water splitting.214–216 The photo-
catalytic reaction mainly depends upon the reduction potential
required for water splitting. The minimum potential energy
needed to convert H2 and O2 from water is 1.23 eV.217

One-step photo reaction requires only one semiconductor
photocatalyst material, and the overall process is depicted in
Fig. 12. The use of two photocatalytic materials to form
composite or heterojunction can enhance the performance of
the perovskite material. Z-scheme mainly employs two mate-
rials in photocatalytic water splitting. Z-scheme is an eight
electrons process. The selection of the photocatalyst depends
upon the target product. In Z-scheme, the hydrogen-evolving or
oxygen-evolving photocatalysts are combined, and both cata-
lysts perform their function separately. The mediators (solid or
aqueous) help transfer charge in the Z-scheme. Direct Z-scheme
is a process without any mediator. The thermodynamic
requirement for the water splitting can be decreased in the Z-
scheme by allowing only hydrogen and oxygen-evolving semi-
conductors. Still, the kinetics of the Z-scheme reactions are
challenging, and nearly half of the hydrogen and oxygen are
produced compared to a one-step reaction.218–221

The performance of the photocatalyst can be evaluated by
the quantity of H2 evolved and the recyclability of the photo-
catalyst. The reaction rate is not always proportional to the use
of photocatalyst mass; therefore, the preferred way is H2 evolved
per unit time (mmol h�1) with the mass utilized during reaction
rather than writing the amount of H2 produced in a mass
normalized from (mmol h�1 g�1).222,223 The intensity of the
Fig. 12 Photocatalytic water splitting.

© 2022 The Author(s). Published by the Royal Society of Chemistry
incident light for the photocatalytic performance is the number
of photons collected per particle is directly related to the
particle size. The reaction rate for the photocatalyst is propor-
tional to the intensity of the incident light. In some cases, the
rate of reaction increases with excitation intensity. In contrast,
the increase in intensity in some reactions leads to decreased
photocatalytic efficiency due to the second-order recombination
of the photo-induced charges.224 At low intensity, the concen-
tration of the photogenerated charge carrier is insignicant
compared to the concentration of intrinsic majority carriers.
Thus, it can also be assumed that the concentration of minority
charges varies with incident light's intensity, whereas the
concentration of majority charges stays nearly constant.225–227

The recombination of the photogenerated charges can be
determined by the quasi-rst-order reaction with respect to the
concentration of minority carriers induced by the light source.
In simple words, the order of a photocatalytic reaction at
a specic intensity gives an idea about the photoexcited charge
carrier concentration. For comparison, a standard parameter of
the apparent quantum efficiency (AQE) and the solar to
hydrogen conversion (STH) are reported for measurements of
photocatalytic activity.228–230

Apparent qunatum efficieny ðAQEÞ

¼ number of reacted electron

number of incident photon
� 100%

¼ 2� number of H2 molecule evolved in 1 hour

number of incident photon in 1 hour
� 100

STH ¼ enegry of generated H2

solar energy irradiating the reaction cell
� 100%

Moreover, the stability of photocatalyst for real-world appli-
cations is vital as these materials need a life cycle of about ten
years with an efficiency of about 5–10% STH to meet the goal
RSC Adv., 2022, 12, 7009–7039 | 7021



Table 3 Perovskite materials for photocatalytic water splitting

Material Co-catalyst Morphology
Amount of H2 and O2

evolved/AQE value
Bandgap
(eV) Reaction conditions Light source

CaTiO3–MoS2-RGO
245 None Nanocomposite 808.0 mmol g�1 h�1

5.4% at 365 nm
3.42–3.60 25 vol% lactic acid Sunlight

Defected CaTiO3 (ref.
167

None Nanosheets 2.29 mmol g�1 h�1 2.85 For the synthesis of
the defected sheet, the
hydrogenation
treatment for 5 hours
and 50% methanol

300 W Xe lamp

Cu-doped CaTiO3 (ref.
246)

None Powder 295.0 mmol g�1 h�1 3.40–3.9 20 vol% methanol 300 W Xe lamp
(l > 415 nm)

Er-doped CaTiO3 (ref.
247)

Pt Nanocrystal 461.25 mmol h�1 3.30 20 vol% methanol 300 W Xe lamp
(320–390 nm)

CaTiO3/Pr
3+–Y2SiO5/

RGO248
Pt Composite 0.19 mmol g�1 h�1/

0.003% at 400 nm
— None 300 W Xe lamp

(l > 400 nm)
CdSe/CaTiO249 Pt Nanocomposite 3.01 mmol g�1 h�1 1.6–3.27 Na2S and Na2SO3 300 W Xe lamp
CaTiO3 (ref. 250) Pt — 0.39 mmol min�1 3.4 None 300 W Xe lamp
AgCl/Ag/CaTiO3 (ref.
133)

