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Simple Summary: Dairy cows have differing success in supporting their physiological functions
while in energy deficit right after calving. Identification of genomic regions associated with different
concentrations of non–esterified fatty acids andβ–hydroxybutyrate in early postpartum Holstein cows
provide insight into an animal’s genetic susceptibility to these conditions. Longitudinal phenotypes
may provide a different perspective than cross-sectional phenotype variation and their association
with genotypes in the study of complex metabolic diseases in dairy cows. This might allow us to
reinforce preventative measures that decrease the incidence of hyperketonemia and improve genetic
selection criteria.

Abstract: The objective of our study was to identify genomic regions associated with varying
concentrations of non-esterified fatty acid (NEFA), β-hydroxybutyrate (BHB), and the development
of hyperketonemia (HYK) in longitudinally sampled Holstein dairy cows. Our study population
consisted of 147 multiparous cows intensively characterized by serial NEFA and BHB concentrations.
To identify individuals with contrasting combinations in longitudinal BHB and NEFA concentrations,
phenotypes were established using incremental area under the curve (AUC) and categorized as
follows: Group (1) high NEFA and high BHB, group (2) low NEFA and high BHB), group (3) low
NEFA and low BHB, and group (4) high NEFA and low BHB. Cows were genotyped on the Illumina
Bovine High-density (777 K) beadchip. Genome-wide association studies using mixed linear models
with the least-related animals were performed to establish a genetic association with HYK, BHB-AUC,
NEFA-AUC, and the comparisons of the 4 AUC phenotypic groups using Golden Helix software.
Nine single-nucleotide polymorphisms were associated with high longitudinal concentrations of
BHB and further investigated. Five candidate genes related to energy metabolism and homeostasis
were identified. These results provide biological insight and help identify susceptible animals thus
improving genetic selection criteria thereby decreasing the incidence of HYK.
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1. Introduction

The ability of a cow to deal with extensive physiological changes during the late pregnancy and
early postpartum period influences the entire lactation in terms of milk yield, quality, and health
status [1]. Strong genetic selection of dairy cows, driven by the ability to achieve high milk production,
particularly in early lactation, has increased the early postpartum gap between energy consumed and
energy required [2]; however, some cows can overcome this crucial phase of metabolic adjustments
when the energy demand is doubled immediately after calving [3] without negative sequela for the
animal’s production or health.

During this period of negative energy balance (NEB), cows respond by mobilizing lipid and
protein from tissue reserves in order to compensate for the reduced intake of nutrients [1] and these
reserves are used to support lactation and vital functions [4]. Fat reserves are released into the blood
stream as non-esterified fatty acids (NEFA) that can be extracted and metabolized by several body
tissues such as skeletal muscle, liver, and kidney. Some cows adapt very well to NEB; however, other
cows do not, resulting in excessive ketone body synthesis. Dairy cattle produce three different ketone
bodies: acetoacetate, acetone, and β–hydroxybutyrate (BHB). The BHB concentration in blood has been
widely used to diagnose hyperketonemia (HYK) in dairy cattle [5]. A low correlation between NEFA
and BHB concentrations during the transition period was reported previously in cross-sectional [6]
as well as longitudinal studies [7,8]. This shows that some cows seem to effectively use NEFA in the
adaptation to lactation while having low BHB concentrations, whereas other cows exhibit excessive
ketone body synthesis.

Hyperketonemia is considered one of the most complex diseases in dairy cattle because there are
many factors involved in its development such as advanced parity, increased body condition score
before calving [9], nutrition during the dry period [10], over-crowded pens [11], and environment [12].
Up to 40% of cows on a typical dairy farm will be hyperketonemic, and the peak of HYK incidence
occurs at 5 days in milk (DIM) [13]. Hyperketonemia has been associated with increased metabolic
diseases and reduced milk production [14–16]. The cost per individual cow case of HYK in the U.S.
has been estimated to be $289 accounting for all the direct and indirect costs associated with the
disorder [17]. Heritability of HYK or concentrations of energy metabolites in blood in dairy cows has
been reported to range from 0.02 to 0.39 [18–21]. The difference between the heritability reported in
previous studies may be due to differences in the characterization of HYK and degree of NEB during
early lactation in dairy cows.

A genome-wide association study (GWAS) allows us to analyze in detail the relationship between
genotypic and phenotypic data, thereby associating single-nucleotide polymorphism (SNP) allelic
frequencies to disease [22]. A genetic analysis can identify the heritability of quantitative traits
that are risk factors for the disease [23]. However, the use of longitudinal as an alternative to
cross–sectional phenotypes in genetic studies may provide a better understanding of the genetic
mechanisms influencing the onset and progression of complex metabolic diseases. We hypothesized
that longitudinal phenotypes could improve the ability to detect genetic association with complex
metabolic diseases such as HYK in dairy cows. Our intensively characterized dataset allowed us
to isolate genetic differences of cows within similar environmental and management conditions.
Therefore, the objective of our study was to identify genomic regions associated with the development
of HYK (BHB ≥ 1.2 mmol/L) based on serial or single concentrations of NEFA and BHB over time in
early postpartum Holstein cows.

