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Heatstroke predictions by machine learning,
weather information, and an all-population registry
for 12-hour heatstroke alerts
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This study aims to develop and validate prediction models for the number of all heatstroke
cases, and heatstrokes of hospital admission and death cases per city per 12 h, using multiple
weather information and a population-based database for heatstroke patients in 16 Japanese
cities (corresponding to around a 10,000,000 population size). In the testing dataset, mean
absolute percentage error of generalized linear models with wet bulb globe temperature as
the only predictor and the optimal models, respectively, are 43.0% and 14.8% for spikes in
the number of all heatstroke cases, and 37.7% and 10.6% for spikes in the number of
heatstrokes of hospital admission and death cases. The optimal models predict the spikes in
the number of heatstrokes well by machine learning methods including non-linear multi-
variable predictors and/or under-sampling and bagging. Here, we develop prediction models
whose predictive performances are high enough to be implemented in public health settings.
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ARTICLE

n alert system for heatstroke risk is in urgent need as the

mean annual occurrence of extremely hot days in Japan

will possibly increase by 1.8 times under a global warming
level of 2 °C above pre-industrial levels!. Heatstroke, one of the
most threatening heat-related illnesses, is characterized by a core
temperature of more than 40°C (104°F) and central nervous
system abnormalities2, and is strongly associated with weather
conditions, especially extremely high temperature and high
humidity3=>. In fact, serious cases of the heat-related illnesses
including heatstroke frequently occurred in 2019 in France, Bel-
gium, and Germany, and in 2018 in Japan, which was caused by
extremely hot weather and heat waves!©. Additionally, Japan had
many days of extremely high temperature (ie., daily maximum
temperatures exceeding 35 °C) in 2018 (Supplementary Fig. 1)L.
Accurate predictive values of the number of heatstroke patients
must be necessary and can serve as a foundation to optimize
medical resources such as assignment of medical staff and
ambulances in emergency medicine and public health settings. An
alert system based on accurate predictive values can enable us to
inform citizens of daily risks of heatstroke and support self-
management for high-risk citizens.

Wet bulb globe temperature (WBGT) has been commonly used
to assess hot thermal environments and risks of heat-related ill-
nesses including heatstroke’-%, though WBGT has several
limitations”. WBGT cannot precisely stratify the risk of heat-
stroke incidence in July and August in Japan because there are
typically many days on which the maximum WBGT within a day
is between 28 °C and 31 °C, and higher than 31 °C, respectively,
corresponding to “severe warning (e.g., avoid direct sunlight
outdoors)” and “threat of heat disorder (e.g., avoid outdoor
activity, and stay in a cool room)”!0, Additionally, WBGT does
not reflect heat strain adequately when the evaporation of sweat is
restricted by high humidity or low air movement’. Considering
these limitations of WBGT, multiple variables related to heat
stress should be used to assess heatstroke risks accurately’. There
are a few studies using multiple weather information to develop
prediction models for heat-related illnesses including
heatstroke! 12, However, the previous models did not consider
the severity levels of the heatstroke. Note that it is key to predict
the days when the number of heatstrokes spike in public health
settings, though this has not been well investigated yet.

Thus, the present study aimed to develop and validate pre-
diction models for the number of all heatstroke cases and heat-
strokes of hospital admission (i.e., moderate and severe cases) and
death cases per city per 12 h in Japan by using multiple weather
information and a population-based database for all heatstroke
incidences in 16 Japanese cities corresponding to around a
10,000,000 population size. Here, we report prediction models for
the number of heatstroke cases, of which predictabilities were
high enough to be implemented in public health settings.

Results

Characteristics of the training and testing datasets. We sum-
marized the characteristics of the present training and testing
datasets in Table 1. Incidence rates of all heatstrokes (95% con-
fidence interval [CI]) between June and September were 37.5
(36.8-38.2) and 74.4 (72.7-76.1) per 100,000 people in the
training and testing datasets, respectively. Those of heatstrokes of
hospital admission and death cases were 11.0 (10.6-11.3) and
19.6 (18.8-20.5) in the training and testing datasets, respectively.
Median (minimum to maximum) ambient temperatures were
25.52°C (10.18-33.58) and 26.27 °C (16.01-35.17) in the training
and testing datasets, respectively. Based on WBGT, there were
64.2% and 62.7% days for “Severe warning (28-31 °C)” in August
of the training and testing datasets; furthermore, there were

24.5% and 30.2% for “Threat of heat disorder (higher than 31 °C)
in August of the training and testing datasets. Additionally, mean
values of daily maximum temperature were higher in 2018
compared to between 2015 and 2017, which was especially
unusual in July (Supplementary Fig. 1). We also showed mean
values of temperature, relative humidity, and WBGT in each of
the 16 cities in the training and testing datasets (Supplementary
Table 1). For the location of the 16 cities, please see Supple-
mentary Fig. 2.

Prediction models for all heatstroke cases. We developed pre-
diction models for the number of all heatstrokes by the gen-
eralized linear model (GLM) using WBGT only as a classic
statistical model, and by machine learning models including
GLM, generalized additive model (GAM), random forest, and
extreme gradient boosting decision tree (XGBoost) using multi-
variable predictors in the training dataset (Table 2). Among the
developed models, the GAM was the best model based on the
least root-mean squared error (RMSE). RMSEs of the GLM using
WBGT only, the GLM using multivariable predictors as linear
terms, and the GAM using multivariable predictors as non-linear
terms were, respectively, 3.73, 2.92, and 2.47 in the testing dataset
(Table 2). These results are also graphically shown in Fig. 1. The
observed number of all heatstroke cases was strongly correlated
with the predicted number by those prediction models (Supple-
mentary Fig. 3). RMSE of the best GAM was also lower than
RMSEs of the random forest (3.51 in the testing) and the
XGBoost (3.28 in the testing). In the best GAM, all predictors
were selected as the optimal predictors’ set by recursive feature
elimination (RFE).

Based on the results, we also developed 16 GAMs for city-
specific prediction as city-specific prediction models. RMSE of the
total 16 GAMs for city-specific prediction (i.e, summarized
across all cities), were higher compared with the GAM not
specific to each city (5.25 versus 2.47 in the testing, Table 2).
Additionally, RMSEs of the 16 GAMs for city-specific prediction
were similar in the training and testing data of almost all cities,
but higher in the testing data of Kobe and Sakai, compared to the
GAM not specific to each city (Supplementary Table 2). Thus, we
considered that the GAM not specific to each city was better than
the 16 GAMs specific to each city. Additionally, the GAM not
specific to each city had no serious heterogeneity.