None Nano sheets 226.53 mmol g�1 h�1 — 10 vol% methanol 300 W Xe lamp

SrTiO3 (ref. 251) Pt cluster Powder 23.0 mmol h�1/8.0% at
350 nm

3.2 None 300 W Xe lamp

SrTiO3 : C, N
252 Pt Nanocuboid 68.0 mmol h�1 2.97 20 vol% methanol 300 W Xe lamp

Cr, Ta codoped SrTiO3

(ref. 253)
Pt — 122.6 mmol h�1/2.6%

at 420 nm
2.3 10 vol% methanol 300 W Xe lamp

(l > 420 nm)
Pt@CdS/3DOM-
SrTiO134

Pt Composite 57.9 mmol g�1 h�1 2.4–3.2 10 vol% lactic acid 300 W Xe lamp

CdS/Au/3DOM-SrTiO3

(ref. 254)
None Composite 5.46 mmol g�1 h�1/

42.2% at 420 nm
2.4–3.2 0.1 M Na2SO3 and

Na2S
300 W Xe lamp
(l > 420 nm)

CdSe/BaTiO3 (ref. 255) None Nanocube composite 53.4 mmol g�1 h�1 1.8–3.2 0.05 M Na2SO3 and
Na2S

300 W Xe lamp
(l > 420 nm)

CdS/NiTiO3/CoS
256 None Nanocomposite 476.20 mmol h�1 2.1–2.4 Lactic acid Vis-NIR

TiO2/MgTiO3/C
257 Pt Nanocomposite 33.30 mmol g�1 h�1/

1.46 mmol g�1 h�1
— 30 vol% methanol Solar light/

visible light
NaTaO3 (ref. 258) RuO2 Powder 430.0 mmol g�1 h�1 3.92–4.00 None 400 W Hg lamp
NaTaO3 microspheres
microcubes87

NiO Microsphere 0.26 mmol h�1/0.05
mmol h�1

— None 8 W UV lamp,
254 nm

NaTaO3/RGO
259 None Composite 267.50 mmol g�1 h�1 — 0.05 M Na2SO3 and

Na2S
250 W Hg lamp

Ag–NaTaO3 (ref. 260) None Nanocubes 3.54 mmol g�1 h�1 3.0–4.7 25 vol% methanol 300 W Xe lamp
C-doped KTaO3 (ref.
261)

Pt Nanocubes 592.0 mmol g�1 h�1 — 20 vol% methanol 300 W Xe lamp

Ag–KTaO3 (ref. 260) None — 185.60 mmol g�1 h�1 2.9 25 vol% methanol 300 W Xe lamp
Porphyrin-KTa(Zr)O3

(ref. 262)
None 53.7 mmol h�1/29.4

mmol h�1
None 300 W Xe lamp

LiTaO3 (ref. 263) None Nanoparticles 712.0 mmol h�1 4.6–4.7 None 250 W high-
pressure Hg
lamp

Nb-substituted AgTaO3

(ref. 264)
Pt and Co–Pt — 1.68 mmol h�1 — None Xe lamp

N-rGO/N–NaNbO3 (ref.
265)

Pt Nanocrystal 2.34 mmol g�1 h�1/
5.1% at 320 nm

3.4–3.7 20 vol% methanol 300 W Xe lamp

NaNbO3 wires
91 Pt — 26.6 mmol h�1 — 20 vol% methanol 300 W Xe arc

lamp
C-doped KNbO3 (ref.
266)

Pt — 211.0 mmol g�1 h�1 3.06 20 vol% methanol 300 W Xe lamp

CdS/Ni/KNbO3 (ref.
267)

None Nanocomposite 23.5 mmol h�1 — 50 vol% methanol 500 W lamp

MoS2/C-doped KNbO3

(ref. 97)
Pt — 1.30 mmol g�1 h�1 — 20 vol% methanol 300 W Xe lamp

g-C3N4/SrTiO3 (ref. 79) Pt Nanocomposite 966.80 mmol g�1 h�1 2.68–3.16 10 vol% TEOA 300 W Xe lamp
(l > 420 nm)

KNbO3/g-C3N4 (ref.
268)

Pt Composite 180.0 mmol g�1 h�1 2.7–3.06 20 vol% methanol 300 W Xe lamp
(l > 420 nm)

NiS Composite 2.0–2.6 10 vol% TEOA
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Table 3 (Contd. )

Material Co-catalyst Morphology
Amount of H2 and O2

evolved/AQE value
Bandgap
(eV) Reaction conditions Light source

LaFeO3/g-C3N4 (ref.
269)