2. Materials and Methods

2.1. Longitudinal Phenotype Collection

All procedures were approved by the Cornell University Institutional Animal Care and Use
Committee (protocols nos. 2008–0099 and 2011–0016). Our study population consisted of 147 Holstein
dairy cows from two trials. Both trials evaluated multiparous cows having serial measurements of
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serum/plasma NEFA and blood BHB concentration from calving until 16 DIM 3 times per wk. Blood
samples were collected from coccygeal vessels. Serum was tested for NEFA concentration (HR Series
NEFA–HR (2), Wako Life Sciences, Mountain View, CA) and BHB using a cow side test (Precision
Xtra meter, Abbott Diabetes Care Inc, Alameda, CA, USA). This cohort of cows was not treated for
hyperketonemia during either of the trials. Detailed information about the first study evaluating
63 cows was previously reported [24]. An extra blood sample (7 mL) was harvested once using
evacuated glass tubes (Beckton Dickinson Vacutainer System, Franklin Lakes, NJ) with K3 EDTA and a
20 gauge× 2.54 cm blood collection needle for subsequent DNA extraction. After collection, blood tubes
were gently inverted 5 times to homogenize blood with K3 EDTA and immediately placed on ice to
prevent DNA degradation. After that, blood samples were then stored at −20 ◦C until DNA extraction
and subsequent genotyping. The second trial similarly evaluated 84 cows [25]. DNA was extracted
from muscle biopsies which were performed for all cows within the study [26]. The muscle biopsies
were placed in liquid nitrogen and stored at −80 ◦C until DNA extraction and subsequent genotyping.

2.2. DNA Extraction and Genotyping

Whole blood or muscle tissues were submitted for DNA extraction and genotyping to GeneSeek
laboratories (Lincoln, NE, USA). The DNA extraction was performed with Omega Mag Bind Tissue kit
for DNA extraction following the manufacturer’s instructions (OMEGA bio-tek, Norcross, GA, USA).
Whole-genome genotypes of 777,962 SNPs were generated using the Illumina Bovine High-density
beadchip [27]. Genotype data were filtered using Golden Helix SNP & Variation Suite (SVS) 8.3.4
software (Golden Helix, Bozeman, MT, USA). Genetic quality control was performed excluding SNPs
with a call rate <0.90, minor allele frequency (MAF) <0.05 or if the number of alleles was ≥2. A total
of 521,929 SNPs remained for analysis after quality control filtering. Sample quality control was
performed, and 19 samples (12.9%) with a call rate <0.90 were excluded.

2.3. Phenotypic Classification

There is a lack of information regarding the genetic factors predisposing cows to HYK due to the
complexity of the disease. The aforementioned trials from which these biological samples derived
allowed for a unique opportunity to investigate these genetic parameters using 6 serial measurements
of BHB and NEFA concentration. Multiple phenotypic classifications were established to identify
variation in the genetic regulation of HYK. First, HYK was defined as concentration in blood of BHB
(≥1.2 mmol/L) at a minimum of one time point from calving until 16 DIM, corresponding to previous
characterization of HYK [15,28].

A second, broader approach was also taken by calculating the incremental area under the curve
(AUC) using the 6 concentrations of serum/plasma NEFA or blood BHB from the longitudinally
sampled cows from calving until 16 DIM. The trapezoidal rule was used to estimate AUC by summing
the area of all the trapezoids formed between two time points [29] with the statistical software package
SAS 9.4 (SAS Institute Inc.; Cary, NC, USA). The AUC allowed us to compile the serial measurements
from each individual into a single continuous variable and preserve the variability within the dataset
as opposed to using either a single measure of the given trait, e.g., HYK, or cow average for the
trait. We expected that phenotypic misclassification in our study population would be lower using
this approach.

All modern dairy cows will face NEB during early lactation and some will mobilize body reserves
as NEFA to a greater extent, whereas others to a lesser extent. Therefore, ketogenesis magnitude
will differ among cows as reflected by circulating BHB. These parameters were used to categorize
cows into groups that contrast their ability to mobilize as well as metabolize energy reserves. The
resulting AUC were used to group cows to identify individuals with the most variation during the
first 16 DIM. For BHB area under the curve (BHB-AUC), a high concentration was defined at values
>7.2 mmol/L; this threshold was generated by computing the AUC of 6 single measurements of BHB
>1.2 mmol/L [24]. For NEFA area under the curve (NEFA-AUC), a high concentration was considered



Animals 2019, 9, 1059 4 of 19

at values >4.2 µEq/L; this value was set by calculating the AUC of 6 single measurements of NEFA
of >0.7 µEq/L [6]. Therefore, in our study, all cows were then classified into 4 different phenotype
groups based on their NEFA-AUC and BHB-AUC as follows: Group (1) high NEFA and high BHB
(n = 10), group (2) low NEFA and high BHB (n = 11), group (3) low NEFA and low BHB (n = 69),
and group (4) high NEFA and low BHB (n = 57). The variables BHB-AUC and NEFA-AUC were not
normally distributed, therefore their values are given as median and range. The variables BHB-AUC
and NEFA-AUC were analyzed using the nonparametric Kruskal-Wallis test with PROC NPAR1WAY
(SAS 9.4, SAS Institute, Cary, NC, USA). Chi-square tests using PROC FREQ (SAS 9.4) were performed
to identify differences among the variables farm, parity, and HYK when phenotype groups were used
as the response variable.

2.4. Genome-Wide Association Study

The degree of relatedness between pairs of cows in this study was computed to identify highly
related animals using genomic identity-by-descent (IBD) estimations in SVS 8.3.4 software (Golden
Helix, Bozeman, MT, USA). The IBD estimates the likelihood of specific alleles being inherited from a
common ancestor when comparing two individual samples. IBD estimates allowed for the identification
and removal, if necessary, of highly related animals in lieu of pedigree information to minimize the
risk of false positives results [22] (Figure 1).