However, the best GAM had low accuracy in predicting spikes
in the number of all heatstroke cases (Fig. 1). In fact, its mean
absolute percentage error (MAPE) and total absolute percentage
error on days when the number of all heatstroke cases spiked
were, respectively, 18.0% and 8.3% in the training, and 19.7% and
21.9% in the testing datasets (Table 2). Thus, we applied the
under-sampling and bagging techniques to the best GAM.
Compared with the best GAM and the XGBoost model, the best
under-sampling XGBoost model had better accuracy in predict-
ing spikes in the number of all heatstroke cases based on lower
MAPE (13.38% in the testing) and lower total absolute percentage
error (6.94% in the testing) in Table 3 and Fig. 2. However, the
best under-sampling XGBoost model had bad prediction accuracy
at normal times other than where spikes occur (Fig. 2), which we
anticipated a priori. Thus, we made the hybrid model consisting
of the best GAM and the best under-sampling XGBoost model, of
which RMSE, MAPE, and total absolute percentage error were,
respectively, 2.97, 14.8%, and 14.2% in the testing dataset
(Table 3). Additionally, its prediction accuracy on days when
the number of all heatstrokes cases spiked was also good (Fig. 2).
The observed number of all heatstroke cases was strongly
correlated with the predicted number by those prediction models
(Supplementary Fig. 4). Additionally, city-specific RMSEs of the
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Table 1 Characteristics of present datasets in 16 Japanese cities? between June and September from 2015 to 2018.

Incidence rate (95% Cl) between June and September per 100,000 persons
Heatstrokes of hospital admission (i.e., moderate and severe cases) and death cases
Total number of heatstrokes, n
Incidence rate (95% Cl) between June and September per 100,000 persons
Weather information, median (minimum, maximum)b per 12 h

Temperature, °C

Heat index, °C

WBGT, °C

Relative humidity, %

Precipitation previous 12 h, mm

Downward solar radiation, kW,/m?

Wind speed, m/s

37.5 (36.8-38.2)

3318
11.0 (10.6-11.3)

25.52 (10.18-33.58)
25.86 (10.18-38.76)
23.72 (9.22-30.56)
73.2 (35.15-99.79)
0.01 (0-212.78)
0.02 (0-0.71)

2.5 (0.44-11.69)

Dataset Training dataset Testing dataset
Year 2015-2017 2018
Characteristics of heatstroke patients
Heatstrokes with all cases

Total number of heatstrokes, n 11349 7513

74.4 (72.7-76.1)

1981
19.6 (18.8-20.5)

26.27 (16.01-35.17)
26.91 (16.01-40.93)
2413 (13.78-31.31)
70.96 (38.51-99.75)
0 (0-391.56)

0.02 (0-0.69)

2.62 (0.33-14.48)

Days warned by WBGT guides to prevent heatstrokes in daily life, %
July
Warning (25-28 °C)
Severe warning (28-31°C)
Threat of heat disorder (higher than 31°C)
August
Warning (25-28 °C)
Severe warning (28-31°C)
Threat of heat disorder (higher than 31°C)

14.8 10.1
76.0 427
6.0 431
1.2 6.9
64.2 62.7
245 30.2

Cl confidence interval, WBGT wet bulb globe temperature.

@ The 16 cities were Osaka, Toyonaka, Mino, lkeda, Suita, Sakai, Kobe, Ashiya, Nishinomiya, Amagasaki, Akashi, Himeji, Kyoto, Uji, Muko, and Nagaokakyo that located in the Kinki region in Japan.
b Median (minimum, maximum) values were based on mean values per city per 12 h (6:00 am-5:59 pm, and 6:00 pm-5:59 am).

Table 2 Prediction performances of prediction models for the number of all heatstrokes among 6 models?.

GLM using WBGT only GLM GAM RF XGBoost Consolidation of 16 GAMs
specific to each city?
The number of all heatstrokes
Overall predictive accuracies per city per 12 h
RMSE in training 173 1.41 137 0.73 1.09 1.27
RMSE in testing 3.73 2.92 2.47 3.51 3.28 525
Predictive accuracies on days when the number of heatstrokes spiked®
MAPE per 1-day (%) in training 22.6 18.4 18.0 8.3 1.9 16.8
MAPE per 1-day (%) in testing 43.0 271 19.7 32.0 28.5 19.0
Total absolute percentage error (%) in training 18.8 7.3 83 55 59 7.5
Total absolute percentage error (%) in testing 48.8 30.5 219 37.2 31.9 19.7

MAPE mean absolute percentage error.
aSmaller RMSE, MAPE, and total absolute percentage error show better predictabilities.
bPrediction models specific to each of 16 cities were developed for city-specific prediction.

divided by observed values.

GLM generalized linear model, GAM generalized additive model, RF random forest, XGBoost extreme gradient boosting decision tree, WBGT wet bulb globe temperature, RMSE root-mean-square error,

“MAPE and total absolute percentage error were calculated after observed and predicted values were summed up per day (for MAPE) per the entire period (for total absolute percentage error) on days
when the number of all heatstrokes was 80th percentile (corresponding to 53.6 in 2015, 57.8 in 2016, 60.6 in 2017, and 89.8 in 2018) and over in each year. MAPE is a mean value of absolute errors

hybrid model are shown in Supplementary Table 2, similar to
RMSEs of the 16 GAMs specific to each city. Thus, the hybrid
model had no serious heterogeneity.

SHapley Additive exPlanations (SHAP) values of the best
hybrid model are summarized in Fig. 3 to show importance of its
predictors. Predictors that worked for predicting a higher number
of all heatstroke cases were high temperature, small difference in
maximum temperature for a 12-h time frame minus its previous
24 h (i.e., consecutive hot days), high downward solar radiation,
large population size, and large population size of people aged 65
years and older. Additionally, predictors that worked for
predicting a lower number of heatstrokes of hospital admission
and death cases were low relative humidity, high ratio of men to
women, and high mean annual taxable income. We also showed
heatmaps for the numbers of all heatstrokes observed and

predicted by the best hybrid model in Supplementary Fig. 5,
which was summed up across the entire period in the testing
dataset.

