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Background: Epithelial–mesenchymal transition (EMT) and the immune

microenvironment play important roles in the progression of gastric cancer

(GC), but the joint role of both in GC is not clear.

Methods: We identified EMT- and immune-related genes (EIRGs), and the

molecular subtypes of EIRGs were identified by unsupervised cluster

analysis. Then, we constructed an accurate EIRG_score model by using

differential genes of molecular subtypes. The correlation of EIRG_score with

prognosis, immune infiltration, gene mutation, chemotherapeutic drug

sensitivity, and immunotherapy response was comprehensively analyzed. In

addition, we investigated the biological function of EIRG_score via in vitro

experiments.

Results: A total of 808 GC patients were classified into twomolecular subtypes,

which were enriched in EMT and immune-related biological pathways and

significantly correlatedwith prognosis and immune infiltration. The constructed

EIRG_score had an important role in predicting prognosis and

immunotherapeutic response. The higher EIRG_score was associated with

worse prognosis, higher abundance of immunosuppressive cell infiltration,

lower immune checkpoint genes expression, lower tumor mutation burden,

microsatellite instability-high, lower chemotherapeutic drug sensitivity, and

poorer immunotherapeutic response.

Conclusion: EIRG_score may be used as a biomarker to assess prognosis and

guide precise treatment.
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Introduction

Gastric cancer (GC) is one of the most common digestive

tumors, ranking fifth in incidence and mortality rates worldwide

(Sung et al., 2021). The 5-year survival rate of GC is only

approximately 20% (Etemadi et al., 2020). The current

treatment for GC is mainly radical surgery, and the survival

rate of early GC is up to 90% after surgical resection, but the

treatment for middle and advanced GC is not optimistic, and

conventional chemotherapy does not achieve the desired effect

(Thrumurthy et al., 2015; Li et al., 2021). At present,

immunotherapy has achieved a series of promising results in

the treatment of GC (Coutzac et al., 2019). However,

immunotherapy needs to identify specific populations to be

more effective; therefore, we urgently need new biomarkers

that have a role in identification.

The tumor microenvironment (TME) is a heterogeneous

structure composed of tumor cells and immune cells, stromal

cells, and so on. Cells in the TME interact in a paracrine manner

with other cell types, which enables tumor cells to escape host

immune surveillance (Sadeghi Rad et al., 2021). The GC

microenvironment is mainly composed of stromal and

immune cells with immune escape characteristics, such as

cancer-associated fibroblasts (CAFs), tumor-associated

macrophages (TAMs), and T regulatory cells (Tregs)

(Seeneevassen et al., 2021); therefore, it is considered to be an

immunosuppressive tumor.

Epithelial–mesenchymal transition (EMT) is a process by

which epithelial cells acquire mesenchymal characteristics that

promote tumor invasion metastasis and drug resistance

(Pastushenko and Blanpain, 2019). Previous studies have

identified that EMT can affect TME. Epithelial tumors are

infiltrated with large numbers of cytotoxic CD8+ T cells, but

tumors with mesenchymal function contain Tregs cells and

TAMs and can polarize into M2 subtypes (Dongre et al.,

2017). EMT can also decrease the level of MHC class I on the

cell surface and escape the killing function of T cells (Garcia-Lora

et al., 2003) and can also induce cancer cells to express PD-L1,

causing immune escape (Noman et al., 2017). In addition, TME

components such as CAFs and TAMs can secrete growth factors

and cytokines such as transforming growth factor-β (TGF-β) and
interleukin-6 (IL-6), which can promote EMT (Dongre and

Weinberg, 2019). Thus, EMT and TME interactions affect

tumor progression.

In this study, we focused on the interaction between EMT

and immunity. First, we obtained EMT- and immune-related

genes (EIRGs) and classified GC patients into two molecular

subtypes according to EIRGs. Then, patients were classified into

two genetic subtypes based on differentially expressed genes

(DEGs) identified by molecular subtypes. We further

established the EIRG_score to predict overall survival (OS)

and explored the immune status of GC to predict the

response to immunotherapy.

Materials and methods

Data collection

We downloaded transcriptome data and clinical

information of GC patients through the Cancer Genome

Atlas (TCGA) database and the Gene Expression Omnibus

(GEO) database. RNA sequencing data in the form of fragments

per kilobase million (FPKM) and somatic mutation data in the

form ofMAF were downloaded via TCGA-STAD (n = 407), and

the FPKM form was converted to transcripts per kilobase

million form. We collected GSE84437 (n = 433) from the

GEO database and combined and normalized the two

datasets using the “ComBat” function of the “affy” and “sva”

packages of R.