Animals 2019, 9 4 of 19 

magnitude will differ among cows as reflected by circulating BHB. These parameters were used to 
categorize cows into groups that contrast their ability to mobilize as well as metabolize energy 
reserves. The resulting AUC were used to group cows to identify individuals with the most variation 
during the first 16 DIM. For BHB area under the curve (BHB-AUC), a high concentration was defined 
at values >7.2 mmol/L; this threshold was generated by computing the AUC of 6 single measurements 
of BHB >1.2 mmol/L [24]. For NEFA area under the curve (NEFA-AUC), a high concentration was 
considered at values >4.2 µEq/L; this value was set by calculating the AUC of 6 single measurements 
of NEFA of >0.7 µEq/L [6]. Therefore, in our study, all cows were then classified into 4 different 
phenotype groups based on their NEFA-AUC and BHB-AUC as follows: Group (1) high NEFA and 
high BHB (n = 10), group (2) low NEFA and high BHB (n = 11), group (3) low NEFA and low BHB (n = 69), 
and group (4) high NEFA and low BHB (n = 57). The variables BHB-AUC and NEFA-AUC were not 
normally distributed, therefore their values are given as median and range. The variables BHB-AUC 
and NEFA-AUC were analyzed using the nonparametric Kruskal-Wallis test with PROC NPAR1WAY 
(SAS 9.4, SAS Institute, Cary, NC, USA). Chi-square tests using PROC FREQ (SAS 9.4) were performed 
to identify differences among the variables farm, parity, and HYK when phenotype groups were used 
as the response variable. 

2.4. Genome-Wide Association Study 

The degree of relatedness between pairs of cows in this study was computed to identify highly 
related animals using genomic identity-by-descent (IBD) estimations in SVS 8.3.4 software (Golden 
Helix, Bozeman, MT, USA). The IBD estimates the likelihood of specific alleles being inherited from 
a common ancestor when comparing two individual samples. IBD estimates allowed for the 
identification and removal, if necessary, of highly related animals in lieu of pedigree information to 
minimize the risk of false positives results [22] (Figure 1). 
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Figure 1. A heat map depiction of the genomic kinship matrix showing the relatedness between each
cow sample and general population structure. This matrix is calculated using the identity-by-descent
(IBD) procedure from SVS (Golden Helix, Bozeman, MT, USA) Software. The x- and y-axes correspond
to the 128 least-related cow individuals. Highly related cows were removed to minimize the risk of
false positive results.

Genome-wide association studies were performed to establish associations between low frequency
SNP variants and the development of HYK or different levels of BHB and NEFA in early postpartum
Holstein dairy cows. The Efficient Mixed Model Association eXpedited (EMMAX) algorithm is a mixed
linear model embedded in Golden Helix software which corrects for population stratification and
relatedness [30] and was used to perform the GWAS analysis. This model was the most suitable because
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the population structure is taken into account by including the kinship matrix previously generated
with the IBD procedure. The kinship matrix was included as the variance–covariance structure of
the random effect for the individuals [31]. The single-locus mixed model GWAS EMMAX uses the
following general equation, y = Xβ+ u + e, where y is an n × 1 vector of observed phenotypes, and X
is an n × q matrix of fixed effects including mean, SNPs, and other confounding variables. Beta is a
q × 1 vector representing coefficient of the fixed effects. U is the random effect of the mixed model
with Var(u) = σ2

gK, where K is the kinship matrix inferred from the genotype and e represents the
error term and is the residual that cannot be explained by the variables in the model [32]. HYK was
evaluated as a categorical variable with individuals designated as case, equating HYK diagnosis, or
control. Similarly, a pair-wise evaluation was conducted by comparing designated groups having
differential BHB-AUC and NEFA-AUC measures to one another. Thereby, Group 1 was independently
compared to each remaining Group in separate GWAS. We note that the GWAS comparing Group 1 to
Group 2 was not performed due to the extremely low number of individuals in both Groups (n = 11,
n = 10, respectively). Lastly, the measures of BHB-AUC and NEFA-AUC were analyzed independently
as continuous variables in their respective GWAS. Parity, farm, milk production, and disease events
(i.e.; displaced abomasum, metritis, and retained placenta) were evaluated for inclusion in the model.
Specific diet and dry matter intake were unavailable. Health events were excluded due to inconsistency
in farm recording. Milk production was excluded due to an incomplete dataset and subsequent
unbalancing of the model. Parity and farm were retained as fixed effects in all GWAS. Multiple testing
correction using the false discovery rate (FDR) was performed to diminish the probability of Type

I error. The FDR was calculated using the formula FDR ∼ 1
k

K∑
i=1

Pr(H0i |y), where K is equal to the

number of SNPs used on the final examination [33,34]. Candidate genes were located by referencing
0.5 Mbp up- and 0.5 Mbp down-stream from the significantly associated SNPs passing multiple testing
correction using the University of Maryland (UMD) 3.1 bovine genome assembly. Genes which showed
biological plausibility in hyperketonemia were highlighted for discussion.

Pseudo-heritability or narrow-sense heritability was calculated for HYK, BHB-AUC, and
NEFA-AUC using the formula h2 = σ2

g/
(
σ2

g + σ
2
e

)
, were h2 is the response heritability, σ2

g is
the genetic variance, and σ2

e is the estimate of environmental variance. The GWAS analysis partitions
the observed phenotypic variance into the additive genetic and nongenetic components. This estimation
can be used to determine heritability, also known as pseudo-heritability [35,36]. Pseudo-heritability
variance was estimated using SVS (Golden Helix) Software, based on the algorithms reported by
Yang et al. [37].

2.5. Haplotype Analysis

Linkage disequilibrium (LD) was calculated using the expected maximization (EM) logarithm to
derive r2 estimates of pair-wise LD using the SVS software. Linkage disequilibrium was computed to
identify haplotype blocks and their potential association with the phenotypic variables. Haplotype
analysis enhances the information obtained from the association test by incorporating the information
from multiple markers among the same gene or genes with minimal historic recombination. The
expectation maximization (EM) algorithm embedded in Golden Helix SVS software was used to
compute haplotype frequencies. The EM algorithm is an iterative technique that starts with arbitrary
values (expectation step), and these values are used to calculate the haplotype frequencies by maximum
likelihood (maximization step). This algorithm allows us to perform automatic detection of LD block
through the whole genome.

