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ABSTRACT
Background: Contemporary energy expenditure data are crucial to
inform and guide nutrition policy in older adults to optimize nutrition
and health.
Objective: The aim was to determine the optimal method of
estimating total energy expenditure (TEE) in adults (aged ≥65 y)
through 1) establishing which published predictive equations have
the closest agreement between measured resting metabolic rate
(RMR) and predicted RMR and 2) utilizing the RMR equations with
the best agreement to predict TEE against the reference method of
doubly labeled water (DLW).
Methods: A database consisting of international participant-level
TEE data from DLW studies was developed to enable comparison
with energy requirements estimated by 17 commonly used predictive
equations. This database included 31 studies comprising 988
participant-level RMR data and 1488 participant-level TEE data.
Mean physical activity level (PAL) was determined for men
(PAL = 1.69, n = 320) and women (PAL = 1.66, n = 668).
Bland–Altman plots assessed agreement of measured RMR and
TEE with predicted RMR and TEE in adults aged ≥65 y, and
subgroups of 65–79 y and ≥80 y. Linear regression assessed
proportional bias.
Results: The Ikeda, Livingston, and Mifflin equations most closely
agreed with measured RMR and TEE in all adults aged ≥65 y
and in the 65–79 y and ≥80 y subgroups. In adults aged ≥65
y, the Ikeda and Livingston equations overestimated TEE by a
mean ± SD of 175 ± 1362 kJ/d and 86 ± 1344 kJ/d, respectively.
The Mifflin equation underestimated TEE by a mean ± SD of
24 ± 1401 kJ/d. Proportional bias was present as energy expenditure
increased.
Conclusions: The Ikeda, Livingston, or Mifflin equations are
recommended for estimating energy requirements of older adults.
Future research should focus on developing predictive equations to
meet the requirements of the older population with consideration
given to body composition and functional measures. Am J Clin
Nutr 2019;110:1353–1361.
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Introduction
The average human life expectancy continues to increase in

most developed countries, associated with improved food and
water quality, immunization, and enhanced medical care (1). The
UN forecast that between 2015 and 2030, the number of people
aged ≥60 y will increase by 56%, from 901 million to 1.4 billion,
and then to 2.1 billion by 2050 (2).

Policies are needed to support these global population changes;
at their core are population and individual food and nutrition
requirements. These are set out in dietary reference values at a
national and international level, e.g., by the National Health and
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Medical Research Council and the FAO/WHO (3, 4). However,
research and understanding of the energy needs in the older
population are limited. Applying evidence for energy expenditure
derived from younger populations to older adults fails to account
for the differences in body composition, activity, and health
status. The studies presented and synthesized in this analysis
were conducted in the older adult population (≥65 y) and
crucially utilized the gold-standard doubly labeled water (DLW)
methodology for measurement of total energy expenditure (TEE).

The DLW technique (5) is safe and noninvasive, requiring only
periodic sampling of bodily fluids while individuals engage in
usual activities. This technique is based on the ingestion of water
labeled with 2 stable isotopes, deuterium and oxygen-18, and the
fact that the oxygen and hydrogen atoms will have different routes
of biological elimination (6).

Predictive equations currently used to derive estimated energy
requirements are based on international data collected over
the past century. Commonly used equations to predict resting
metabolic rate (RMR) include the Schofield (7) and Harris–
Benedict (8) equations. Using the factorial method, a value for
energy expended by physical activity is applied to predicted RMR
to derive TEE. Such equations do not recognize the range of
influences leading to varying energy requirements in the elderly
population. Body composition, health and cognitive status, and
medication use vary considerably within the 60 to ≥100 y old age
group. What is clearly lacking is further age bracketing for those
in their 70s, 80s, or 90s and beyond. The US dietary guidelines
(2015–2020) equally do not subgroup the energy needs of adults
beyond 76 y (9). Current predictive equations are based on data
unlikely to be representative of contemporary older individuals.

Our study utilized the 17 predictive equations for RMR of
older adults compiled by Itoi et al. (10). Equations for the
present analyses were sourced from the original publications.
Specifically, the aim was to determine the optimal equation for
estimating TEE in adults aged ≥65 y (all adults, 65–79 y old,
and ≥80 y old) through

1) establishing which published predictive equations have the
highest level of agreement between measured RMR and
predicted RMR; and

2) utilizing the RMR equations with the closest agreement to
predict TEE against the reference method of DLW.