Clustering analysis of EIRGs

In total, 1184 EMT-associated genes and 1959 immune-

related genes were obtained from previous studies and the

ImmPort database (https://www.immport.org/) (Gao et al.,

2021). We intersected the EMT- and immune-related genes

using a Venn diagram and subsequently performed

differential expression analysis (FC > 1, p < 0.05) using the

“limma” package to obtain 82 DEGs as EIRGs. The EIRGs were

subjected to unsupervised clustering analysis by the

“ConsensusClusterPlus” package. Principal component

analysis (PCA) was then performed using the “stat” package

to investigate the variability of different molecular subtypes.

Detailed data are available in Supplementary Table S2.

Gene set variation analysis

We downloaded the “h.all.v7.4. symbols” geneset from the

GSEA-MSigDB database (http://www.gsea-msigdb.org/) and

performed Gene set variation analysis (GSVA) to explore the

biological role of different clusters using the “GSVA”

package. The cutoff was logFC > 0.1 and adj.P.Val < 0.05,

and GO and KEGG analyses were performed using the

“clusterProfiler” package (Yu et al., 2012), with p < 0.05 as

a filtering condition.

Immune cell infiltration analysis

To investigate different molecular subtypes of TME, we

performed immune cell infiltration analysis using ssGSEA and

the “CIBERSORT” algorithm (Newman et al., 2015) to assess the

relative abundance of M2 macrophages, T, myeloid-derived

suppressor cells (MDSCs) and other immune cells. To ensure

the accuracy of the results, we only included results with p < 0.05.

Frontiers in Pharmacology frontiersin.org02

Zhang et al. 10.3389/fphar.2022.958070

https://www.immport.org/
http://www.gsea-msigdb.org/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.958070


Gene enrichment analysis

GO and KEGG enrichment analysis can be used as a way to

explore gene function. In this study, we divided the expression of

KIF2C into high- and low-risk groups according to the median

and then performed enrichment analysis using the

“clusterprofiler” (Yu et al., 2012) in R.

Differentially expressed gene analysis of
molecular subtypes of EIRGs.

We obtained 5,503 DEGs by using the “limma” package for

differential analysis of different molecular subtypes with a

screening criterion of p < 0.001. We obtained 1,669 genes

associated with prognosis by univariate Cox regression of

DEGs with p < 0.05 as the screening criterion. Gene

clustering analysis was then performed using the

“ConsensusClusterPlus” package to obtain GeneCluster.

Construction and validation of the
EIRG_score model

We constructed a prognostic model consisting of 18 genes

using Lasso regression and multivariate Cox regression of

prognosis-related DEGs with the “glmnet” package of R.

EIRG_score was calculated using the following equation: Risk

score = (exp gen1 × coef gen1) + (exp gen2 × coef gen2) +... +

(exp gen18 × coef gen18), where exp is the value of gene expression

and coef is the estimated regression coefficient. Patients were

classified into high- and low-risk groups by using the median

of the risk score. Survival analysis was performed using the

“survival” package and the “survminer” package. ROC curves at

1, 3, and 5 years were plotted using the “timeROC” package.

Constructing and evaluating nomogram

The nomogram can be used for multiple indicators to predict

disease progression (Iasonos et al., 2008), and we constructed the

nomogram by integrating clinicopathological data and

EIRG_score through the “rms” package to predict 1-, 3-, and

5-year survival rates. Calibration curves were used to assess the

agreement of the nomogram with the actual situation.

Assessing the relationship between
EIRG_score and immunotherapy response

Tumor immune dysfunction and exclusion (TIDE) algorithm

predicts the response of a single sample or subtype to immune

checkpoint inhibitors (ICIs) (Jiang et al., 2018), and

immunophenoscores (IPS) can predict immunotherapy response.

TIDE scores can be obtained from http://tide.dfci.harvard.edu/, and

immunotherapy cohort IPS data can be obtained from the TCIA

database (http://tcia.at/). The correlation of EIRG_score with TIDE

and IPS was plotted by the “ggpubr” package.