Haplotype Trend Regression (HTR) takes one or more blocks of genotypic markers and for each
block of markers, estimates haplotypes and then regresses their by-sample haplotype probabilities
against a dependent variable. Haplotype analysis is an important part of association testing as it
can be sensitive to unmeasured variants which may be missed in a single SNP analysis [38]. It can
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also provide an alternative marker panel consisting of a series of consecutive markers, therefore less
sensitive to the effects of recombination on prediction accuracy for use in genomic selection.

3. Results

Twenty-nine percent of the individuals (n = 42) were defined as HYK at a minimum of one time
point from calving until 16 DIM in our dataset. We confirmed that the misclassification of HYK in
our study population is lower using the serial measures as opposed to one opportunity afforded by
cross-sectional studies. This is evident in that the percentage of individuals defined as HYK at a single
time point ranged from 7% (time point 1) to 15% (time point 3). Indeed, 36% of the HYK individuals
(n = 15 out of 42) only had a single measure of BHB concentration ≥1.2 mmol/L out of the six time
points and were, therefore, probable candidates for misclassification if this were a cross-sectional
study. In contrast, 26% of the HYK individuals (n = 11 out of 42) were likely to be diagnosed as HYK
regardless of time point, given that they had four or more elevated measures of BHB (≥1.2 mmol/L). By
using the average BHB concentrations for individuals, only 12% of the study cohort (n = 17) would
have been diagnosed HYK. The variation in HYK designation when comparing single time points as
given in a cross-sectional study or average BHB concentrations to our definition of HYK (minimum
of 1 elevated BHB) showcases the relevance of using serial measures for phenotypic classification
of hyperketonemia.

To further refine our phenotypic characterization of hyperketonemia, we calculated area under
the curve for the serial BHB and NEFA concentrations. This allowed us to distinguish individuals
who had a single elevated concentration of BHB or NEFA, respectively, from those who had two,
three, four, five, or six episodes of elevated BHB or NEFA. It also incorporated concentration variation
into the calculated AUC variable, thereby distinguishing individuals demonstrating particularly high
concentrations (i.e.; BHB 3.9 mmol/L) from those with lower concentrations including the HYK-defined
minimum threshold of 1.2 mmol/L. The NEFA-AUC ranged from 0.40 to 9.03 µEq/L over 16 d with a
median of 3.92 µEq/L, and the BHB-AUC ranged from 1.60 to 14.25 mmol/L over 16 d with a median of
3.65 mmol/L (Figure 2). The distribution of parity, HYK, and farm was also analyzed, and total counts
are shown in Table 1 based on the group designation.
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plot showing the distribution of NEFA-AUC µEq/L during the first 16 days in milk (DIM) by phenotype 
group. (b) The box and whisker plot showing the distribution of BHB-AUC mmol/L during the first 16 DIM 
by phenotype group. The phenotypes groups are: (1) High NEFA-AUC and high BHB-AUC, (2) low NEFA-
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AUC. 

Figure 2. Non-esterified fatty acids (NEFA) area under the curve (AUC) (NEFA-AUC) and
β-hydroxybutyrate (BHB) area under the curve (BHB-AUC) box and whisker plot. (a) The box
and whisker plot showing the distribution of NEFA-AUC µEq/L during the first 16 days in milk (DIM)
by phenotype group. (b) The box and whisker plot showing the distribution of BHB-AUC mmol/L
during the first 16 DIM by phenotype group. The phenotypes groups are: (1) High NEFA-AUC and
high BHB-AUC, (2) low NEFA-AUC and high BHB-AUC, (3) low NEFA-AUC and low BHB-AUC, and
(4) high NEFA-AUC and low BHB-AUC.
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Table 1. Descriptive statistics of the study population. Results are presented as total counts or range of
values and median value.

Groups 1 Parity/Farm 1 2 3 4 Overall
Count p-Value

Total per group 10 11 69 57 147

Parity number 2
2 1 4 18 12 35

0.0033 1 3 37 25 66
≥4 8 4 14 20 46

Hyperketonemic 3 10 11 5 16 42 <0.0001

BHB–AUC 4 8.85
(7.3–14.2)

8.1
(7.2–14)

2.95
(1.6–6.9)

4.25
(1.9–6.9)

3.65
(1.6–14.2) <0.0001

NEFA–AUC 5 5.41
(4.4–8.6)

3.84
(2.6–4)

2.89
(1.16–4.1)

5
(4.2–9.9)

4
(1.16–9.9) <0.00001

Farm 6
1 4 4 11 11 30

0.052 0 4 12 17 33
3 6 3 46 29 84

1 Group (1) high non-esterified fatty acids (NEFA) and high BHB, group (2) low NEFA and high BHB, group (3)
low NEFA and low BHB, and group (4) high NEFA and low BHB. 2 Difference in parity between the groups was
calculated with Chi-square. 3 Hyperketonemia was the number of cows in each group with a single measurement of
BHB ≥1.2 mmol/L during the first 16 DIM and the difference was calculated using Chi-square. 4 BHB-AUC are
shown as the range of values and median value. The difference in BHB-AUC was calculated with nonparametric
Kruskal-Wallis test. 5 BHB-AUC are shown as the range of values and median value. The difference in BHB-AUC was
calculated with nonparametric Kruskal-Wallis test. 6 Farm is expressed as counts and was analyzed with Chi-square.

The Q-Q plots from the different mixed linear model using EMMAX are shown in Figures S1
and S2. These plots showed most of the observed −log10 (p-Value) following a uniform distribution,
indicating that our genetic quality control was appropriate. Moreover, Q-Q plots are showing few
uncorrected log10 transformed p-values located in the tail of the plots with a significant deviation of
the expected uncorrected log10 transformed p-values, in agreement with the results obtained from the
different Manhattan plots.