Methods
Our recently published systematic review (11) collated the

extent of the international evidence for TEE using DLW in
older adults. Systematic review methods were applied to finalize
a library of DLW studies in those aged ≥65 y, classified as
the retirement age internationally (12). The Monash University
Human Research Ethics Committee (project number 8025)
provided an exemption from ethics approval for contacting
authors and for requesting the collection of these data for this
primary analysis. Participant-level data were obtained either from
the original source publication or by contacting authors of articles
and requesting data to be shared. Since this review was published
(11), investigators from the US Women’s Health Initiative (WHI)
have contributed TEE data from a further 694 participants
(13, 14).

A quality assessment of the included studies was completed
by duplicate reviewers using the Quality Criteria Checklist for
Primary Research (Academy of Nutrition and Dietetics) (15)
included in Supplemental Table 1. Additional statements to
assess the quality of the RMR and DLW method used in each
study were developed for this evaluation, with findings included
in Supplemental Table 2.

The outcome of the systematic review process was a large
international database containing TEE, RMR, anthropometry,
and demographic information at the participant level for adults
aged ≥65 y. This database is used for this analysis. The
characteristics of participants contributing to this database are
reported in Supplemental Table 3. Data from 48 publications
(31 studies), mostly from developed countries, are included.

The Bland–Altman method (16) was utilized to assess the level
of agreement between 2 measures (i.e., predicted compared with
measured RMR and predicted TEE compared with measured
TEE by DLW). The difference between measured and predicted
RMR or TEE (y-axis) was compared with measured RMR or
TEE (rather than the mean of the 2 variables as is traditionally
used), given these are the gold-standard measures. The difference
between measured and predicted RMR and TEE was calculated
as “measured minus predicted,” therefore a negative difference
means the equation overestimated measured RMR or TEE
and a positive difference means the equation underestimated
measured RMR or TEE. A 1-sample t test was applied to
assess whether the difference between the 2 measurements varied
significantly from zero (P < 0.05). The upper and lower limits of
agreement were calculated as the mean difference ±1.96 × SD.
A linear regression was conducted to assess for proportional bias
(P < 0.05) to determine whether there was a trend of more data
points being above or below the mean difference (Table 1).

There were 2 parts to this analysis, which were completed with
data from all participants (aged ≥65 y) (referred to throughout as
“main analysis”) and repeated for participants aged 65–79 y and
≥80 y (referred to throughout as “subgroup analysis”). In Step
1, we aimed to establish which 3 equations showed the highest
level of agreement between measured RMR and predicted RMR.
Consensus was reached within the research team before finalizing
the database that these 3 equations would then be utilized to
compare measured TEE and predicted TEE (Step 2).

Participants who contributed data on RMR measured by the
accepted reference methods of indirect calorimetry or Douglas
bag, performed using standardized laboratory conditions, were
included in the Step 1 analysis (n = 988). Predicted RMR was
generated for each participant by entering their data (weight,
height, sex, and age) into each of the 17 predictive equations.
These calculations were performed in Microsoft Excel (2013).
Participants with disease states likely to affect energy expenditure
(chronic kidney disease, chronic obstructive pulmonary disease,
and thyroid illnesses), those with missing data, or whose RMR
data were greater than TEE (attributed to data entry error) were
excluded from the analysis. The flow diagram for participant
selection is shown in Figure 1.

Before Bland–Altman analyses, descriptive analyses were
undertaken to determine the distribution of data (provided as
histograms in Supplemental Figure 1). The assumptions that
data were normally distributed (Kolmogorov–Smirnov P > 0.05)
and that comparison between the 2 measures did not vary
from zero were unable to be met (1-sample t test), despite
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TABLE 1 Performance of equations against the assumptions of Bland–Altman analyses (Step 1)1

Equation (n = 17)
One-sample t test

P > 0.05
Mean of the

difference (bias)2
SD of the
difference Lower LOA Upper LOA

Regression coefficient
P < 0.05 (proportional bias)

Bernstein (17) No 734 787 − 809 2277 Yes
De Lorenzo (18) No − 422 762 − 1916 1072 Yes
EU (19) No − 497 722 − 1912 918 Yes
Fredrix (20) No − 509 766 − 2010 992 Yes
Ganpule (21) No − 140 782 − 1673 1393 Yes
Harris–Benedict (8) No − 265 746 − 1727 1197 Yes
Henry (22) No − 398 770 − 1907 1111 Yes
Ikeda (23) No − 59 740 − 1509 1391 Yes
Korth (24) No − 569 865 − 2264 1126 Yes
Livingston (25) Yes − 16 740 − 1466 1434 Yes
Lührmann (26) No − 511 780 − 2040 1018 Yes
Mifflin (27) Yes 45 761 − 1447 1537 Yes
Müller (28) No − 509 789 − 2055 1037 Yes
Owen (29) No − 612 805 − 2190 966 Yes
Schofield (7) No − 362 752 − 1836 1112 Yes
Weijs-Kruizenga (30) No − 1095 807 − 2677 487 Yes
WHO (31) No − 516 773 − 2031 999 Yes