In vitro experimental validation

All cell lines in this study were obtained from the Laboratory

of Oncology, Tongji Hospital, Huazhong University of Science

and Technology. GES-1, BGC-823, and SGC-7901 were cultured

using RPMI-1640 complete medium. qRT-PCR was used to

verify the mRNA expression levels of the cell lines, siRNA

transfection was used to knock down AKR1B1, and Cell

Counting Kit 8 (CCK8) and transwell assay were used to

study proliferation and migration. The above-detailed

procedures are shown in Supplementary Table S1. All

experiments were performed with three biological replicates.

Immunohistochemistry

To verify the protein level expression of AKR1B1, we

collected 5 GC tissues and five normal tissues from our

hospital for immunohistochemical analysis. Tumor sections

were first baked, subsequently desliced in xylene, and

hydrated in graded ethanol; after retrieval in heat-sensitive

citrate antigen, tissue sections were incubated overnight at 4°C

℃with the primary antibody to AKR1B1 (YT0194, Immunoway,

USA) and for 60 min at 25°C with horseradish

peroxidase–conjugated antibody. Staining was performed by

incubation with diaminobenzidine. At last, these treated tissue

sections were observed under a microscope.

Statistical analysis

All statistical analyses were performed using R software

(version 4.1.0). The Wilcoxon test was used for comparison

between the two groups. Survival curves for each subgroup

were plotted using the Kaplan–Meier plotter. Correlation

coefficients were calculated using Spearman’s analysis. p <
0.05 was considered to be statistically significant.

Results

Identification of molecular subtypes of
EIRGs in GC

After obtaining 1184 EMT- and 1959 immune-related genes,

we obtained 199 intersecting genes associated with both
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immunity and EMT using a Venn diagram and subsequently

performed differential expression analysis on the 199 intersecting

genes to obtain 82 EIRGs (Supplementary Figure S1). To deeply

investigate the expression characteristics of EIRGs in GC, we

performed an unsupervised cluster analysis on GC patients (n =

808) based on EIRGs. When k = 2, the boundaries of the

consistency matrix were clear (Figure 1A), and combined with

the results of the cumulative distribution function (CDF)

(Figure 1B), we took k = 2 as the optimal number of clusters

and divided the cohort into two subtypes (EIcluster), namely,

group A (n = 409) and group B (n = 399). By KM survival analysis

(Figure 1C), we found that group A had a longer OS than group B

(p < 0.05). To verify the stratification effect, we performed PCA

analysis, and the results indicated a significant difference between

the two subtypes and a good stratification effect (Figure 1D).

Figure 1E shows the expression of EIRGs in the subtypes and the

relationship with clinicopathological features.

GSVA analysis of different molecular
subtypes of EIRGs and immune infiltration
analysis

Through a GSVA analysis study, we found that subtype A

was mainly enriched in EMT, interferon-gamma response,

IL6 JAK STAT3 signaling, TNFA signaling via NFKB, and

other biological activities (Figure 2A). To investigate the role

of molecular subtypes in the immune microenvironment of GC,

we evaluated the TME score of molecular subtypes by an estimate

algorithm. A higher TME score means more abundant immune

cells or stromal cells in TME, and the results showed that subtype

A had a higher TME score than subtype B (Figure 2B). We then

performed immune cell infiltration analysis of the subtypes by

ssGSEA, and the results showed that subtype A had more

abundant immune cell infiltration than subtype B, including

MDSCs, Tregs, and macrophages (Figure 2C).

FIGURE 1
Construction of molecular subtypes of epithelial–mesenchymal transition- and immune-related genes (EIRGs) (A) consensus matrix heatmap
defining two clusters (k = 2) and their correlation area. (B) cumulative distribution function graph. (C) survival curves of molecular subtypes. p-values
are calculated using the log-rank test. (D) principal component analysis (PCA) between the two subtypes. (E) Clinicopathological characteristics and
differences in expression levels of the two different subtypes.
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Clustering analysis of genes related to
molecular subtypes of EIRGs

We obtained 5,503 differential genes by using the limma

package and enriched the DEGs via GO and KEGG analyses.

GO analysis indicated that EIRGs are involved in the regulation

of immune functions (Figure 3A), and KEGG analysis indicated

that EIRGs are implicated in tumor- and immune-related

pathways; as seen, EIRG has a vital function in tumor

progression and immune regulation (Figure 3B). We

subjected the DEGs to unsupervised cluster analysis, and the

boundaries of the consistency matrix were clear when k = 2

(Figure 4A). Combined with the CDF results, we divided the

cohort into two gene subtypes (GeneCluster) (Figure 4B). KM

survival curves showed that group A had worse OS than group

B (p < 0.001) (Figure 4C), and PCA results also showed

significant differences between the two subtypes (Figure 4D).