We performed 8 different GWAS using HYK as a dichotomous phenotype, BHB-AUC as
a continuous phenotype, NEFA-AUC as a continuous phenotype, and the 5 possible pair-wise
combinations of the 4 AUC phenotype groups. Figure 3 shows the Manhattan plots of HYK, BHB-AUC,
and NEFA-AUC using the uncorrected log10 transformed p-values. Results for HYK and BHB-AUC are
very similar, which is to be expected with HYK diagnosis being dependent upon BHB concentrations.
That being said, BHB-AUC results show consistently higher degrees of association for the majority of
the significant SNPs, which is likely reflective of using the area under the curve approach encompassing
a greater degree of the variation from the 6 serial measures. This can be seen with markers on
chromosomes 4, 5, 8, 10, 16, and X. The NEFA-AUC GWAS did not provide any significant associations
after multiple testing correction. The GWAS reflecting the pair-wise comparisons of the categorical
groups is shown in Figure 4. Similar to HYK and BHB-AUC results, the categorical grouping gave the
most promising results when comparing high BHB concentration groups (Groups 1 & 2) to low BHB
concentration groups (Groups 3 & 4) (Figure 4a,b,d,e). No significant associations were identified when
only comparing variation in NEFA concentrations (Figure 4c). Despite the similar general outcomes
reflecting BHB concentrations, this categorical approach shows genomic variation potentially related to
NEFA mobilization as seen by markers on chromosome 3 in Figure 4a as opposed to Figure 4b. These
GWAS compare Groups 1 or 2, both having high BHB-AUC partnered with either high NEFA-AUC or
low NEFA-AUC, respectively, to Group 3, which reflects animals with both low BHB and NEFA-AUC.
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SNPs above the horizontal black lines achieved a false-discovery rate corrected p-value of <0.05 and
were explored for biological significance.

Nine SNPs (Table 2) passing multiple testing correction (FDR ≤ 0.05) were explored for candidate
genes with a biological relationship with changes in NEFA, BHB, or the development of HYK during
the early lactation period. All genes found within 1 Mb of the associated SNP corresponding to
the bovine reference sequence or human genome annotation are identified in Table 2. Five genes
were identified within this group as the most plausible candidate genes affecting HYK based on their
functional annotation. Hydroxysteroid (17-beta) dehydrogenase 10 (HSD17B10), ATP-binding cassette
transporter 1 (ABCA1), and hepatic lipase (LIPC) genes were identified on chromosomes X, 8, and 10,
respectively, using the bovine reference genome. The 5-hydroxytryptamine (serotonin) receptor 2C, G
protein-coupled (HTR2C), and ATP-binding cassette transporter 2 (ABCA2) genes were identified on
chromosomes X and 8, respectively, using gene homology to human and mouse assemblies.
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Figure 4. Manhattan plot showing the graphic representation of −log 10 (p-Value) from each different
mixed linear model. Specifically, this plot corresponds to the mixed linear model with parity and farm
as fixed effects: (a) Phenotype group 1 (high NEFA-AUC and high BHB-AUC) vs. phenotype group 3
(low NEFA-AUC and low BHB-AUC), (b) phenotype group 2 (low NEFA-AUC and high BHB-AUC) vs.
phenotype group 3 (low NEFA-AUC and low BHB-AUC), (c) phenotype group 3 (low NEFA-AUC
and low BHB-AUC) vs. phenotype group 4 (high NEFA-AUC and low BHB-AUC), (d) phenotype
group 1 (high NEFA-AUC and high BHB-AUC) vs. phenotype group 4 (high NEFA-AUC and low
BHB-AUC), and (e) phenotype group 2 (low NEFA-AUC and high BHB-AUC) vs. phenotype group 4
(high NEFA-AUC and low BHB-AUC). SNPs above the horizontal black lines achieved a false-discovery
rate corrected p-value of <0.05 and were explored for biological significance.
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Table 2. Genome-wide association study results identifying associated single-nucleotide polymorphisms (SNPs) and candidate genes from the 128 least-related
Holstein cows.

Chr SNP Location 1 Gene Name Gene Start 2 Gene End 2 Distance to the
SNP (bp) 3 Best p-Value 4 False Discovery