1Main analysis, n = 988 participants. Assumptions of the Bland–Altman analysis are that the 1-sample t test >0.05 and that the regression coefficient
>0.05 (i.e., no proportional bias). Bland–Altman analyses were conducted with RMR expressed as kJ/d. Normal distribution was tested for the following
variables: RMR derived from equations (kJ/d); RMR measured (kJ/d); difference of RMR measured and RMR derived from equations (kJ/d); and mean of
RMR measured and RMR derived from equations (kJ/d). LOA, limit of agreement; RMR, resting metabolic rate.

2A negative “mean of the difference” means the equation overestimated measured RMR and a positive “mean of the difference” means the equation
underestimated measured RMR.

transformation attempts. We proceeded with Bland–Altman
analyses noting the skewed distribution. From the 17 Bland–
Altman plots comparing measured RMR and predicted RMR, the
3 equations demonstrating the least bias (the smallest mean of the
mean difference between the 2 methods) were selected for further
analysis in Step 2.

In Step 2, participants with measured TEE data (n = 1488)
were included in the analysis. Participants with disease
states likely to affect TEE (chronic kidney disease, chronic
obstructive pulmonary disease, those in intensive care) and those
with missing data were excluded. DLW measurements were
accepted as reported, except 1 clear outlier (verified with the
author as a data entry error) with a TEE of 28.6 MJ. The
flow diagram for participant selection is shown in Figure 2.
Participant characteristics are also described in Supplemental
Table 3.

To account for differences in body size, physical activity level
(PAL) was calculated to characterize energy expenditure above
the RMR of the population (32). The mean male and female
PALs derived from our total database were calculated from TEE
measured using DLW divided by RMR measured using indirect
calorimetry in original studies. Applying a predefined group PAL
value reflects the process undertaken in clinical practice. For the
main analysis, the mean PAL calculated for men was 1.69 ± 0.26
(n = 320) and mean PAL for women was 1.66 ± 0.31 (n = 668).
For the subgroup analysis, the mean PAL for men aged 65–79
y was 1.71 ± 0.26 (n = 219) and for women was 1.69 ± 0.31
(n = 514), and the mean PAL for men aged ≥80 y was 1.65 ± 0.25
(n = 101) and for women was 1.60 ± 0.30 (n = 154).

These PAL values were applied to the RMR derived from the
predictive equations to generate predicted TEE in the main and
the subgroup analyses. Agreement between predicted TEE and
measured TEE was explored in a series of Bland–Altman plots

(16), 1 plot for each of the 3 predictive equations identified in
Step 1.

All statistical analyses were conducted using IBM SPSS
Statistics version 25.0.

Results
Step 1: The composite database contained data from 988

adults aged ≥65 y with the majority of participants being women
(68%), Caucasian/white (60%), with a median age of 74 y
(Table 2). For the subgroup analysis there were 733 participants
aged 65–79 y [70% women, 58% Caucasian/white, mean
BMI (in kg/m2) 27.3 ± 5.3] and 255 aged ≥80 y (60%
women, 65% Caucasian/white, mean BMI 25.4 ± 4.4). Data
for Bland–Altman plots for the main analysis and subgroup
analysis are reported in Table 1 and Supplemental Table 4,
respectively.

For the main analysis, the Mifflin equation demonstrated the
closest agreement (least bias) (Figure 3, Table 1) compared
with measured RMR. It underestimated measured RMR by a
mean ± SD of 45 ± 761 kJ/d. The Ikeda and Livingston
equations also showed close agreement, but with the Ikeda
equation violating the assumption of the 1-sample t test. The
Ikeda and Livingston equations overestimated measured RMR by
a mean ± SD of 16 ± 740 kJ/d and 59 ± 740 kJ/d, respectively.
All equations showed proportional bias.