We then performed GSVA and immune infiltration analysis on

the subtypes and found that group A was enriched in EMT and

KRAS signaling, whereas group B was enriched in

MTORC1 signaling, oxidative phosphorylation, and other

biological activities (Figure 5A); the two subtypes were

significantly correlated with immune infiltration, and the

proportion of immune cells was greater in subtype A than in

subtype B (Figure 5B).

Construction and validation of the
prognostic EIRG_score

The EIRG_score was constructed by molecular subtyping of

prognostic DEGs, and 30 genes were identified using Lasso

FIGURE 2
(A) Gene set variation analysis (GSVA) between two different subtypes, where red and blue represent activating and inhibiting pathways,
respectively (B) correlation of molecular subtypes with tumor microenvironment score. (C) immune cell infiltration analysis of molecular subtypes.
*p < 0.05, **p < 0.01, ***p < 0.001. p-values are calculated using the Wilcoxon test.
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regression analysis (Supplementary Figure S2) We then

performed a multivariate Cox regression analysis on the

30 prognosis-related genes and finally obtained 18 hub genes

for the construction of the EIRG_score model. The formula for

the EIRG_score is as follows: The EIRG_score = (0.1921 ×

AKR1B1 exp.) + (−0.5852 × TRIM69exp.) + (0.1580 ×

FSTL3 exp.) + (0.3813 × PRDM6 exp.) + (0.6983 ×

SLC39A4 exp.) + (0.2299 × SENP7 exp.) + (0.2981 ×

DDIT4 exp.) + (0.5647 × MAN2A1 exp.) + (0.4436 × GLP2R

exp.) + (0.2084 × EDN1 exp.) + (−0.3576 × EAF2 exp.) +

(−0.3131 × FDX1 exp.) + (0.3803 × CNGA3 exp.) +

(−0.4340 × ADAT3 exp.) + (−0.6221 × SH3BP2 exp.) +

(0.8502 × S100Z exp.) + (−0.3144 × TBX3 exp.) + (−0.2143 ×

FRMD3 exp.). We divided the patients into training cohort (n =

402) and test cohort (n = 402) by using the “caret” package. We

divided the patients into high- and low-risk groups using the

median of EIRG_score in the training cohort. Detailed clinical

data are available in Supplementary Table S3. The distribution of

EIRG_score with EIRG molecular subtypes and GeneCluster is

shown in Figure 6.

The survival curve indicated that in all groups, the high-risk

group had a worse prognosis than the low-risk group (p < 0.001)

(Figures 7A–C). In addition, the predicted 1-, 3-, and 5-year

survival AUC values for EIRG_score were 0.719, 0.806, and

0.820 in the training cohort and 0.673, 0.730, and 0.733 in the

all cohort, respectively (Figures 7D–F). The risk curve of

EIRG_score shows that the score is negatively correlated with

prognosis.

We downloaded the GSE62254 database (n = 300) as an

external validation and calculated the score using the formula

of EIRG_score from the training cohort. The patients were divided

into two groups of high and low risks according to themedian, and

the survival analysis showed that the prognosis of the high-risk

group was worse than that of the low-risk group (Supplementary

Figure S3A). Using ROC curve analysis, the AUC values of

EIRG_score for predicting 1-, 3-, and 5-year survival were

0.627, 0.687, and 0.651, respectively (Supplementary Figure

S3B). The results indicated that EIRG_score had a positive

effect in predicting the survival of GC patients.

Construction and validation of a
nomogram

Tomore conveniently predict the prognosis of GC patients, we

constructed a nomogram based on EIRG_score and

clinicopathological characteristics (age, T-stage, N-stage, etc.) to

predict the 1-, 3-, and 5-year OS rate of GC patients (Figure 8A).

The calibration curves showed that the actual observed results were

well consistent with the predicted results (Figure 8B). The ROC

curve showed that the AUC values of the 1-, 3-, and 5-year OS of

the nomogram were 0.711,0.762, and 0.774, respectively

FIGURE 3
Enrichment analysis of molecular subtypes of DEGs. (A) gene ontology analysis (B) Kyoto encyclopedia of genes and genomes analysis.
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(Figure 8C), which indicated that the predictive efficacy of the

nomogram was satisfactory.