Rate p-Value
Phenotypes Associated by

GWAS 5

5 60045785

KIAA0748 60276249 60300244 254,459

5.98 × 10−17 3.12 × 10−11 HYK, BHB-AUC, 1 vs. 3, 1
vs. 4, 2 vs. 3 and 2 vs. 4

AMOTL2 60276249 60300244 254,459
TESPA1 60265872 60301998 256,213

NEUROD4 60223354 60234099 177,569

8 95966003
ABCA1, ABCA2 96270791 96408375 304,788

1.14 × 10−10 5.96 × 10−06 HYK, BHB-AUC, 1 vs. 3, 1
vs. 4 and 2 vs. 4

OR13F1 95761537 95762465 42,726
NIPSNAP3A 96239004 96252150 273,001

10 51462618

LIPC 51758867 51921040 296,249

1.14 × 10−10 5.45 × 10−06 HYK, BHB-AUC, 2 vs. 3
and 2 vs. 4

MYO1E 51020004 51240914 221,704
CCNB2 51247755 51272733 189,885

MINDY2 51500299 51570991 37,681
RNF111 51288677 51380159 82,459

ADAM10 51598073 51739157 135,455
CLNS1A 51841987 51843484 379,369

X 32696913

MAGEA 32428998 32719060 22,147

3.67 × 10−15 6.39 × 10−10 HYK, BHB-AUC, 1 vs. 3, 1
vs. 4, 2 vs. 3 and 2 vs. 4

IDS 32302897 32324344 372,569
CXorf40A 32345274 32348925 347,988

TMEM185A 32922144 32957365 225,231

X 32726008

TMEM185A 32922268 32964027 196,260

2.27 × 10−13 1.48 × 10−08 HYK, BHB-AUC, 1 vs. 3, 1
vs. 4, 2 vs. 3 and 2 vs. 4

IDS 32302897 32324344 401,664
MAGEA 32685989 32687155 38,853
HSFX3 32590840 32592421 133,587

CXorf40A 35613768 35614939 2,888,931

X 57467501

BEX3 57269171 57270812 196,689

4.35 × 10−15 5.68 × 10−10 HYK, BHB-AUC, 1 vs. 3, 1
vs. 4, 2 vs. 3 and 2 vs. 4

CXorf57 56957121 57062226 405,275
TCEAL9 57244995 57246736 220,765

PLP1 57864748 57881720 397,247
RAB9B 57864581 57926698 397,080

MORF4L2 57744023 57754954 276,522
GLRA4 57785197 57798407 317,696

X 68194066

HTR2C 67986710 68083180 110,886

4.42 × 10−15 3.30 × 10−10 HYK, BHB-AUC, 1 vs. 3, 1
vs. 4, 2 vs. 3 and 2 vs. 4

LHFPL1 68428002 68491176 297,110
SNORA35 67792018 67792065 402,001

AMOT 68598671 68657930 404,605
RTL4 68212448 68289758 18,382

RBMX2 68131773 68142135 51,931
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Table 2. Cont.

Chr SNP Location 1 Gene Name Gene Start 2 Gene End 2 Distance to the
SNP (bp) 3 Best p-Value 4 False Discovery

Rate p-Value
Phenotypes Associated by

GWAS 5

X 85371223

SLC7A3 85010185 85015654 361,038

2.70 × 10−12 1.57 × 10−07 HYK, BHB-AUC, 2 vs. 3
and 2 vs. 4

DLG3 85245062 85298606 72,617
GDPD2 85309754 85319162 52,061
KIF4A 85321378 85449490 0
P2RY4 85481339 85482436 110,116
AWAT1 85499886 85508546 128,663

DGAT2L6 85556422 85577736 185,199
IGBP1 85588914 85635721 217,691
EDA 85708003 86099973 336,780

IL2RG 84816145 84819841 551,382
IKZF5 85444282 85447321 73,059

X 95872578

HSD17B10 96267144 96269467 396,889

4.03 × 10−16 2.10 × 10−10 HYK, BHB-AUC, 1 vs. 3, 1
vs. 4 and 2 vs. 4

MAGED4B 95546166 95553643 318,935
GPR173 95933520 95953706 60,942
KDM5C 96041773 96072571 169,195
SMC1A 96218220 96252806 345,642
RIBC1 96253141 96266987 380,563

HUWE1 96362881 96520246 490,303
1 SNP location: Exact location of the SNP within the chromosome referencing the University of Maryland (UMD) 3.1 bovine genome assembly. 2 Gene start and gene end: The coordinates
of beginning and end for genes located on the region of influence of associated SNPs; the region of influence of each SNP was defined as 1 Mega base pair up and downstream on the UMD
3.1 bovine genome assembly. 3 Distance to the SNP (bp): Distance in base pairs between the SNP and the candidate gene. 4 Best p-value: Indicates the lowest p-value when the SNP was
significant in multiple GWAS; only SNPs with a corrected FDR ≤ 0.05 were analyzed to diminish the probability of Type I error. 5 Shows all different explanatory variables where the SNP
was significant with a corrected FDR ≤ 0.05; GWAS: Hyperketonemia (HYK/dichotomous), BHB-AUC (continuous response), Group 1 vs. Group 2 (dichotomous), Group 1 vs. Group 3
(dichotomous), Group 1 vs. Group 4 (dichotomous), Group 2 vs. Group 3 (dichotomous), Group 2 vs. Group 4 (dichotomous), and Group 3 vs. Group 4 (dichotomous).
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In our study, the pseudo-heritability of HYK was 0.16 ± 0.56, of BHB-AUC was 0.82 ± 0.44, and
of NEFA-AUC was 0.02 ± 0.14. Standard errors for pseudo-heritability are likely magnified due to
the small sample size yet reflect similar estimates of previous studies. Haplotype analysis showed
no significant association after testing for haplotypes frequencies with HTR (p-value = 0.65). In all,
significant associations were identified on four chromosomes and highlighted five biologically plausible
candidate genes. The small sample size likely limited potential findings, while the use of the serial NEFA
and BHB measures mitigated this issue by improving the accuracy of the phenotypic characterization.

4. Discussion

The objective of our study was to assess the ability of longitudinal phenotypes to improve detection
of genetic association with complex metabolic diseases such as HYK in dairy cows. A multitude of
GWA studies have focused on production, phenotype, and health traits, but only a small portion
of these specifically investigate transition cows or tackle complex metabolic disorders. While our
study had a relatively small sample size, reducing the power to find all true genomic associations,
a similarly powered study of 73 individuals identified a QTL for Holstein cholesterol deficiency [39]
and an in-depth report on small sample size GWAS in dogs showed the effectiveness of just 20 dogs for
mapping traits within breed [40]. More importantly, the improved phenotypic characterization through
serial measurements of NEFA and BHB concentration in blood during the first 16 DIM provides an
advantage by providing a higher phenotypic reliability [21]. Indeed, simulation studies have found
that a mere 10% misclassification of phenotype reduces the reliability of correctly identifying predictive
SNPs in a GWAS to 54% [41,42]. In addition, the use of a high-density SNP panel having markers
spanning the genome is more desirable for identifying novel genomic regions associated with complex
traits or diseases.