The Ikeda, Livingston, and Mifflin equations also demon-
strated the least bias among both the 65–79 y olds and the ≥80
y olds in the subgroup analysis (Supplemental Table 4). In the
65–79 y old age group, the Livingston equation showed the least
bias with an overestimation of measured RMR by a mean ± SD
of 5 ± 754 kJ/d. In the ≥80 y age bracket, the Livingston and
Mifflin equations performed similarly, with an overestimation
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FIGURE 1 Flowchart of selection of data from individual participants aged ≥65 y (main analysis) and 65–79 y and ≥80 y (subgroup analysis) used to
compare RMR measured in original studies using indirect calorimetry with RMR calculated from a series of predictive equations (Step 1). CKD, chronic kidney
disease; COPD, chronic obstructive pulmonary disease; ICU, intensive care unit; RMR, resting metabolic rate; SLR, systematic literature review; TEE, total
energy expenditure; WHI, Women’s Health Initiative.

of measured RMR by 45 ± 697 kJ/d and underestimation of
measured RMR of 44 ± 739 kJ/d, respectively. Like the main
analyses, the 3 equations showed proportional bias in both age
groups.

Step 2: There were 1488 participants who contributed TEE
data for analysis after excluding data from 95 participants (6%)
(Figure 2). The majority of participants providing data for
the main TEE analyses were women (75%), Caucasian/white
(68%), with a median age of 73 y (Table 2). For the subgroup
analysis 1184 participants were aged 65–79 y (77% women,
68% Caucasian/white, mean BMI: 27.6 ± 5.3) and 304 were

aged ≥80 y (65% women, 67% Caucasian/white, mean BMI:
25.6 ± 4.4).

Based on the analysis in Step 1, the Ikeda, Livingston,
and Mifflin equations were selected in both the main and
subgroup analyses, and the derived sex-specific PAL values were
applied to determine predicted TEE. Predicted and measured
TEE were compared using Bland–Altman plots. These analyses
demonstrated variable patterns of agreement between predicted
and measured TEE for adults aged ≥65 y in the main analysis
(Figure 4, Table 3) and subgroup analysis (Supplemental
Table 5).



Energy expenditure in older adults 1357

FIGURE 2 Flowchart of selection of data from individual participants aged ≥65 y (main analysis) and 65–79 y and ≥80 y (subgroup analysis) used to
compare TEE measured in original studies using doubly labeled water with estimated TEE (Step 2). CKD, chronic kidney disease; COPD, chronic obstructive
pulmonary disease; ICU, intensive care unit; RMR, resting metabolic rate; SLR, systematic literature review; TEE, total energy expenditure; WHI, Women’s
Health Initiative.

For the ≥65 y analysis in Step 2, the bias between predicted
and measured TEE was −86 ± 1344 kJ/d and −175 ± 1362
kJ/d for the Livingston and Ikeda equations, respectively.
TEE calculated by the Mifflin equation had the smallest bias
(24 ± 1401 kJ/d) but the largest variability (SD). The Ikeda
and the Livingston equations violated the assumption for the
1-sample t test and for all 3 equations, proportional bias was
observed, as shown by the regression line (dotted line), R2, and P
value in Figure 4.

The Mifflin equation showed the least bias among the
≥80 y age group (−245 ± 1413 kJ/d), whereas the Livingston
equation showed the least bias among the 65–79 y age group
(−5 ± 1336 kJ/d). In the ≥80 y age group all 3 equations
overestimated measured TEE, and had larger bias than in the
65–79 y age group. All equations for both age groups showed

proportional bias, as shown by the regression line (dotted line),
R2, and P value in Figure 4.

The Bland–Altman graphs showed a clear positive trend. Data
points extended beyond both the upper and lower limits of
agreement—more so beyond the upper limits (Figure 4). This
indicates that the higher an individual’s TEE (in kilojoules per
day) the more likely the equations will underestimate TEE, and
vice versa.

Discussion

The systematic process undertaken and reported here has led
to the development of a large international database of TEE
measurements using the DLW method in people aged ≥65 y. We
aimed to determine which published predictive equations have
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TABLE 2 Descriptive characteristics of individual participants aged ≥65 y providing RMR data used in Step 1 and TEE data used in Step 2 (main analysis)1

Characteristic RMR data (n = 988) TEE data (n = 1488)

Gender, n (%)
Female 668 (68) 1108 (75)
Male 320 (32) 380 (25)

Ethnicity, n (%)
Caucasian/white 593 (60) 1005 (68)
Asian 30 (3) 32 (2)
African 184 (19) 227 (15)
Hispanic 37 (4) 60 (4)
Other 59 (6) 74 (5)
Missing 85 (9) 90 (6)