Immune infiltration analysis of EIRG_score

We analyzed the relationship between EIRG_score and

22 immune cell infiltrations by the cibersort algorithm. The

results showed that the high EIRG_score group had a higher

abundance in Tregs, M2 macrophages, mast cells resting, and

lower in M1 macrophages (Figure 9A). Then, we performed

correlation analysis and EIRG_score was positively correlated with

Tregs and M2 macrophages, which promote immunosuppression,

and negatively correlatedwithM1macrophages, which inhibit tumor

progression (Figure 9B). It can be seen that the EIRG_score correlates

with the immunosuppressive microenvironment.

Correlation of EIRG_score with mutations

Tumor mutational burden (TMB) is considered to be a

biomarker to predict a good response to immunotherapy.

FIGURE 4
Construction of gene subtypes of EIRGs. (A) consensus matrix heatmap defining two clusters (k = 2) and their correlation area. (B) distribution
function graph. (C) Survival curves of molecular subtypes. (D) PCA between the two subtypes.
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FIGURE 5
Immune infiltration analysis of gene subtypes (A) GSVA analysis of gene subtypes, where red and blue represent activation and suppression
pathways, respectively. (B) immune cell infiltration analysis of gene subtypes. *p < 0.05, **p < 0.01, ***p < 0.001. The p-values are calculated using the
Wilcoxon test.
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Therefore, we studied the correlation between EIRG_score and

TMB, and we found that TMB was lower in the high score group

than in the low score group (Figure 10A). As shown in

Figure 10B, the low EIRG_score + high TMB group had the

best prognosis (p < 0.001), suggesting that EIRG_score may be

negatively correlated with immunotherapy response.

Furthermore, we performed somatic mutation analysis for the

high and low score groups by the “maftools” package, and we

found that the mutation frequency in the high EIRG_score group

(83.07%) was lower than that in the low EIRG_score group

(93.64%), and the top three mutated genes in both groups were

TTN, TP53, and MUC16(Figures 10C–D).

EIRG_score predicts immunotherapy
response

First, we analyzed the correlation between EIRG_score and

immune checkpoint genes (CD274, CTLA4, LAG3, and PDCD1)

and found that ICP genes expression was higher in the low

FIGURE 6
Distribution of EIRG_score. (A) differences in EIRG_score between different molecular subtypes. (B) differences in EIRG_score between
different gene subtypes. (C) alluvial diagram of the distribution of different EIRG_score and survival outcome subtypes.
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EIRG_score group (Figure 11A). The results of the TIDE algorithm

showed that the high EIRG_score group had a higher TIDE score,

suggesting that the high EIRG_score may not respond well to ICB

(Figure 11B). In addition, we included immunotherapy groups in the

TCIA database for in-depth analysis, and the results showed that the

low EIRG_score group had better treatment outcomes than the high

EIRG_score group in the single anti-CALT4 treatment group, the

single anti-PD1 treatment group, and the simultaneous anti-CALT4

and PD1 treatment group (Figures 11C–E). Moreover, the

proportion of microsatellite instability-high (MSI-H) was lower in

patients in the high EIRG_score group (11%) than in the low

EIRG_score group (26%) (Figure 11F).

At last, we investigated the correlation between EIRG_score

and chemotherapeutic drug sensitivity by using the

“pRRophetic” package. It was found that the IC50 of

chemotherapeutic drugs such as cyclopamine, gemcitabine,

paclitaxel, and lenalidomide were higher in the high

EIRG_score group than in the low EIRG_score group

FIGURE 7
Prognostic assessment of EIRG_score. (A) Kaplan–Meier (KM) survival analysis of training cohort, (B) test cohort, (C) all cohorts. (C) receiver
operating characteristic (ROC) curve analysis of training cohort, (D) test cohort, and (E) all cohorts. (F) Risk score distribution and survival scatter plot
of (G) training cohort, (H) test cohort, and (I) all cohorts.
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(Supplementary Figure S4), indicating that the high EIRG_score

group may be resistant to these drugs.