Prediction models for heatstrokes of hospital admission and
death cases. We developed prediction models for the number of
heatstrokes of hospital admission and death cases (Table 4).
Among the developed models, the GAM was the best model based
on the least RMSE. RMSEs of GLM using WBGT only, GLM, and
GAM using multivariable predictors were, respectively, 1.14, 0.92,
and 0.83 in the testing dataset (Table 4). These results are also
graphically shown (Fig. 4). The observed number of heatstrokes of
hospital admission and death cases was strongly correlated with
the predicted number by those prediction models (Supplementary
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Fig. 1 Comparison between observed and predicted numbers of all heatstroke cases from June to September in 2015, 2016, and 2017 (i.e., training

dataset), and 2018 (i.e., testing dataset) by GLMs and GAM. The black lines

indicate the observed total number of heatstroke per day in the 16 Japanese

cities, and the red lines indicate the predicted total number of heatstroke per day in the 16 Japanese cities obtained from the following prediction models:
(1) GLM using WBGT as the only predictor, (2) GLM using multivariable predictors, and (3) GAM using multivariable predictors. GLM generalized linear

model, GAM generalized additive model, WBGT wet bulb globe temperature.

heatstrokes?.

GAM b

Table 3 Prediction performances of prediction models related to under-sampling and bagging techniques for the number of all

XGBoostb

Hybrid model consisting of
GAM and under-sampling
XGBoost model

Under-sampling
XGBoost model

Overall predictive accuracies per city per 12 h

The number of all heatstrokes

RMSE in training 1.37 1.09 1.48 1.28

RMSE in testing 2.47 3.28 3.48 297
Predictive accuracies on days when the number of heatstrokes spiked®

MAPE per 1-day (%) in training 18.0 11.9 23.81 16.3

MAPE per 1-day (%) in testing 19.7 28.5 13.38 14.8

Total absolute percentage error (%) in training 83 5.9 20.79 1.2

Total absolute percentage error (%) in testing 21.9 31.9 6.94 14.2

2 Smaller RMSE, MAPE, and total absolute percentage error show better predictabilities.
b These GAM and XGBoost models were the same as those in Table 2.

when the number of all heatstrokes was 80th percentile (corresponding to 53.6 in 2015, 57.8 in 2016,
divided by observed values.

GAM generalized additive model, XGBoost extreme gradient boosting decision tree, RMSE root-mean-square error, MAPE mean absolute percentage error.

€ MAPE and total absolute percentage error were calculated after observed and predicted values were summed up per day (for MAPE) per the entire period (for total absolute percentage error) on days

60.6 in 2017, and 89.8 in 2018) and over in each year. MAPE is a mean value of absolute errors

Fig. 6). RMSE of the best GAM was also lower than RMSEs of the
random forest (1.09 in the testing) and the XGBoost model (1.08
in the testing) in Table 4. In the best GAM, all predictors were
selected as the optimal set of predictors by RFE.

Additionally, the best GAM had relatively high accuracy in
predicting spikes in the number of heatstrokes of hospital
admission and death cases (Fig. 4). In fact, its MAPE and total
absolute percentage error on days when the number of
heatstrokes of hospital admission and death cases spiked were,
respectively, 23.3% and 11.7% in the training, and 10.6% and
7.5% in the testing datasets (Table 4). Thus, we did not need to
apply the under-sampling and bagging techniques.

We also developed 16 GAMs for city-specific prediction. RMSE
of the total 16 GAMs for city-specific prediction, were higher

compared with the GAM not specific to each city (1.42 versus
0.83 in the testing, Table 4). Additionally, RMSEs of the 16 GAMs
for city-specific prediction were similar in the training and testing
data of the almost all cities, but higher in the testing data of Sakai,
compared to the GAM not specific to each city (Supplementary
Table 3). Thus, we considered that the GAM not specific to each
city was better than the 16 GAMs specific to each city.
Additionally, the GAM not specific to each city had no serious
heterogeneity.

SHAP values of the best GAM are summarized in Fig. 5 to
show importance of its predictors. Predictors that worked for
predicting a higher number of heatstrokes of hospital admission
and death cases were high temperature, small difference in
maximum temperature for a 12-h time frame minus its previous
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Fig. 2 Comparison between observed and predicted numbers of all heatstroke cases from June to September in 2015, 2016, and 2017 (i.e., training
dataset), and 2018 (i.e., testing dataset) by XGBoost models and hybrid model. The black lines indicate the observed total number of heatstroke per day
in the 16 Japanese cities, and the red lines indicate the predicted total number of heatstroke per day in the 16 Japanese cities obtained from the following
prediction models: (1) XGBoost using multivariable predictors, (2) Under-sampling XGBoost using multivariable predictors, and (3) Hybrid model
consisting of the best GAM and under-sampling XGBoost using multivariable predictors. GAM generalized additive model, XGBoost extreme gradient

boosting decision tree.

24h (i.e., consecutive hot days), high downward solar radiation,
and large population size of people aged 65 years and older.
Additionally, predictors that worked for predicting a lower
number of heatstrokes of hospital admission and death cases were
low relative humidity, high ratio of men to women, and high
mean annual taxable income. We also showed heatmaps for the
number of heatstrokes of hospital admission and death cases
observed and predicted by the best GAM in Supplementary Fig. 7,
which was summed up across the entire period in the testing
dataset. The searched space of hyperparameters and selected
hyperparameters are shown in Supplementary Table 4.

Discussion

The present study developed prediction models for the number of
all heatstroke cases and heatstrokes of hospital admission and death
cases per city per 12h in Japan, which had high predictabilities
enough to be implemented in public health settings. Compared with
the GLMs using WBGT as the only predictor, machine learning
models with multivariable predictors had higher prediction per-
formances, showing the usefulness of not only WBGT but also
other variables in predicting heatstroke cases. Additionally, the
hybrid model consisting of the GAM and under-sampling XGBoost
model had high prediction performance for spikes in the number of
all heatstroke cases. Spikes in the number of heatstrokes of hospital
admission and death cases were predicted well by the GAM. If an
alert system is socially implemented based on the present prediction
models, many citizens will be informed of the daily risk of heat-
stroke and try to prevent it by themselves, and medical staff could
support self-management for high-risk citizens. Additionally, we
believe that the prediction models can be useful in optimizing
medical resources such as the assignment of medical staff and
ambulances in emergency medicine and public health settings,
which is in need of future investigations.