121.0 mmol g�1 h�1/
2.01% at 420 nm

300 W Xe lamp
(l > 400 nm)

BiFeO3/Bi2Fe4O9

(12.3% Bi2Fe4O9)
206

None Heterostructure
nanober

800 mmol g�1 H2 1.96–2.15 A sacricial layer of
triethanolamine

—

Sr2CuWO270 1 wt% Pt for H2

production (water
reduction) and 1 wt%
CoO for O2 production
(water oxidation)

Nanopowder No H2 was produced,
and the quantum
efficiency of O2

produced was 0.034

2.07 A sacricial agent such
as sodium sulte for
H2 production

Visible light (l$
420 nm

g-C3N4/Ba5Ta4O15

(33.47 wt% g-C3N4)
218

1 wt% Pt Nanosheets wrapped
by g-C3N4 foil/
nanosheets
heterostructure

60–70 mmol of H2

evolved in 5 hours
2.8–4.3 A sacricial layer of

oxalic acid
Visible light

Cs2AgBiBr6 (ref. 271) 2.5% RGO Composite 489 mmol g�1 H2 in 10
h

2.77 H2 evolution in
saturated HBr aqueous
solution

Visible light

Ba5Ta4O15 (ref. 272) Cr2O3/0.0125 wt% Rh Nanoparticle 465 mmol h�1 H2 and
228 mmol h�1 O2/100
mmol h�1 H2

4.5 Ba5Ta4O15 prepared by
the citrate method

Visible light

Zn2Ti3O8 (ref. 273) 5 wt% RuO2 Nanorods 4 mmol h�1 (0.1 gram)
of H2 and 2 mmol h�1

(0.1 g) of O2

3.56 Before the
photocatalytic activity,
the solution is
deaerated by
evacuation

300 W Xe lamp

Ca2NiWO6 (ref. 274) None Nanoparticle 1.38 mmol g�1 h�1 O2 2.8 Ca2NiWO6 is prepared
by a solid-state
reaction

Visible light

W-doped
Sr2FeNbO6(Sr2FeNb1�x

WxO6) (x ¼ 0.01–
0.09)275

0.2 wt% Pt Nano particles 1.1–33 mmol h�1 of H2

depending upon x and
28–605 mmol h�1 of O2

depending upon x

2.17 The reaction is carried
out in an aqueous
methanol solution

Visible light

Cr–PbBi2Nb2O9 (ref.
276)

1 wt% of Pt Layered perovskite
system

9.4 mmol h�1 of H2 and
671 mmol h�1 of O2

2.63–2.88 — Visible light

Bi2WO6 (ref. 277) None Nanoparticle 188.25 mmol g�1 h�1 of
H2

3.1 1 : 1 of glycerol–water
is used

Visible light

CrxLa2�xTi2O7 (x ¼
0.01–0.05%)216

1.0 wt% Pt Nanopowder 50–90 mmol h�1 of H2

produced
2.2 Methanol as hole

scavenger
UV irradiation (l
> 200 nm)

FexLa2�xTi2O7 x ¼
(0.01–0.05%)278

1.0 wt% Pt Nanopowder 32–45 mmol h�1 of H2

produced
2.6 Methanol as hole

scavenger
UV-visible

Sr2NiWO6 (ref. 279) 1.0 wt% Pt Nanoparticles 420 mmol g�1 h�1 of
O2/8.6 at 420 nm

2.88 AgNO3 and FeNO3 as
sacricial layer

Visible light

La2Ti2O7 (ref. 280) 1.0 wt% NiO Nanoparticles 400 mmol h�1 of H2

produced
< 3.0 Photoreduction

reaction was
performed in an
aqueous CH3OH
solution

UV-visible

MA2CuCl2Br2 (ref. 281) 1.0% loading of CuO Powder 141 mmol of H2/gcal in
24 hours/144.11 mmol
of O2 produced

— Argon was introduced
into the reactor to
avoid the presence of
oxygen and 1 mL of
water was used as
a reagent

Solar simulator

CsCa2Nb3O10 (ref. 282) None/0.05 wt% Rh Nanosheets 450–500 mmole of H2

in 2 hours/1700 mmole
in 3 hours

3.6 Photoreduction
reaction was
performed in an
aqueous CH3OH
solution

UV light

KCa2Nb3O10 (ref. 283) None Nanosheets 550 mmol of H2 in 2
hours

3.6 CH3OH is used UV light

© 2022 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2022, 12, 7009–7039 | 7023
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price of $ 2.00–4.00 per kg. The absorption wavelength for water
splitting should be around 526 nm (2.36 eV) because below this
wavelength, the photon's energy is not sufficient to achieve STH
efficiency of 5–10%, considering that the reaction takes place
for a lower wavelength at the AQE ¼ 1. To meet the industrial
demand, the practical need for the evolution of H2 under
sunlight, the photocatalyst with the bandgap of less than 2.36
must be developed. The perovskites-based photocatalytic
materials gained signicant attention for the practical appli-
cation of water splitting under UV light and visible light.231–234