Frequently, there are multiple SNPs associated with complex diseases such as HYK, and each one
can increase the risk of developing the diseases in small increments. As the understanding of HYK,
energy metabolism, and the transition cow period is improved, we are afforded the opportunity to
advance our knowledge of their genetic regulation. To date, one gene-based study combined with
pathway analysis identified various biological pathways associated with NEFA, BHBA, and glucose
changes in cows sampled 3 weeks before expected calving, 4 weeks postpartum, and 13 weeks after
parturition [43]. Preliminary data by Kroezen et al. [44] identified a panel of 1081 SNPs associated with
HYK based on producer-recorded cases of clinical HYK to be tested in a larger cohort of Canadian
cattle. The same group found different regions associated with mid-infrared spectroscopy-predicted
milk BHB concentrations in Holstein dairy cows [45]. Zoetis, a private company offering genotyping
and genomic prediction services for dairy cattle, released their Wellness Traits, including ketosis
predictions, in 2016 [46]. The Council on Dairy Cattle Breeding is now offering a similar genomic
prediction for breeding merit of ketosis susceptibility as part of the U.S. National Dairy Cattle Genomic
Evaluations as of April 2018 [47].

Hyperketonemia is a complex disorder that has many potential risk factors, including genetic
factors [33]. Accuracy of the diagnosis of HYK and the intricacies of BHB and NEFA concentration
variation play a crucial role in identifying genomic regions associated with this disease. The in-depth
phenotyping with the longitudinal sampling during the first 16 DIM allowed for a more accurate
assessment of HYK as opposed to single measurement derived from a cross-sectional study design,
and mitigated the effect of the small sample size. Here, we present 5 candidate genes with biological
relevance in the development of HYK or with high AUC for BHB and NEFA concentrations that
were identified in multiple GWAS comparing 521,929 SNPs from 128 least-related Holstein cows with
longitudinal measures.

4.1. Candidate Genes

Hydroxysteroid (17-beta) dehydrogenase 10 (HSD17B10). This gene is located on chromosome
X from 96,267,144–96,269,467 base pairs (bp) (RefSeq: NM_174334.3) and is well conserved in all
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vertebrates. In 4 out of 8 GWAS, HSD17B10 emerged as a candidate gene: Hyperketonemia (dichotomous),
BHB-AUC (continuous), group 2 vs. group 3 (dichotomous), and group 2 vs. group 4 (dichotomous).
Yang et al. [48] reported that HSD17B10 gene encodes for a mitochondrial multifunctional enzyme,
which catalyzes the oxidation of steroid modulators of gamma aminobutyric acid type A receptors and
steroid hormones. It also has short-chain 3-hydroxy-2-methylacyl-CoA dehydrogenase activity, an
essential step in the degradation of isoleucine. Isoleucine is an essential branched chain amino acid
(EAA) that plays a pivotal role in protein and energy metabolism [49] with particular importance due to
the contribution to milk protein synthesis [50]. Mutations in HSD17B10 have been reported in humans
and caused a complete loss of a mitochondrial multifunctional enzyme which were biochemically
diagnosed with an elevated concentration of metabolites from isoleucine breakdown [51]. Given
HSD17B10’s role in energy metabolism and protein synthesis, we hypothesize that this gene’s activity
and efficiency may play a role in hyperketonemia.

The 5-hydroxytryptamine (serotonin) receptor 2C, G protein-coupled (HTR2C). HTR2C gene
is located on chromosome X from 67,986,710–68,083,180 bp (RefSeq: AC_000187.1). In 6 out of the
8 performed GWAS, HTR2C was identified as a candidate gene: HYK (dichotomous), BHB-AUC
(continuous), group 1 vs. group 3 (dichotomous), group 1 vs. group 4 (dichotomous), group 2 vs. group
3 (dichotomous), and group 2 vs. group 4 (dichotomous). The hypothalamus consolidates all the
processes related with energy homeostasis. The ability of transition cows to gain energy homeostasis is
vital as they manage NEB and move towards neutral and positive energy balance which relates to
the relevant events and key time period of HYK. The α-melanocyte stimulating hormone (α-MSH) is
produced by pro–opiomelanocortin (POMC) neurons in the arcuate nucleus (ARC) of the hypothalamus.
The α-MSH is an agonist of melanocortin 4 receptors (MC4Rs) and the melanocortin signaling mediates
food intake, body weight, and energy metabolism [52]. The effect of HTR2C might be crucial for POMC
neuronal activation [53]. In addition, the activation of the central serotonin system has been linked
with depressed appetite in almost all mammals [54]. Rodent models with a deletion of HTR2C showed
hyperphagia and obesity [53]. In humans, manipulation of 5-HTR2C receptors in the hypothalamus
has been used to effectively induce weight loss using drugs such as d–fenfluramine and phentermine
via blocking the reuptake of serotine and prompt its release [55–57]. Moreover, HTR2C effect on
POMC might be influenced by circulating energy metabolites such as glucose, fatty acids, leptin, and
insulin [56,58].

ATP-binding cassette transporter ABCA1 and ABCA2. ABCA1 is located on chromosome 8 from
96,274,035–96,390,357 bp (RefSeq: NM_001024693.1). ABCA2 (RefSeq: AC_000168.1), annotated in
the human, mouse, and rat genomes, shows homology to this same region as well. In 5 out of the 8
performed GWAS, ABCA1 and ABCA2 appeared as candidate genes: Hyperketonemia (dichotomous),
BHB-AUC (continuous), group 1 vs. group 3 (dichotomous), group 1 vs. group 4 (dichotomous),
and group 2 vs. group 4 (dichotomous). The adenosine triphosphate (ATP)-binding cassette (ABC)
membrane transporter gene superfamily binds and hydrolyzes ATP to move different nutrients (amino
acids, lipids, lipopolysaccharides, etc.) across the extracellular and intracellular membranes such as
the endoplasmic reticulum (ER) [59,60], peroxisome, and mitochondria [61–63]. Mutations within the
ABCA1 gene in humans cause total or partial reduction of normal high-density lipoprotein (HDL)
cholesterol due to the role of ABCA1 in HDL formation and in reverse cholesterol transport [61–65].
Subjects with this genetic variation accumulate cholesterol droplets in their liver, spleen, lymph nodes,
intestine, and nervous system [60,64]. In the same way, ABCA2 over expression has been correlated
with decreased efflux and diminished esterification of lipoproteins [66]. Functional annotation and the
association of ABCA1 and ABCA2 to health disorders suggests that these genes may play a role in the
movement of nutrients needed for energy metabolism and the possible build-up of lipids in the liver
related to hyperketonemia.