The present study showed the importance of multivariable
predictors as well as WBGT in predicting the number of heat-
stroke cases. WBGT is a well-known index and traditionally used
to assess heatstroke risk®10. However, WBGT does not reflect heat

strain adequately when the evaporation of sweat is restricted by
high humidity or low air movement”-13. Additionally, WBGT is
not precise enough to stratify the heatstroke risk in Japan as there
have been many days in July and August warned by WBGT cri-
teria proposed in the guideline for the prevention of heat
disorder!V. In the present training (i.e., 2015-2017) and testing
(i.e., 2018) datasets, there were, respectively, 64.2% and 62.7% days
for “Severe warning (28-31°C), and 24.5% and 30.2% days for
“threat of heat disorder (higher than 31°C) in August. Further-
more, previous studies showed that factors other than WBGT
were associated with heatstroke. The number of heatstroke
patients was reported to spike at the end of the rainy season!>14.
Heat waves, consecutive days with extremely high temperature,
were associated with hospitalization due to heatstroke and heat-
related mortality!>16. Similar variables to these factors were used
in our prediction models with multivariable predictors, which
allowed us to solve the WBGT limitation and predict the number
of heatstroke cases more accurately compared to GLMs with
WBGT only. Note that we developed the hybrid model consisting
of the GAM and the under-sampling XGBoost model to predict
spikes in the number of all heatstroke cases, of which prediction
accuracy was much better compared to the GAM alone and the
under-sampling XGBoost model alone (Figs. 1, 2). In the best
GAM for the number of heatstrokes of hospital admission and
death cases, under-sampling and bagging techniques were unne-
cessary. Its possible reasons could be as follows. Differences in the
maximum total daily number of heatstrokes of hospital admission
and death cases across the 16 cities between the training and the
testing datasets was just 25 cases while that was 105 cases for all
heatstroke cases. Thus, the best GAM without under-sampling
and bagging techniques could adequately predict spikes.

For the present prediction models, we observed differences of
the prediction performances between 2015, 2016, and 2017 (ie.,
the training dataset), and 2018 (ie., the testing dataset). We
considered the possible reason for the differences as follows. There
were more days for “threat of heat disorder (higher than 31 °C) in
2018 than in 2015, 2016, and 2017 based on WBGT (43.1% vs
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Fig. 3 Importance of predictors for the number of all heatstroke cases
based on SHAP values in the best model (i.e., the hybrid model). Plots
show importance of the predictors in the best prediction models (i.e., the
hybrid model consisting of the best GAM and the best under-sampling
XGBoost model) by SHAP values. The yellow to purple dots represent low
to high values of each predictor. The x-axis shows the SHAP value, the
contribution of each predictor to the predicted number of heatstrokes of
which positive values tend to predict a higher number of heatstroke cases
and negative values tend to predict a lower number of heatstroke cases.
When standardized values of wind speed and precipitation were over 5, the
values were treated as 5. SHAP values over 20 or under —20 were
eliminated, but there were few such values (only 3 cases). SHAP SHapley
Additive exPlanations, Diff. N difference number, XGBoost extreme
gradient boosting decision tree.

6.0% in July). The hotter thermal condition increases the risk of
heatstroke incidence!>16. In fact, the number of heatstrokes was
higher in 2018 than in 2015, 2016, and 2017 (incidence rate [95%
CI]: 74.4 [72.7-76.1] vs 37.5 [36.8-38.2] for all heatstroke cases,
and 19.6 [18.8-20.5)] vs 11.0 [10.6-11.3] for heatstrokes of hos-
pital admission and death cases). Note that our prediction models
showed high prediction performances not only between 2015 and
2017 but also in 2018.

Previous studies developed prediction models with relatively
high prediction performances for the daily number of heat-
related illnesses or heatstrokes by using weather information in 3

Japanese prefectures!? and in 7 Chinese cities!!. However, the
previous prediction models were limited to daily-unit predictions,
even though heatstroke is strongly influenced by weather condi-
tions that differ from day to nighttime. Additionally, the two
previous prediction models cannot estimate the number of
patients by severity! )12, Furthermore, the previous models did
not focus on predictabilities on days when the number of heat-
stroke cases spiked! 112, though it is the key to predict the days
when the number of heatstrokes spike in public health settings.
The previous model in Japan focused on the elderly who
experienced heat-related illnesses at their home. We could solve
these limitations by using the database based on individual-
patient-unit reports of heatstroke incidence, and high-resolution
weather information, and machine learning methods. Note that it
was difficult to compare prediction performances between the
previous and present prediction models due to the prediction unit
differences (i.e., per day versus 12h, and per prefectures versus
cities) and due to differences between Japan and China (e.g.,
population size, weather conditions, and medical systems).

Regarding the important predictors of heatstroke in the present
models, predictors that worked for predicting a higher number of
heatstroke cases were high temperature, small difference in
maximum temperature for a 12-h time frame minus its previous
24h (ie., consecutive hot days), and high downward solar
radiation based on SHAP values. This was supported by previous
models from Japan and China!>12. The present SHAP values for
ratio of men to women should be carefully interpreted. High ratio
of men to women worked as predicting a lower number of
heatstroke cases based on SHAP values (Fig. 3 and Fig. 5), though
the number of heatstroke cases in men was higher than in women
in Japan®!7. This difference could be because the present models
treated the ratio of men to women while considering other
characteristics of cities. For example, Osaka city had a moderate
ratio of men to women (93.8 versus 92.1 as the median of the
participating 16 cities), higher population size (3,543,000 versus
356,000 as the median of the 16 cities), higher population size of
people aged 65 years old and older (669,000 versus 92,000 as the
median of the 16 cities), and moderate mean annual taxable
income (3,256,000 JPN versus 3,478,000 JPN as the median of the
16 cities). High values of population size and that of people aged
65 and older worked for predicting a higher number of heatstroke
cases, while high values of mean annual taxable income worked
for predicting a lower number of heatstroke cases based on SHAP
values (Figs. 3, 5). Although we tried to interpret how the present
two best machine learning models utilized multivariable features
as non-linear terms to predict heatstroke cases by calculating
SHAP values, it was difficult to interpret the contribution of the
ratio of men to women in predicting the number of heatstroke
cases. Note that the present study aimed to develop the prediction
models for heatstroke cases, but not aimed to clarify the asso-
ciation of risk factors with heatstroke cases.