Titanium-based perovskite materials are widely reported for
photocatalytic water splitting. Doping and co-doping change
the morphology and bandgap of SrTiO3, thus are making it
a suitable visible light photocatalyst for water splitting reaction.
The use of the Pt as a co-catalyst induces the Schottky barrier
and can make the photocatalyst responsive to visible light. The
presence of the Pt also provides the site for the proton reduc-
tion. The quantum yield efficiency by using the visible light as
an irradiation source is 0.9% while using the UV light, the
quantum yield efficiency of the system is 1.9%. The use of the
other metals as Au, Ag, Fe, Ce, and Ni are also reported.235–239

Alkali tantalates are the best perovskite material reported for
photocatalytic water splitting when the parameters like the
doping of the metal cations and morphology (nanocubes) of
tantalates-based material are optimized well. The reported
hydrogen evolution by KTaO3 nanocubes is 375 mmol g�1 h�1.
The Ag doping at the surface of the KTaO3 increases the
hydrogen evolution in UV light. The irradiation of the UV light
generates oscillations in the conduction band of absorbed silver
and thus allows the easy excitation of the particles to the
conduction band of KTaO3. The local electric eld of KTaO3 was
enhanced with the doping of the silver nanoparticles. The
enhanced eld promotes the electron–hole pair generation, and
therefore, increases the photocatalytic splitting. The reported
evolution of the hydrogen in the presence of Ag as a dopant in
KTaO3 is 2072 mmol g�1 h�1.240–243 The lanthanum and ferrite-
based perovskite material are also reported.244 Table 3 lists
various perovskite materials used for water splitting.

Photocatalytic CO2 reduction. The atmospheric concentra-
tion of CO2 is increasing at an alarming rate due to increased
human activities, deforestation, burning of fuels, and indus-
trialization. The increased CO2 emission is causing global
warming, and for environmental sustainability, it is essential to
convert CO2 into valuable products. Mother Nature blessed
humans with photosynthesis, in which chlorophyll act as
a natural photocatalyst and, in the presence of sunlight,
converts CO2 into water, oxygen, and food for plants. The
photocatalyst also converts CO2 into valuable products in
sunlight.16,277,284,285

Photocatalytic CO2 reduction requires more electrons than
hydrogen evolution reaction. The end product from depending
upon the number of available electrons. One of the limiting
factors is the low water solubility of CO2. The complete reduc-
tion of the CO2 in water also produces H2. The Z-scheme or
heterojunction process for CO2 reduction is reported
frequently.30,122
7024 | RSC Adv., 2022, 12, 7009–7039
The rst step in CO2 reduction involves the radical anion
formation at �1.9 eV, which is impossible for most perovskite
material due to less negative CB potentials of the perovskite
material; therefore, high activation energy is required. The
surface adsorption of CO2 by catalyst generates the charge
CO2

d� which facilities the reaction to proceed. Surface engi-
neering can enhance the CO2 adsorption to the photocatalyst's
surface and thus, increases the conversion efficiency. The low
conversion efficiency of the CO2 is considered a signicant
concern in dealing with photocatalytic CO2 reduction.286,287 The
co-catalyst can lower the activation energy resulting in
enhanced photocatalytic activity. The reaction mechanism is
shown in Fig. 13. In CO2 reduction, the CO2 gets adsorbed on
the photocatalyst's surface, and electron–hole pair is produced
upon irradiation. The photo-generated charges then move to
the surface of the photocatalyst, and CO2 is reduced into the
valuable fuel. Aer the reduction of CO2 by the photogenerated
electrons and the formation of O2 by photogenerated holes, the
reduced and the oxidized product is formed by the desorbed
hole and electron, and the cycle continues. The end product
depends upon the total number of electrons used in the
procedure. For a better photocatalytic activity, a signicant
number of electrons should migrate towards the surface of the
photocatalyst, and the bottom level of the photocatalyst's
conduction band should be more negative than the redox
potential of CO2. The water or additional sacricial reagents
must consume the photogenerated holes; otherwise, holes
recombine with the oxygen. The photocatalytic CO2 reduction
can be enhanced by optimizing CO2 adsorption, charge sepa-
ration, and desorption of the products. The process of CO2

reduction in the presence of co-catalyst is shown in Fig. 14.288,289

The CO2 reduction by photocatalyst takes place in the pres-
ence of a water molecule, while the reaction in the gaseous or
aqueous phase. The reduction potential of CO2 should be small
compared to the reduction potential of conduction band
minimum and water to obtain valuable solar fuel. During the
oxidation, the oxygen molecule is formed by the reaction of the
water with a valence band hole.

Calculation of the AQE is used to access the performance of
the perovskite material for photocatalytic CO2 reduction.290–292
Fig. 13 Photocatalytic CO2 reduction.

© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 14 Photocatalytic reaction in presence of co-catalyst.
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The reactions are shown as:

CO2 + 2e� + 2H+ / HCCOOH E ¼ �0.61 V

CO2 + 2e� + 2H+ / CO + H2O E ¼ �0.53 V

CO2 + 4e� + 4H+ / HCHO + H2O E ¼ �0.48 V

CO2 + 6e� + 6H+ / CH3OH + H2O E ¼ �0.38 V

CO2 + 8e� + 8H+ / CH4 + 2H2O E ¼ �0.24 V

2H+ + 2e� / H2 E ¼ �0.41 V

2H2O + 4h+ / O2 + 4H+ E ¼ +0.82 V

Titanium-based perovskite oxides exhibit excellent photo-
stability for CO2 compared to the tantalates and niobates.
SrTiO3 perovskite material is widely reported due to better
charge transport properties and bandgap equivalent to TiO2 (3.2
eV), but the poor CO2 surface adsorption of photocatalyst
(SrTiO3) creates a problem. This problem can be solved by using
the metal as a co-catalyst and introducing the oxygen vacancies
to improve the adsorption. In the gas phase reactor using visible
light, Fe doped SrTiO3 photocatalyst with Pd (0.5 wt%) as a co-
catalyst reduces CO2 to CH4. The yield of the product is 421, and
the CO selectivity is 84%.16,293–295

Tantalum-based perovskites are not widely reported for CO2

reduction because of their wide bandgap. NaTaO3 photocatalyst
in combination with Au (0.5 wt%) as a co-catalyst reduces CO to
CH4 fuel in the gas phase reactor and uses UV-vis light as the
irradiation source. The selectivity of CO is 96%, but the yield is
small.296 Table 4 lists perovskite materials used for CO2

reduction.
© 2022 The Author(s). Published by the Royal Society of Chemistry
Nitrogen xation. Nitrogen plays a vital part in building
biomolecules such as amino acids, proteins, and other mole-
cules. Earth's atmosphere has 78% of the dinitrogen (N2).
Dinitrogen air converts into ammonia by the process known as
nitrogen xation. Plants and soil then use the ammonia formed
by atmospheric nitrogen to build several processes. The mech-
anism to create ammonia by nitrogen is the Haber cycle.314 At
standard conditions, the ammonia formation is a thermody-
namically spontaneous process (DH ¼ �92.2 kJ mol�1). Due to
its high ionization energy of 15.58 eV and low electron affinity,
the dinitrogen in the air is highly stable; therefore, the atmo-
spheric dinitrogen in the normal conditions cannot be used to
prepare the ammonia unless some catalyst or some industrial
xation is used. In industry, by using iron or ruthenium as
a base catalyst at high temperatures, the dinitrogen is converted
into ammonia by the Haber–Borsch process. But even aer the
century's advancement, the production of the indusial xation
is still quite low. The NH3 is one of the essential components in
manufacturing fertilizers and hydrogen storage. Therefore, it is
essential to synthesize an alternative green route to deal with
energy crises and global warming.77,315

Recently the photocatalyst material for nitrogen xation has
gained much attention from researchers. The nitrogen xation
by the photocatalyst utilizes only sunlight and water in the
presence of the dinitrogen. The six electrons do the complete
conversion of N2 into NH3 due to the high activation energy of
the process, which makes the process completely impractical.
Furthermore, direct electron transfer and proton-coupled elec-
tron transfer are not possible for the semiconductor material.
Hence, photocatalyst design and surface engineering play an
important role in nitrogen xation.316–318 The reaction by using
the photocatalyst is designed to reduce the activation energy
and weakens the N^N bond. Light irradiation generates the
electron–hole pair. These photogenerated charge carriers then
RSC Adv., 2022, 12, 7009–7039 | 7025



Table 4 Perovskite materials for photocatalytic CO2 reduction

Perovskite Co-catalyst Morphology

Band
gap
(eV)

Synthesis method/
reaction condition Product

Product concentration
or conversion
efficiency Light source

NaTaO3 (ref. 297) 2 wt% CuO Nanocubes 4.1 The hydrothermal
method is used for
catalyst synthesis. And
co-catalyst is loaded
via impregnation
method/

Methanol
and acetone

137.48 mmol gcat
�1 h�1 UV-visible

335.93 mmol gcat
�1 h�1

KTaO3 (ref. 298) None Nanoakes 3.6 Perovskite material is
prepared by solid-state
reaction

CH4 19.35 ppm gcat
�1 h�1 UV-visible

NaNbO3 (ref. 299) 1.5 wt% Pt Nanoparticles
(cubic)

3.29 Photocatalytic activity
is carried out in a gas-
phase reactor

CH4 and H2 0.486 mmol gcat
�1 h�1 UV-visible

127 mmol gcat
�1 h�1

BiFeO3–ZnO (ref. 300) None Composites 2.1–3.2 Photocatalytic activity
is carried out in a gas-
phase