Age, y 74, 69–80, 65–101 73, 68–78, 65–101
BMI, kg/m2 25.9, 23.2–29.8, 14.6–47.8 26.3, 23.5–30.3, 14.6–47.8
Fat-free mass,2 % 63.7, 57.8–69.4, 43.4–92.6 63.7, 57.8–69.4, 34.9–100
RMR measured, kJ/d 5215, 4559–5960, 2370–8780 N/A
RMR measured, kJ · kg BW–1 · d–1 74, 66–84, 39–132 N/A
RMR measured,2 kJ · kg FFM–1 · d–1 118, 108–130, 74–175 N/A
TEE measured, kJ/d N/A 8600, 7540–9750, 3540–19,320

1Values are n (%) or median, IQR, min–max. Step 1 involved individual participant data for RMR measured in original studies using indirect calorimetry
compared with RMR calculated from a series of predictive equations; Step 2 involved individual participant data for TEE measured in original studies using
doubly labeled water compared with TEE calculated from a series of predictive equations. BW, body weight; FFM, fat-free mass; N/A, not applicable; RMR,
resting metabolic rate; TEE, total energy expenditure.

2n = 623.

the closest agreement with measured RMR in adults aged ≥65 y
and to utilize these RMR equations to predict TEE against the
reference method of DLW, to determine the optimal equation for
estimating TEE in adults aged ≥65 y.

Of the 17 equations included in the analysis, the equations by
Ikeda, Livingston, and Mifflin had the closest agreement with
measured RMR in the main and subgroup analyses. Although
all equations showed proportional bias, Mifflin had the lowest
mean difference across the ≥65 y age cohort, with the Livingston
equation showing the least bias in the 65–79 y age group.
However, across all 3 of the equations tested, concerning the
mean difference and SD of the difference, along with the presence
of proportional bias, the variation that has been identified is
likely to be insignificant in the clinical context. In the absence of
any better-performing predictive equation, this analysis suggests
that any of these 3 equations can be used. Clinicians and policy
makers should beware of the proportional bias that applies as
participant energy expenditure increases.

Commonly cited equations (Schofield and Harris–Benedict)
showed proportional bias and overestimated RMR. This is not
surprising given that these equations were developed using very
limited participant numbers in the target older population. Only
2 of the equations currently in use were developed specifically
for older adults: the equations of Fredrix et al. (developed
from 40 healthy individuals aged 51–82 y) and Lührmann et
al. (developed from 286 free-living individuals aged 60–85
y). There was proportional bias for both equations and they
overestimated RMR.

The large SD of 1344–1401 kJ across the 3 equations is also
likely to be clinically relevant over time. A deficit or excess
of 1 SD at 1400 kJ/d would lead to notable weight change in
the clinical setting. Because of the proportional bias, analysis of
larger data sets may yield equations that provide more accurate
estimates of TEE than those currently in use. This will be

important for clinical practice given the forecasts for large
populations of older adults into the future.

The analysis of a large DLW database across the life span
undertaken by Black et al. (32) described the importance of
considering PAL rather than the addition of standard activity
energy expenditure. Because PAL provides a ratio of BMR rather
than a defined value, it incorporates a scaling factor for body
size/requirements. In the Black et al. analysis across the life span,
mean ± SD PAL for women aged 65–74 y was 1.62 ± 0.28,
whereas for those aged ≥75 y it was 1.48 ± 0.23. The figures
for men showed a similar pattern of decline into older age, with a
mean ± SD PAL for men aged 65–74 y of 1.61 ± 0.28, whereas
for those aged ≥75 y it was 1.54 ± 0.24. We suggest that the
higher mean PAL calculated within the present database both
for men and for women (including the subgroup analyses) may
be attributable to the addition of more recent studies, the larger
database size in the older age categories, and potentially a more
active aged population having been sampled.