The present study had several limitations. First, the present
data were based on 16 Japanese cities located in the western area
of Japan. Second, the predictability of future heatstroke inci-
dences will depend on the accuracy of weather data. Due to the
two limitations, the present prediction models may be required to
adjust several parameters when the present prediction models are
applied in different areas and meteorological data. Third, the
present models did not consider patients’ characteristics includ-
ing age, sex, and place of heatstroke incidence (e.g., indoor or
outdoor), because we focused on the number of all heatstroke
cases and heatstrokes of hospital admission and death cases
regardless of the patients’ characteristics, other than the severity
of heatstroke. Fourth, the present prediction models may not be
generalized in other countries because the definition of heatstroke
was different between Japan and other countries including the US
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models?.

Table 4 Predictabilities of the prediction models for the number of heatstrokes of hospital admission and death cases among 6

GLM using WBGT only GLM GAM RF

XGBoost Consolidation of 16 GAMs specific to each
city?

Overall predictive accuracies per city per 12 h

RMSE in training 0.68 0.62

RMSE in testing 114 0.92
Predictive accuracies on days when the number of heatstrokes spiked®

MAPE per 1-day (%)¢ in training 283 235

MAPE per 1-day (%)€ in testing 37.7 23.7

Total absolute percentage error (%) in  21.8 1.5
training

Total absolute percentage error (%) in 429 25.8
testing

The number of heatstrokes of hospital admission and death cases

062 03 044 0.61
0.83 109 108 1.42
233 94 132 234
10.6 212 249 10.4
n.7 50 7.2 1.8
7.5 269 297 2.7

MAPE mean absolute percentage error.
2 Smaller RMSE, MAPE, and total absolute percentage error show better predictabilities.
b Prediction models specific to each of the 16 cities were developed for city-specific prediction.

over in each year. MAPE is a mean value of absolute errors divided by observed values.

GLM generalized linear model, GAM generalized additive model, RF random forest, XGBoost extreme gradient boosting decision tree, WBGT wet bulb globe temperature, RMSE root-mean-square error,

€ MAPE and total absolute percentage error were calculated after observed and predicted values were summed up per day (for MAPE) per the entire period (for total absolute percentage error) on days
when the number of heatstrokes of hospital admission (i.e., moderate and severe cases) and death cases was 80th percentile (corresponding to 15.6 in 2015, 16 in 2016, 17 in 2017, and 23 in 2018) and
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Fig. 4 Comparison between observed and predicted numbers of heatstrokes of hospital admission and death cases from June to September in 2015,
2016, and 2017 (i.e., training dataset), and 2018 (i.e., testing dataset) by GLMs and GAM. The black lines indicate the observed total number of
heatstroke per day in the 16 Japanese cities, and the red lines indicate the predicted total number of heatstroke per day in the 16 Japanese cities obtained
from the following prediction models: (1) GLM using WBGT as the only predictor, (2) GLM using multivariable predictors, and (3) GAM using multivariable
predictors. GLM generalized linear model, GAM generalized additive model, WBGT wet bulb globe temperature.

and European countries. Thus, when the present prediction
models are used in countries other than Japan, they should be
updated according to the varying definitions of heatstroke.

In the present study, there were the following strengths. First, we
utilized a population-based database for all heatstroke patients
transposed by ambulances inl6 Japanese cities corresponding to
around a 10,000,000 population size. This could contribute to the
representativity of the present prediction models. This also allowed us
to consider the number of heatstroke per city per 12h and the
severity of heatstroke, which were not considered in previous pre-
diction models. Second, we used state-of-the-art machine learning
methods including the XGBoost algorithm with the under-sampling
and bagging techniques, which allowed us to improve prediction
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performances, especially on days when the number of heatstrokes
spiked. Third, the present prediction models can predict the number
of heatstrokes only using data routinely collected (ie., weather,
calendar, and other characteristics of the cities). Thus, the prediction
models can easily be applied. Fourth, the present prediction models
can be possibly used for other years because those accurately pre-
dicted the number of heatstroke in 2018 (i.e., the testing dataset that
was not used for developing the prediction models). Note that Japan
experienced abnormally high temperatures in 2018 compared to
other years!. Thus, we believe that the present models can work well
in both typical and extremely hot summers.

In conclusion, the present study developed the prediction
models for the number of all heatstroke cases and heatstrokes of
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Fig. 5 Importance of predictors for the number of heatstrokes of hospital
admission and death cases based on SHAP values in the best GAM. Plots
show importance of the predictors in the best prediction models (i.e., the
GAM using multivariable predictors) by SHAP values. The yellow to purple
dots represent low to high values of each predictor. The x-axis shows the
SHAP value, the contribution of each predictor to the predicted number of
heatstrokes of which positive values tend to predict a higher number of
heatstroke cases and negative values tend to predict a lower number of
heatstroke cases. When standardized values of wind speed and
precipitation were over 5, the values were treated as 5. SHAP values over
20 or under —20 were eliminated, but there were few such values (only 1
case). SHAP SHapley Additive exPlanations, Diff. N difference number,
GAM generalized additive model.

hospital admission and death cases per city per 12h in Japan;
especially, the present hybrid model consisting of the GAM and
the under-sampling XGBoost model was able to identify days
when the number of heatstroke incidences abruptly increased. For
the number of heatstrokes of hospital admission and death cases,
the GAM prediction worked well. Future researches should
prospectively evaluate whether the use of the present prediction
models can improve clinical outcomes on a city-level scale.

Methods
Study design. The present study used two datasets in the following 16 cities:
Osaka, Toyonaka, Mino, Ikeda, Suita, Sakai, Kobe, Ashiya, Nishinomiya,

Amagasaki, Akashi, Himeji, Kyoto, Uji, Muko, and Nagaokakyo located in the
Kinki region in Japan. Please see Supplementary Fig. 2 for the location of the 16
cities. One dataset was based on the population-based database for all heatstroke
patients transposed by ambulances between 1 June and 30 September between 2015
and 2018, which was managed by the Fire and Disaster Management Agency under
the Ministry of Internal Affairs and Communications of Japan. The other dataset
was based on a database for weather information between 1 January and 31
December between 2015 and 2018, provided by the Weather Company as an IBM
business (Atlanta, GA, USA). Weather data from June to September were used to
develop prediction models, and other weather data were used to show time-series
temperature. The details are described in the sections below.

We developed prediction models for the number of heatstroke cases using the
datasets between 1 June and 30 September between 2015 and 2017 as the training
dataset. The developed prediction models were applied to the dataset between 1
June and 30 September in 2018 as the testing dataset, to assess whether those
models were able to be used in the future data. The present study was approved by
the ethics committee of the National Cerebral and Cardiovascular Center (M30-
055). Note that the requirement of written informed consent was waived because
the present study analyzed anonymized data only.