AKR1B1 affects GC cell proliferation and
migration

We explored the biological function of EIRG_score by

in vitro experiments, and we selected AKR1B1, which has

barely been studied in GC, for our study. The UALCAN

database (Chandrashekar et al., 2017) and IHC results

revealed that AKR1B1 was highly expressed in GC tissues and

associated with poor prognosis (Supplementary Figure S5). qRT-

PCR results showed that AKR1B1 was highly expressed in

GC cell lines, which was consistent with the database results

(Figure 12A). Then, we performed AKR1B1 knockdown by

transfection of siRNA (Figure 12B), and we discovered

through CCK-8 and transwell assays that knockdown of

FIGURE 8
Construction and validation of nomogram. (A) nomogram for predicting 1-, 3-, and 5-year OS in patients with colorectal cancer in the training
group. (B) calibration curves with a nomogram. (C) ROC curve analysis of the nomogram.
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AKR1B1 significantly inhibited GC cell proliferation and

migration (Figures 12C,D). It indicates that AKR1B1 plays a

procancer role in GC.

Discussion

Multiple factors are influencing GC development and

progression, for example, EMT can promote GC invasion,

metastasis, and resistance to chemotherapy. Moreover, the

microenvironment of GC can affect tumor progression.

Focusing on a single factor alone may not be sufficient to

provide a comprehensive understanding of GC. We included

the combination of EMT and the immune microenvironment in

our study for the first time to explore the combined effects on GC

prognosis and immunotherapy.

We collected 1184 EMT- and 1959 immune-related genes

from databases and previous studies and identified DEGs

through the TCGA database, obtaining 82 overlapping

intersection genes as EIRGs. We classified GC patients into

two molecular subtypes by EIRGs, and the prognosis of

subtype A was worse compared with subtype B. Moreover,

there were significant differences between the two subtypes in

TME, with subtype A having a higher TME score than subtype

B. EIRGs molecular subtypes are enriched in biological

pathways such as EMT, IL6-JAK-STAT3 signaling, IL2-

STAT5 signaling, and TGF-β signaling, and previous

studies have shown that CAFs in GC cells enhance EMT by

secreting IL-6 to activate the JAK2/STAT3 pathway in GC

cells (Wu et al., 2017). MDSCs and Tregs are more abundant

in subtype A than in subtype B. Tregs can suppress CD8+ T cell

activation and also secrete IL-10 and TGF-β to inhibit tumor-

FIGURE 9
Immune infiltration analysis of EIRG_score. (A) abundance of 22 types of infiltrating immune cells in EIRG_score. Red represents the high
EIRG_score group and blue represents the low EIRG_score group. (B) correlation analysis of EIRG_score with M1 macrophages, M2 macrophages,
and Tregs. Correlation analysis using the Spearman correlation test.
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specific T cell infiltration and function, thereby causing

immunosuppression (Ahrends and Borst, 2018). MDSCs

are immature immunosuppressive myeloid cells that can

inhibit CD8+ T cell function through the expression of PD-

L1 and CTLA-4 and can induce EMT (Oya et al., 2020),

suggesting that subtype A has an immunosuppressive

profile (cold tumors) and subtype B has an immune-

activating profile (hot tumors).

We performed a differential analysis of the molecular

subtypes of EIRG, resulting in two gene subtypes. Genotyping

was significantly correlated with the prognosis and immune

infiltration of GC. To better assess the prognosis and

immunotherapeutic response of GC, we constructed an

EIRG_score based on the differential genes of EIRGs

molecular subtypes and explored its predictive ability.

Compared with the low EIRG_score group, the high

EIRG_score group had a worse prognosis, with subtype A,

characterized by cold tumors, associated with a higher

EIRG_score, and subtype B, characterized by hot tumors,

associated with a lower EIRG_score.

Then, we performed an immune infiltration analysis of

EIRG_score and found that Tregs in the high EIRG_score

group had an increased abundance of M2 macrophage

infiltration, whereas in the low EIRG_score group,

M1 macrophage infiltration abundance was increased. The

correlation results showed that EIRG_score was positively

FIGURE 10
Mutation analysis of EIRG_score. (A) tumormutational burden (TMB) of different EIRG_score groups. (B) KM survival analysis of EIRG_score and
TMB. p-values are calculated using the log-rank test. Correlation of mutations between (C) high- and (D) low-risk group. Each column represents an
individual patient. The numbers on the right indicate the mutation frequency of each regulator. The bars on the right show the proportion of each
mutation type.
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correlated with Tregs and M2 macrophages and negatively

correlated with M1 macrophages. Macrophages are mainly

divided into M1 and M2 types. M1 macrophages can kill

tumors through both antibody-dependent cell–mediated

cytotoxicity and direct-mediated cytotoxicity and therefore

have tumor suppressive effects (Pan et al., 2020). By contrast,

M2macrophages can promote tumor proliferation, invasion, and

angiogenesis and are associated with EMT, which can promote

tumor metastasis and cause poor patient prognosis (Rihawi et al.,

2021). This may explain the worse prognosis in the high

EIRG_score group.