Hepatic Lipase (LIPC). This gene is located on chromosome 10 from 51,758,867 bp to 51,921,040
bp (RefSeq: NM_001035410.1). In 4 out of the 8 performed GWAS, LIPC as a candidate gene: HYK
(dichotomous), BHB-AUC (continuous), group 2 vs. group 3 (dichotomous), and group 2 vs. group 4
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(dichotomous). The LIPC gene encodes for a lipolytic enzyme synthesized in the liver that plays a
pivotal role in several steps of lipoprotein metabolism [67,68]. Up-and-down regulations have been
associated with dyslipidemia; however, the pathways are not well understood [69]. Cohen et al. [70]
estimated that the genetic variations at the LIPC gene might explain up to 25% of the total variation
of HDL plasma concentrations in human monozygotic twins. Moreover, LIPC variants might have a
pleiotropic effect on one more of the abnormalities associated with metabolic syndrome in humans
such as insulin resistance [71]. LIPC’s role in lipoprotein metabolism in the liver suggests it may be
particularly relevant in the re-esterification of NEFA in the liver.

4.2. Heritability

The pseudo-heritability of HYK was 0.16 ± 0.56 in our study and is congruent with a previous
report of 0.17 [19] and greater than the heritability reported by others at 0.02 [18], and 0.06 [72].
Pseudo-heritability is defined as the fraction of phenotypic variance explained by the relationship
matrix IBD. However, pseudo-heritability for some traits may over- or under-estimate heritability due
to missing heritability, the proportion of genetic variance that cannot be explained by all significant
SNPs [35,36]. The difference among these values could be attributed to the higher accuracy of disease
characterization and its definition in the study of van der Drift et al. [19] and our own. For our study, the
pseudo-heritability of BHB-AUC (0.82 ± 0.44) is a more rigorous estimate than the pseudo-heritability
of HYK. The calculation used for pseudo-heritability of BHB-AUC included all serial measurements,
therefore the magnitude of standard error is smaller than that of HYK at one time point. While the
standard error and standard deviation of pseudo-heritability are high given our small sample size,
the pseudo-heritability estimates provide a baseline to compare characteristics within the study [36].
Some of the standard confidence intervals are over the normal limits (0,1) due to the relatively modest
sample size. Therefore, we recommend caution with the interpretation of the pseudo-heritability result
obtained in our study.

5. Conclusions

Our study differed from previous attempts to identify genomic regions associated with the
development of HYK by using serial measurement data from dairy cows during the high risk period
of HYK, thus reducing the risk of phenotypic misclassification. Our positive results, despite a small
cow cohort, demonstrates the informativeness of serial measures of BHB for the genomic analysis
of hyperketonemia as supported by another recent study showing increased genomic prediction
accuracy of HYK when using serial measures. In all, the 5 novel candidate genes of HSD17B10, HTR2C,
ABCA1, ABCA2, and LIPC were identified based on genome-wide association to either HYK status or
serial blood concentrations of BHB and NEFA. Further confirmation of these regions and candidate
genes using an unrelated population and/or expression studies is needed to establish the complete
effect of them on HYK in early postpartum Holstein dairy cows. The suggestive results for NEFA
concentrations also warrant additional studies in a larger cohort of animals which may provide insight
towards the genetic regulation of fat mobilization for energy metabolism. Overall, this study provides
a foundation to explore the genetic regulation of HYK and proposes markers for consideration in
genomic selection schemes.

To conclude, HYK is one of the most important postpartum metabolic diseases in dairy cattle
because of the negative association with reproduction, milk production, and metabolic and infectious
diseases and, thus, profitability and health of dairy cows. Our ability to identify the most susceptible
animals has been constrained by the ability to measure metabolites such as BHB and NEFA during the
high risk period early postpartum when HYK is detected. Genetic studies have been similarly limited
by the complexity of the phenotypic characterization of HYK. With these results and future validation
in a larger population, the early identification of animals most susceptible to developing HYK using
genomic information will provide producers with the ability to selectively breed for healthier animals
and intensify the prophylactic measures for those deemed at risk.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2615/9/12/1059/s1,
Figure S1: Quantile–Quantile plot (QQ–plot) of –log 10 (p–Value) from mixed linear models with parity and
farm as fixed effects: (a) Hyperketonemia, (b) BHB–AUC, and (c) NEFA–AUC. The expected −log10 (p–Value)
are presented on the x-axis and the observed P–values are on the y-axis, Figure S2: Quantile-Quantile plot (Q-Q
plot) of –log 10 (p-Value) from mixed linear models with parity and farm as fixed effects: (a) phenotype group
1 (high NEFA-AUC and high BHB-AUC) vs. phenotype group 3 (low NEFA-AUC and low BHB-AUC), (b)
phenotype group 2 (low NEFA-AUC and high BHB-AUC) vs. phenotype group 3 (low NEFA-AUC and low
BHB-AUC), (c) phenotype group 3 (ow NEFA-AUC and low BHB-AUC) vs. phenotype group 4 (high NEFA-AUC
and low BHB-AUC), (d) phenotype group 1 (high NEFA-AUC and high BHB-AUC) vs. phenotype group 4 (high
NEFA-AUC and low BHB-AUC), and (e) phenotype group 2 (low NEFA-AUC and high BHB-AUC) vs. phenotype
group 4 (high NEFA-AUC and low BHB-AUC). The expected −log 10 (p-Value) are presented on the x-axis and the
observed p-values are on the y-axis.
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