Outcome measures. The primary outcome was the number of all heatstrokes per
city per 12 h (e.g., one row of data corresponds to data of one city in 12 h [6:00 am
to 5:59 pm], and the next one row corresponds to data of that one city during the
next 12 h [6:00 pm to 5:59 am]). For the secondary outcome, we used the number
of heatstrokes of hospital admission (i.e., moderate and severe cases) and death
cases per city per 12 h. The outcomes were derived from the population-based
database registering reports of all heatstroke patients transposed by ambulances,
which is managed by the Fire and Disaster Management Agency under the Min-
istry of Internal Affairs and Communications of Japan. In Japan, the characteristics
of all heatstroke patients transposed by ambulances between June and September
are registered in the database, which includes age, sex, time of day, place of inci-
dence, and severity of the heatstroke (mild, moderate, severe, and death). “Mild”
cases did not require hospitalization. “Severe” cases required hospitalization of

3 weeks and more. “Moderate” cases were those between mild and severe cases. A
“death” case was a confirmed death at an initial examination after being transposed
by an ambulance.

Weather, calendar, and city-specific demographic information. We used the
following weather information: relative humidity (%), precipitation in previous 12
h (mm), wind speed (m/s), downward solar radiation (kW/m?), and indices related
to hot weather including ambient temperature (°C) for multivariable machine
learning models and WBGT (°C) for classic statistical models'$, and heat index
(°C) as a demographic variable!®. The weather information was based on a data-
base that the Weather Company as an IBM business provided per various grid and
time interval. We treated the weather data as follows. First, we used the weather
data per 4-km grid point per hour. Note that the weather data in 2015 and
downward solar radiation between 2015 and 2018 per 30-km grid point per hour
were used because the Weather Company did not provide those values per 4-km
grid point. Second, the weather data per 4-km or 30-km grid point per hour were
averaged to those per city per hour. Third, in the averaged weather data per city per
hour, we calculated mean, maximum, and minimum values within the previous 24
h. Fourth, weather data per city per hour were summarized to those per city per 12
h (6:00 am to 5:59 pm, and 6:00 pm to 5:59 am) by calculating mean, maximum,
and minimum values within 12 h. Fifth, we calculated differences in values for
mean, maximum, and minimum for these 12-h time frames minus their previous
24 h. Thus, the weather data unit was per city per 12h (e.g., one row of the data
corresponds to data of one city in 12 h [6:00 am to 5:59 pm], and the next one row
corresponds to data of that one city during the next 12 h [6:00 pm to 5:59 am]).

In the database provided by the Weather Company, WBGT was estimated by
the following estimation equation!® using its related weather variables per 4-km
grid point or per 30-km grid point (i.e., where per 4-km grid points were not
available, the nearest 30-km grid point was substituted in its place.). This equation
was developed and validated, which can estimate WBGT in Japan with a 1.0 °C or
less bias with 98.3% to 99.8% confidence.

WBGT =0.735x T, + 0.0374x RH + 0.00292x T, x RH + 7.619x SR
— 4.557x SR? — 0.0572x WS — 4.064

T,, ambient temperature (°C); RH, relative humidity (%); SR, (kW/m?); WS,
wind speed (m/s).

We also used the following calendar variables: times of day (i.e., daytime
between 6:00 am to 5:59 pm, and nighttime between 6:00 pm to 5:59 am), months,
rainy season, the difference in the number of days between the corresponding day
and the last day of the rainy season of each year (days before the last day of the
rainy season and the last day were coded as 0), and holidays (i.e., Saturdays,
Sundays, Japanese national holidays, and Obon holidays). Obon holidays were
13-15 August in which many Japanese people take days off work. The rainy season
was based on the report from the Japan Meteorological Agency, Ministry of Land,
Infrastructure, Transport and Tourism.

We further used the following characteristics of the 16 cities: population size of
each city at daytime for 6:00 am to 5:59 pm and at nighttime for 6:00 pm to 5:59
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am, median age, the ratio of men to women, population size of people aged 65
years and older, mean annual taxable income (yen, total taxable income divided by
the number of taxpayers liable for income tax), and green area proportion (%, area
of parks, forests, and arable land divided by city area). These variables allowed the
prediction models to account for population vulnerable to heatstrokes and several
spatially varying factors, which could improve prediction models. Median age, the
population size of each city, and the ratio of men to women based on the national
census conducted in 2015 in Japan that was reported as of October 15t Mean
annual taxable income was based on the report of Municipal Taxation Status in
Fiscal Year 2015 from the Ministry of Internal Affairs and Communications of
Japan. Area of parks in 2010 was based on the national land survey data from the
Ministry of Land, Infrastructure, Transport, and Tourism. Areas of forests, arable
land, and city were based on the Statistics of Prefectures, Cities, Towns and Villages
from the Ministry of Agriculture, Forestry, and Fisheries of Japan.

Statistical analyses. Characteristics of the present dataset were summarized by
median and interquartile range (IQR) for continuous variables, and n and % for
categorical variables. These descriptive statistics were shown stratified by the
training and testing datasets. Statistical analyses and prediction model development
were performed by statistical software R (version 4.0.3, The R Foundation,
Vienna)20 and caret package?! (version 6.0).

Developing procedure for prediction models. We developed the prediction
models for the number of all heatstroke cases with the following three steps. Note
that the same procedures were also implemented for the number of heatstrokes of
hospital admission and death cases. In the 1st step, we made the prediction models
(1) by using GLM assuming Poisson distribution with WBGT as the only predictor
and log of population size as the offset term in which we did not use any machine
learning methods including cross-validation (CV), (2) by using GLM assuming
Poisson distribution with multivariable predictors and log of population size as the
offset, (3) by using GAM assuming Poisson distribution with multivariable pre-
dictors and log of population size as the offset, (4) by using random forest models
with multivariable predictors, and (5) by using XGBoost with multivariable pre-
dictors. Among the above five approaches, we determined the best prediction
model by the least RMSE. GLM is a general linear model in which a dependent
variable is linearly related to independent variables by a link function. Additionally,
GLM can specify an error distribution other than the normal distribution. GAM
can model non-linear associations of independent variables with a dependent
variable by using spline functions. Random forest model is a tree-based model with
ensemble machine learning by fitting a number of decision trees on subsamples of
the training dataset and integrating their trees. XGBoost is an optimized distributed
gradient boosting decision tree library. In XGBoost, a model trains a sequence of
decision trees with minimizing predictive errors of existing decision trees.