A significant part of immunotherapy is ICIs. However, the

majority of patients receiving ICIs do not benefit from them (Sha

et al., 2020). Therefore, we wanted to explore whether

EIRG_score could be used as a biomarker to predict the

efficacy of immunotherapy.

Because of PDL1 expression, TMB and MSI-H are

considered to be biomarkers that can predict the efficacy of

immunotherapy (Rizzo et al., 2021). Therefore, we explored the

correlation between EIRG_score and ICP genes, TMB andMSI-

H. We found that the low EIRG_score group had higher ICP

gene expression levels, higher TMB, and higher MSI-H

FIGURE 11
EIRG_score predicts immunotherapy response. (A) expression of immune checkpoint genes in high and low EIRG_score groups. (B) correlation
of EIRG_score with tumor immune dysfunction and exclusion score. (C–E) correlation between EIRG_score and IPS. (F) correlation of EIRG_score
with MSI. *p < 0.05, **p < 0.01, ***p < 0.001.
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proportion than the high EIRG_score group. Moreover, we

combined TMB and EIRG_score for prognostic analysis and

found that TMB-high + low EIRG_score had the best prognosis.

In addition, we calculated the TIDE score of GC using the TIDE

algorithm, and the TIDE scores were higher in the high

EIRG_score group, indicating that the high EIRG_score had

a poorer response to immunotherapy; in IPS assessment, the

IPS scores were higher in the low EIRG_score group in any

treatment group, suggesting that the low EIRG_score

responded better to immunotherapy. The above results

suggest that EIRG_score can be used as a biomarker to

identify and screen patients for immunotherapy, and the

lower the EIRG_score value, the better the response of GC

patients to immunotherapy.

At last, we examined the correlation between EIRG_score

and chemotherapeutic drug sensitivity and showed that

EIRG_score was positively correlated with the IC50 of

several drugs, including paclitaxel. Paclitaxel is a first-line

chemotherapy drug that exerts its anticancer effects by

inhibiting cell cycle progression, and it was found that

paclitaxel can inhibit Tregs, which can reverse

immunosuppression (Zhu and Chen, 2019), suggesting that

the low EIRG_score group may benefit from it. Previous studies

have found that AKR1B1 plays a major role in tumor

progression, and the mechanisms of action of

AKR1B1 include participation in EMT and immune

regulation. In addition, AKR1B1 has regulatory effects on

the synthesis of reactive oxygen species and prostaglandins

(Khayami et al., 2020). Moreover, AKR1B1 expression was

higher in GC patients with poorer OS prognosis, suggesting

that AKR1B1 is associated with poorer prognosis in GC (Xiong,

2021). In the present study, we found that AKR1B1 could

promote GC cell proliferation and migration, which is

consistent with the results of previous studies.

There are still some limitations in our study; on the one hand,

it is only a retrospective study of data from public databases, and

more prospective and multicenter clinical studies are needed to

further confirm our results. On the other hand, more in vivo and

in vitro experiments are needed to investigate the molecular

mechanisms underlying the effects of EIRGs.

Conclusion

For the first time, we included EMT- and immune-related

genes jointly in our study, comprehensively analyzed the role of

FIGURE 12
Validation of the biological function of AKR1B1 (A) quantitative polymerase chain reaction (qPCR) displayed upregulation of AKR1B1 in gastric
cancer (GC) cells compared to normal cell line (GES1). Results represent mean ± SD; n = 3. ***p < 0.001; two-tailed t-test. (B) validation of
knockdown efficiency by qPCR. Results representmean± SD. n= 3. ***p < 0.001; two-tailed t-test. (C) AKR1B1 siRNA displayed reduced proliferation
of BGC823 cell. Results representmean± SD; n= 3; ***p < 0.001; two-tailed t-test. (D) AKR1B1 knockdown inhibitedmigration of BGC823 cells.
Results represent mean ± SD; n = 3. **p < 0.01; ***p < 0.001; two-tailed t-test.
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EIRGs in GC, and constructed the EIRG_score model, which can

be used as a biomarker for predicting mutation, prognosis, and

response to immunotherapy, providing a new thought for precise

treatment of GC.
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