CH4 The conversion
efficiency of CO2 into
CH4 is 21%

UV-visible

Au–SrTiO3 (ref. 301) 0.5 wt% Rh Nanoparticles — Ru is loaded by the
impregnationmethod,
and at optimized
conditions, 0.5 wt% of
Au is used

CO, H2, and
CH4

66.8 mmol gcat
�1 h�1 Visible light

50.5 mmol gcat
�1 h�1

2.8 mmol gcat
�1 h�1

Basalt
ber@perovskite
PbTiO3 (ref. 302)

None Core–shell
composites

1.92 The hydrothermal
method is used for
catalyst synthesis

CH4 290 mmol g�1 L�1 in 6
hours

UV light

BiFeO3/ZnS (ref. 303) None Nanocomposites 2.5 The reaction is carried
out in a gas phase
reactor

CO, CH3OH The conversion
efficiency of CO2 into
CO and CH3OH is 24

UV-visible

g-C3N4/KNbO3 (ref. 79) None Composites 2.7–3.2 KNbO3 is synthesized
by hydrothermal, and
g-C3N4 powder is
deposited by using the
sonication method

CH4 1.94 mmol g�1 h�1 Visible light

N-doped LaFeO3 (ref.
304)

None Nanocomposites 1.82 — CH4, CO, O2 �110 mmol g�1 h�1 Visible light
150 mmol g�1 h�1

230 mmol g�1 h�1

RuO2 on SrTiO3 (ref.
305)

Ru 0.1–
0.4 wt%

Nanoparticles 2.7 The reaction is carried
out in a gas phase

Ethanol 80 mmol g�1 h�1 Simulated sunlight

BaCeO3 (ref. 306) Ag cocatalyst
(0.3 wt%)

Nanoparticles 3.2 Pechini method is
used to deposit the co-
catalyst

CH4 0.55 mmol g�1 h�1 UV light

BaZrO3 (ref. 200) 0.5 wt% Cu Nanoparticles 3.2 The photocatalytic
reaction is carried out
in a cylindrical quartz
cell

CH4 0.98 mmol g�1 h�1 UV light

C-doped LaCoO3 (ref.
307)

None — 2.16 Pechini method is
used to deposit the co-
catalyst

HCOOH A minimal amount of
HCOH

UV-visible

LaNixCo1�xO (x ¼
0.4)308

None Nano particles 1.42 Sol–gel combustion
method is used to
prepare the catalyst

CH4–
CH3OH

678.57 mmol g�1, 20.83
mmol g�1 in 6 h

Visible light

H2SrTa2O7 (ref. 309) 0.5 wt% Ag Layered
perovskite
structure

3.75 H2SrTa2O7

photocatalyst was
prepared by PC and
ion-exchange
methods, and a photo
deposition method
was used to load Ag co-
catalyst on HST

CO and H2 0.39 mmol g�1 h�1 of
CO and 0.25 of H2

mmol g�1 h�1

UV light (l > 200 nm)

xBi2WO6/BiOI (x ¼
8%)123

None Nano-
composites

2.2–2.9 CO2 is reduced to give
CH4 experiment is
conducted into gas
phase reactor

CH4/CO 18.32 mmol g�1 of CH4

and 320.19 mmol g�1

in 8 hours

Visible light
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Table 4 (Contd. )

Perovskite Co-catalyst Morphology

Band
gap
(eV)

Synthesis method/
reaction condition Product

Product concentration
or conversion
efficiency Light source

Bi2WO6 (ref. 310) None Nano sheets 2.7 CO is reduced to give
CH4 experiment is
conducted into gas
phase reactor

CH4 19 ppm g�1 h�1 of CH4 Visible light

ALa4Ti4O15, A ¼ Sr,
Ca78

Ag Layered
perovskite
structure

3.79–
3.85

Catalyst is loaded via
liquid-phase
reduction and
impregnation method

CO/O2/H2 10 mmol h�1 of H2 and
16 mmol h�1 of O2, 22
mmol h�1 of CO

A 400 W high-pressure
mercury lamp, an
inner irradiation
quartz cell

BaLa4Ti4O15 (ref. 78) 0.5–2% Ag Layered
perovskite
structure

3.9 Catalyst is loaded via
liquid-phase
reduction

H2, O2, CO 20–3.2 mmol h�1 of H2,
5.7–16 mmol h�1 of H2

and 5.00–22 mmol h�1

CO

A 400 W high-pressure
mercury lamp, an
inner irradiation
quartz cell

Bi2WO6 (ref. 311) 0.5% wt
PtOx

Ultra-thin
nanosheets

— The PtOx/Bi2WO6 was
prepared by
photoreduction
method

CH4 108.8 ppm g�1 h�1 500 W Xe lamp as
a light source

Bi4O5Br2 (ref. 312) None Ultra-thin
nanosheets/bulk

2.64–
3.05

Ultra-thin sheets are
prepared by precursor
method

CO 63.13 mmol g�1 of CO
in 2 hours/27.56 mmol
g�1 of CO in 2 hours

UV-visible light

A3Bi2I9 (Cs3Bi2I9)
284 None Nanocrystals 2.2 Gas-phase reaction the

photoreduction to
carbon take place at
the gas–solid
interface, the reaction
medium was CO2 and
H2O vapors