In the 2nd step, we developed city-specific prediction models by using a training
dataset of the corresponding city (e.g., we used the training dataset of Osaka city
when developing prediction models specific to Osaka city) and by using the same
model method to the best prediction model in the 1st step (i.e., one of GLM, GAM,
random forest, or XGBoost). City-specific models were compared with the best
prediction model common to the 16 cities (i.e., the best prediction model in the 15t
step) by RMSE at each city and for a combination of all the cities. This allowed us
to check whether the best prediction model common to all cities in the 1st step had
serious problems related to heterogeneity of the 16 cities.

Furthermore, we proceeded to the 3rd step if the best model through 1st and
2nd steps did not adequately predict spikes in the number of heatstroke cases. We
applied under-sampling and bagging techniques to the best model through the 1st
and 2nd steps for learning patterns in which the number of heatstrokes spiked. The
present under-sampling and bagging techniques were designed to efficiently learn a
cluster of the training data in which the number of heatstroke cases was large by
decreasing the other cluster of the training data in which the number of heatstroke
cases was small, modeled by a method for treating class imbalance??. For details,
please see the “Under-sampling and bagging procedure” section in Methods.

Feature selection and hyperparameter optimization. For each model, we used 5-
fold cross-validation (CV) to select optimal predictors (i.e., feature selection) by
RFE and to search optimal hyperparameters (i.e., hyperparameter optimization) by
grid-search?3. The optimal predictors and the optimal hyperparameters were
selected based on the least RMSE of each model.

RFE is a wrapper-type feature selection. RFE searches a subset of predictors by
first training a model by all possible predictors, ranking all possible predictors by
their feature importance, selecting the top 1 to the maximum number of all possible
predictors in order of importance, and making an updated model by the selected
predictors, repeated until the best subset of predictors by the least prediction error
(i.e., the least RMSE in the present study) are found?3.

As all possible predictors, we used the following weather information, calendar
variables, and characteristics of each city. Weather information included
precipitation in previous 12 h (mm), wind speed (m/s), ambient temperature (°C),
relative humidity (%), downward solar radiation (kW/m2), and difference values for
mean, maximum, and minimum between a 12-h time frame and its previous 24 h
for ambient temperature. The calendar variables consisted of times of day (i.e.,

daytime between 6:00 am to 5:59 pm, and nighttime between 6:00 pm to 5:59 am),
months, rainy season, difference in the number of days between the corresponding
day and the last day of the rainy season of each year, and holidays. The
characteristics of each city included median age, population size, the population size
of people aged 65 years and older, the ratio of men to women, mean annual taxable
income, and green area proportion (%, area of parks, forests, and arable land
divided by city area). Note that the population size (not for the population size of
people aged 65 years and older) was modeled into log of population size as the offset
term in GLM and GAM.

When developing the city-specific prediction models in the 2nd step of the
“Developing procedure for prediction models” section, we performed feature
selection and hyperparameter optimization as follows. Feature selection was
performed in the training dataset of all cities by RFE before developing the city-
specific models. The selected features were used to develop the city-specific
prediction models. Hyperparameter optimization was conducted for city-specific
prediction model of each city. Note that we included weather information and
calendar variables, while we did not include the characteristics of each city except
the log of population size as the offset term.

Evaluation of the developed prediction models. Primarily, overall predictive
accuracies of the developed prediction models were evaluated by RMSE per city per
12 h. RMSE is the square root of mean value of squared differences between
observed and predicted values (i.e., errors). Simply put, RMSE shows an average
predictive error. Thus, a smaller RMSE shows better prediction performance.

Secondarily, predictive accuracies for spikes in the number of heatstroke cases
were evaluated by MAPE per 24 h across all cities on days when the number of all
heatstroke cases, and heatstrokes of hospital admission and death cases were large.
Additionally, those were evaluated by total absolute percentage error across the
entire period and all cities. MAPE and total absolute percentage error were
calculated after observed and predicted values were summed up per day across all
cities (for MAPE) and per the entire period across all cities (for total absolute
percentage error) on days when the number of all heatstroke cases was 80th
percentile (corresponding to 53.6 in 2015, 57.8 in 2016, 60.6 in 2017, and 89.8 in
2018) and above in each year, and when the number of heatstrokes of hospital
admission and death cases was 80th percentile (corresponding to 15.6 in 2015, 16
in 2016, 17 in 2017, and 23 in 2018) and above in each year. MAPE is a mean value
of absolute errors divided by observed values. Lower MAPE means higher
predictive performance. Total absolute percentage error is the absolute proportion
of differences between the sum of predictive values and the sum of observed values
(as the numerator) in sum of observed values (as the denominator). Lower total
absolute percentage error means higher predictive performance. Note that when
predicted values were under 0, the predicted values were treated as 0 on evaluating
the developed prediction models. Additionally, when predicted values were over
104 for the number of all heatstroke cases and over 48 for that of heatstrokes of
hospital admission and death cases, the predicted values were 104 and 48,
respectively referring to the observed number of heatstrokes in the training dataset.
In the training dataset, the maximum number per city per 12 h was 52 [= 104 / 2]
for all heatstroke cases, and that was 24 [= 48 / 2] for heatstroke cases of hospital
admission and death cases).

We investigated what predictors were important in predicting the number of all
heatstroke cases and heatstrokes of hospital admission and death cases by using
SHAP values that explain the predicted value of an instance by calculating the
contribution of each predictor to the predicted value?%. For a given set of values of
multiple predictors, a SHAP value shows how much one variable contributes to the
difference between the actual prediction and the mean prediction in the context of
its interaction with the other variables of the given set.

Under-sampling and bagging procedure. The present under-sampling and
bagging techniques aimed to make the best prediction model through the 1st and
2nd steps in the “Developing procedure for prediction models” section learn the
patterns in which the number of heatstrokes spiked if the best model did not
adequately predict spikes in the number of heatstroke cases. The present under-
sampling and bagging techniques were designed to efficiently learn a cluster of the
training data in which the number of heatstroke cases was large by decreasing the
other cluster of the training data in which the number of heatstroke cases was
small, modeled by a method for treating class imbalance?2. The details of the
present under-sampling techniques for the number of all heatstroke cases were as
follows. Note that we used XGBoost algorithm for under-sampling and bagging
techniques because XGBoost, a tree-based model, is more robust in multi-
collinearity than GLMs and GAMs by their nature. Additionally, XGBoost is robust
in outlier values which were included in the present under-sampling and bagging
techniques especially in weather data such as heat waves (i.e., extremely high
temperature) and heavy rain (i.e., extremely high precipitation).