All predictive energy equations rely on chronological rather
than biological age, itself a potential limitation on accuracy.
There is an increasing body of literature regarding the differences
between these measures of age, attributable to the hallmarks of
ageing: genomic instability, loss of proteostasis, mitochondrial
dysfunction, altered intercellular communication, deregulated
nutrient sensing, stem cell exhaustion, epigenetic alterations,
and telomere attrition (1). A range of clinical biomarkers
that reflect physiological systems that are measurable in a
clinical setting can predict accelerated aging (33). However, at
a population level it is unlikely that these biomarkers could
be measured for incorporation into predictive energy equations.
Ethnicity may be another variable that warrants consideration in
equation development, with limited analysis of large data sets to
understand differences in body composition and how these affect
energy expenditure. Rather, it seems likely that age, gender, and
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FIGURE 3 Bland–Altman analysis testing agreement between measured RMR and RMR derived from the 3 best-performing equations, Ikeda, Livingston,
and Mifflin (main analysis, n = 988; subgroup analysis: n = 733, 65–79 y; n = 255, ≥80 y). Solid lines indicate the means + 95% limits of agreement (bias).
Dotted line indicates the regression line, with P value and R2 for the regression line (proportional bias). RMR, resting metabolic rate.

anthropometric indexes will continue to provide the levers for
future predictive equation development.

The development of predictive equations into the future should
consider the importance of functional measures in addition to
those of chronological age. These measures may reduce the
proportional bias identified in this analysis, but importantly
should be bedside measures so that equations can be utilized in
clinical practice. Examples of functional measures that may be
considered are the Short Physical Performance Battery (34), a

validated and well-established measure for mobility disability,
the Mini Nutritional Assessment (35), and the SarQol, a
sarcopenia-specific health-related quality of life instrument (36).
Other more technical but accurate measures of body composition
collected within nutrition laboratory studies (e.g., fat and fat-free
mass) for older adults should also be considered.

One of the strengths of this analysis is the development
of a comprehensive participant-level database in older adults
who are free of significant chronic diseases. Several limitations

TABLE 3 Performance of equations against the assumptions of Bland–Altman analyses (Step 2)1

Study (n = 3)

One-sample
t test

P > 0.05

Mean of the
difference
(i.e., bias)2

SD of the
difference

Lower
LOA

Upper
LOA

Regression coefficient
P < 0.05

(proportional bias)

Ikeda et al. (23) No −175 1362 −2845 2495 Yes
Livingston and Kohlstadt (25) No −86 1344 −2720 2548 Yes
Mifflin et al. (27) Yes 24 1401 −2722 2770 Yes

1Main analysis, n = 1488. Assumptions of the Bland–Altman analysis are that the 1-sample t test P > 0.05 and that the regression coefficient P > 0.05
(i.e., no proportional bias). Bland–Altman analyses were conducted with TEE expressed as kJ/d; physical activity level was applied as 1.69 for men, 1.66 for
women. Normal distribution was tested for the following variables: TEE derived from equations (kJ/d); TEE measured (kJ/d); and difference of TEE
measured and TEE derived from equations (kJ/d). LOA, limit of agreement; TEE, total energy expenditure.

2A negative “mean of the difference” means the equation overestimated measured TEE and a positive “mean of the difference” means the equation
underestimated measured TEE.
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FIGURE 4 Bland–Altman analysis testing agreement between TEE measured using DLW and TEE derived from the Ikeda, Livingston, and Mifflin
equations (main analysis, n = 1488; subgroup analysis: n = 1184, 65–79 y; n = 304, ≥80 y). Solid lines indicate the means + 95% limits of agreement
(bias). Dotted line indicates the regression line, with P value and R2 for the regression line (proportional bias). DLW, doubly labeled water; TEE, total energy
expenditure.

should be acknowledged. These include the skew that existed for
variables included in the Bland–Altman analyses. Also, there was
a gender distribution with more women than men included, due
to the demographics of ageing generally, and the contribution of
the large data set of women from the WHI (13, 14). Another
potential bias was that much of the data were obtained from
developed countries (likely associated with the cost of running
DLW studies), which limits their generalizability. It should also
be noted that this analysis applies to only “healthy” older adults
and inclusion criteria did not mandate that individuals within
studies were required to be weight stable.

In conclusion, this analysis has identified that the 3 existing
predictive equations with the closest alignment to this large
international TEE database in older adults are the Ikeda,
Livingston, and Mifflin equations. We recommend that any of
these equations should be used in estimating the RMR and TEE
for the population aged ≥65 y. However, given the proportional
bias, the use of these equations has limitations particularly
when used for individuals with higher energy expenditures. In
the future, given the large population growth forecast in the
later decades of life and their illness profiles, greater accuracy

of predictive equations should be expected. The inclusion of
functional measures of ageing into new predictive equations for
older adults may lead to closer estimates of energy expenditure.
Future research efforts should also focus on the further refinement
of predictive equations that meet the requirements of subsets
of the aging population, such as those with various chronic
diseases.
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