CH4/CO 14.9 mmol g�1 of
methane and 77.6
mmol g�1 of CO

32WUV lamp (l¼ 305
nm)

Cs2AgBiBr6 (ref. 313) None Nanocrystals 1.72 Medium in which
reaction is carried is
ethyl acetate solvent

CH4/CO 14.1 mmol g�1 of
methane and 9.6 mmol
g�1 of CO

100 W Xe lamp
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move to the photocatalyst's surface, and at the conduction
band, the dinitrogen is reduced to the ammonia by multi-step
transfer of the electron and proton available from the water.
The hole in the valence band oxidizes the water molecule and
gives O2. The chemisorption of the N2 and H+ ions occurs on the
surface of the conduction band accompanied by the association
or dissociation by H2 incorporation of N2 molecules absorption
and NH3 formation. Lastly, desorption of NH3 from the photo-
catalyst's surface aer the ammonia formation occurs.85,319–321

The nitrogen xation in the presence of the photocatalyst
takes place in two ways, either by the associative way or by the
dissociative way. The breakage of the N^N bond occurs in the
dissociative pathway before adding the hydrogen atom as
a reducing agent, which is impossible in an ambient environ-
ment.322 In an associative pathway, breaking the N^N bond is
unnecessary, so nitrogen xation is possible at ambient condi-
tions. The nitrogen is adsorbed at the surface of the photo-
catalyst and then converted into the NH3, which is then
desorbed aer the breakage of the N–N bond. In the associative
pathway, the hydrogenation takes place with the sideway
nitrogen, which is not directly attached to the surface of the
photocatalyst, which generates the NH3.323,324 The remaining
© 2022 The Author(s). Published by the Royal Society of Chemistry
nitrogen attached photocatalyst's surface undergoes hydroge-
nation and generates NH3. But this route is challenging because
the chemisorption of nitrogen molecules on the surface of the
catalyst is not easy; therefore, surface engineering is an
important parameter to enhance the photocatalyst activity for
nitrogen xation.8,321,325 The yield and the efficiency of the
reaction are given by the apparent quantum efficiency (AQE)
and can be calculated as;326

AQE ¼ 6� number of amonia molecule evolved

number of incident photons
� 100%

Limited numbers of the perovskite materials are reported
due to the less AQE and yield. The reported materials are
SrTiO3, KNbO3, LaCoO3, and layered double perovskite
Bi2WO6.129,327–329 The efficiency of the perovskite material is less
due to the selectivity of N2 and adsorption of N2 at the surface of
the photocatalyst material; however, more research is needed in
the eld of photocatalytic nitrogen xation to compete with the
available industrial method of nitrogen xation (Haber
cycle).319,330 Some of the reported perovskite photocatalyst
materials for nitrogen xation are listed in Table 5.
RSC Adv., 2022, 12, 7009–7039 | 7027



Table 5 Perovskite materials in photocatalytic nitrogen fixation

Material Band gap (eV)
NH3 concentration/
generation rate Light source Reaction conditions

BaTiO3 (ref. 331) 3.2 0.09 mg h�1 L�1 UV-visible Water as the proton source
in the process of
photocatalysis

Defective La2TiO5 (R-LTO)
332 4.07 158.13 mmol g�1 h�1 Simulated sunlight Defects at the surface of the

LTO are introduced by
NaBH4 reduction

CeO2–BiFeO3 (ref. 320) — 117.77 mmol g�1 h�1 UV-visible Deionized water + nitrogen
LaCoO3 : Er

3+/ATP328 2.88–3.45 71.51 mmol g�1 h�1 Visible Water + nitrogen and
ethanol as a sacricial layer

Ag/KNbO3 (0.5% Ag)333 3.13 385.0 mmol g�1 h�1 L�1 Simulated sunlight Ethanol as a sacricial layer
NiS/KNbO3 (5% NiS)129 3.11 155.6 mmol g�1 h�1 L�1 Simulated sunlight Ethanol is used as a hole

scavenger
TiO2/SrTiO3/g-C3N4 (ref. 125) 2.75–3.1 2192 mmol g�1 h�1 L�1 Simulated sunlight Methanol + nitrogen and

ethanol as a sacricial layer
CaTiO3 (ref. 334) 3.49 236.12 mmol g�1 h�1 Natural sunlight irradiation 3D leaf-templated defective