First, we derived a portion of the training dataset in which the number of all
heatstroke cases was large defined by 90-98 percentiles and greater (in 1 percentile
increments from 90 to 98, the best percentile was determined by MAPE per 24 h
across all cities of the under-sampling XGBoost model described below) of the
number of all heatstroke cases in the training dataset of the cities with a population
size >500,000 (i.e., Osaka, Sakai, Kyoto, Kobe, and Himeji). This cluster would
contain characteristics in which the number of all heatstroke cases was large in the
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training dataset. Additionally, we randomly derived a 10% portion of the training
dataset in which the number of all heatstroke cases was 0 in the training dataset of
the five cities with a population size >500,000. This cluster would contain
characteristics on which the number of all heatstroke cases was small.

Second, we developed a classifier model by the XGBoost algorithm in the two
portions of the training dataset derived at the first step of the under-sampling
procedure. This XGBoost classifier model aimed to classify the training dataset of
the five cities with a population size > 500,000 into a cluster that would contain
characteristics on which the number of all heatstroke cases was large (called spike
cluster), and into the other cluster that would contain characteristics on which the
number of all heatstroke cases was small (called no-spike cluster). When
developing this XGBoost classifier, we modeled a variable representing the spike or
no-spike clusters as an outcome, and variables of weather, calendar, and
characteristics of each city described in the “Feature selection and hyperparameter
optimization” section as predictors. We used 5-fold CV to search optimal
hyperparameters by grid-search based on the highest classification accuracy.

Third, by the developed XGBoost classifier model, we classified the training
dataset of the five cities with a population size > 500,000 into the spike cluster or
the no-spike cluster. Additionally, the training data of the other 11 cities with a
population size < 500,000 were classified, a priori, into the no-spike cluster due to
their small population sizes.

Fourth, we conducted under-sampling and bagging?2. From the training data
with the no-spike cluster specified in the previous step, we randomly derived data
with sample size 100 or 200 for under-sampling (the best sample size was
determined by MAPE per 24 h across all cities), which were conducted repeatedly
10 times for bagging. Based on the under-sampled data with the no-spike cluster
and the spike cluster of the training data specified in the previous step, we
developed under-sampling XGBoost prediction models for the number of all
heatstroke cases using the XGBoost algorithms and variables of weather, calendar,
and characteristics of each city described in the “Feature selection and
hyperparameter optimization” section as predictors, which were conducted
repeatedly 10 times for bagging. We used 5-fold CV to search optimal
hyperparameters by grid-search based on the least RMSE. By averaging predicted
values of 10 XGBoost models with under-sampling and bagging, we obtained
predicted values of the under-sampling XGBoost prediction models.

Fifth, we developed a hybrid model by combining the best under-sampling
XGBoost prediction model with the best prediction model through the 1st and 2nd
steps in the “Developing procedure for prediction models” section. Predicted values
of the best GAM were used when the sum of predicted values per 24 h across all
cities of the best under-sampling XGBoost model was under 150. Mean predicted
values of the best GAM and the best under-sampling XGBoost model were used
when the sum of predicted values per 24 h across all cities of the best under-
sampling XGBoost model was between 150 and 299.99. Predicted values of the
under-sampling XGBoost model were used when the sum of the predicted values
per 24 h across all cities of the best under-sampling XGBoost model was 300
and over.

Reasons for why we made the hybrid model were as follows. The best under-
sampling XGBoost prediction model was optimized to predict the spikes in the
number of all heatstroke cases, meaning that this model might be inadequate to
predict the number of all heatstroke cases at normal times other than where the
spikes occur. Additionally, the best prediction model through 1st and 2nd steps in
the “Developing procedure for prediction models” section, the best GAM, was
limited to low performance only when the number of all heatstrokes cases spiked.
Specifically, the best under-sampling XGBoost model had larger RMSE for overall
predictive accuracies per city per 12 h, but smaller MAPE for predictive accuracies
on days when the number of all heatstroke cases spiked in the training dataset. On
the other hand, the best GAM had smaller RMSE, but larger MAPE in the training
dataset. Furthermore, in the training dataset, the best GAM predicted the number
of all heatstroke cases well when its predicted values summed up per day across all
cities were under 150, but did not predict well when 150 and over, especially, 300
and over. On the other hand, in the training dataset, the best under-sampling
XGBoost model predicted the number of all heatstroke cases well when its
predicted values summed up per day across all cities were 150 and over, but not
well when that under 150.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The data related to heatstrokes to develop our prediction models are not publicly
available in order to protect the privacy of a patient, as the granularity of the data may
allow re-identification. Additionally, the data related to weather information to develop
our prediction models are not publicly available because the weather data were
commercial products provided by the Weather Company as an IBM business. Thus,
requests for the non-profit use of those data should be sent to the corresponding author
Kunihiro Nishimura (knishimu@ncvc.go.jp). The data access requests will be reviewed by
our institutional review board. Once approved by the board, the data access requests will
be admitted. It may take about 3-5 months. The other covariates were obtained as
follows. The rainy season was based on the report from the Japan Meteorological Agency,

Ministry of Land, Infrastructure, Transport and Tourism (https://www.data.jma.go.jp/
fcd/yoho/baiu/kako_baiu07.html). Median age, population size of each city, and ratio of
men to women based on the national census conducted in 2015 in Japan that was
reported as of October 1st (https://www.stat.go.jp/data/kokusei/2015/kekka.html). Mean
annual taxable income was based on the report of Municipal Taxation Status in Fiscal
Year 2015 from the Ministry of Internal Affairs and Communications of Japan (https://
www.soumu.go.jp/main_sosiki/jichi_zeisei/czaisei/czaisei_seido/ichiran09_15.html).
Area of parks in 2010 was based on the national land survey data from the Ministry of
Land, Infrastructure, Transport and Tourism (https://nlftp.mlit.go.jp/ksj/gml/datalist/
KsjTmplt-P13.html). Areas of forests, arable land, and city were based on the Statistics of
Prefectures, Cities, Towns and Villages from the Ministry of Agriculture, Forestry and
Fisheries of Japan (http://www.machimura.maff.go.jp/machi/map/map1.html).

Code availability
Codes used in this study to develop the prediction models are provided at https://zenodo.
org/badge/latestdoi/382736888.
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