CaTiO3 is prepared by using
NaBH4 + nitrogen
environment

Fig. 15 Schematic representation of a double perovskite structure (B), derived starting from a perovskite structure (A).49
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Double perovskite and photocatalysis

Double perovskites can accommodate different cations at the A
and B sites, forming AA0BB0O6 (Fig. 15). Accommodation of
other cations at the A and B sites can alter the double perov-
skite's photophysical properties to a great extent. Among the
binary oxides, only a few double perovskites exhibit visible
region bandgap because of their small bandgap, such as Fe2O3,
WO6, Bi2O3, etc. However, for hydrogen evolution, these mate-
rials have decient conduction band potential. Some materials
also have low mobility of the photoexcited carriers and poor
stability. Many binary oxides show efficient photocatalytic
activity under UV irradiation because of their wide bandgap.
7028 | RSC Adv., 2022, 12, 7009–7039
Complex compounds with a combination of ‘narrow bandgap’
and ‘wide bandgap’ materials can make use of properties of
both types, and therefore, can be exploited as visible light
photocatalysts.124,125

The researchers have investigated photocatalytic activity of
rare earth and bismuth-based double perovskites under visible
light. Double perovskites Ba2XBiO6 (X ¼ Ce, La, Nd, Pr, Eu, Sm,
Dy, Gd) were synthesized and degraded MB. Researchers re-
ported that rare-earth cation-dependent compounds (Ba2-
SmBiO6, Ba2EuBiO6, and Ba2CeBiO6) showed signicant
photocatalytic activity. CaCu3Ti4O12 possessed an indirect
bandgap of 1.27 eV, and Pt loaded CaCu3Ti4O12 showed the
degradation of MO under visible irradiation. Double perovskite
© 2022 The Author(s). Published by the Royal Society of Chemistry
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materials such as Sr2CoWO6, Ba2CoWO6, and Sr2NiWO6, Ba2-
NiWO6, are reported to be stable for O2 evolution with sacricial
agents.124,125 Although the photophysical properties of certain
double perovskites also have been investigated and reported,
still a lot of efforts are required before utilizing these materials
on an industrial scale.

Summary

In summary, the abundantly available sun energy can be har-
vested through photocatalysis to deal with the concerns per-
taining to the environment and humankind. This article aimed
to discuss the imperative properties of perovskite materials
which play vital role in photocatalysis, and will assist in
understanding the fundamentals of photocatalytic mechanisms
involved in designing highly efficient photocatalysts. The three
altercation sites (A, B, and O sites) of perovskite materials ma
them suitable for numerous applications, particularly photo-
catalysis. These sites help in tailoring chemical, physical,
optical, and photocatalytic properties for desired photocatalytic
reactions. The structural and compositional suppleness in
perovskite photocatalyst strongly affects photo-generated
carriers' mobility, separation, and recombination. The current
article also describes the defect engineering in perovskite
materials for enhanced photocatalytic performance. Recently,
defect engineering gained much attention among researchers
because it resulted in visible light photocatalytic activity without
doping. Furthermore, surface defects provide reactive sites
benecial for a process like nitrogen xation at ambient
conditions. The review also provides an insight into the
different applications of photocatalysis, including wastewater
treatment, water splitting, CO2 reduction, and nitrogen xation.
The critical perovskite materials for each photocatalytic appli-
cation are also listed with their properties in this study. Overall,
it can be inferred that although perovskite oxide-based mate-
rials have exhibited signicant photocatalytic performance still,
extensive challenges are ahead of their design, fabrication, cost,
and efficiency for industrial and large-scale production. The
biggest challenge in the industrialization of photocatalyst
technology is the development of an ideal photocatalyst, which
should possess four features, including high photocatalytic
efficiency, a large specic surface area, full utilization of
sunlight, and recyclability. Nonetheless, there is no doubt that
perovskite-based oxide materials will be investigated more
intensively in the coming years due to their exceptional prop-
erties and applications for a sustainable future.
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reduction to C2+ products, ACS Catal., 2020, 10(10), 5734–
5749.

290 Y.-F. Xu, et al., A CsPbBr3 perovskite quantum dot/
graphene oxide composite for photocatalytic CO2
reduction, J. Am. Chem. Soc., 2017, 139(16), 5660–5663.

291 R. Shi, G. I. Waterhouse and T. Zhang, Recent progress in
photocatalytic CO2 reduction over perovskite oxides, Sol.
RRL, 2017, 1(11), 1700126.

292 B. N. Nunes, et al., Recent Advances in Niobium-Based
Materials for Photocatalytic Solar Fuel Production,
Catalysts, 2020, 10(1), 126.
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