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Abstract: Food labels comprise a national health-intervention policy that informs consumers
of food-product nutritional value. Previous evidence has indicated that, compared to a purely
numeric guideline-daily-amount label, a traffic-light-inspired, color-coded label more effectively
conveys the nutritional level and increases the selection of healthier products. Therefore,
we used functional magnetic resonance imaging to assess the mechanism whereby traffic-light
and guideline-daily-amount labels influence food-related decision-making. Forty-four female dieters
(age, mean = 20.0, standard deviation = 1.45 years) were recruited to participate in a food-choice task;
healthy or unhealthy food options were presented with color-coded traffic-light or purely numeric
guideline-daily-amount labels, and the participants were asked to state their preference. We found
that, compared with the guideline-daily-amount label, a salient, red traffic-light label potentially
reduced unhealthy food-related decision-making and activated the superior medial frontal gyrus
and the supplementary motor area, which are implicated in the execution of responses and motor
inhibition. For the same stimulus contrast, we also found increased activation in the anterior cingulate
cortex, which is associated with salient information monitoring. Finally, we found stronger functional
connectivity between the anterior cingulate cortex and inhibitory regions (inferior and middle frontal
gyri) under red-traffic-light than under guideline-daily-amount label conditions. These results suggest
that traffic-light-inspired labels may be a more effective means of public-policy intervention than are
numeric labels conveying guideline daily amounts.
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1. Introduction

Food information labels are critical in informing individuals of the ingredients and nutritional
value of their food. Effective food labeling systems help alleviate the prevalence of obesity and support
healthy eating decisions [1–4]. Systematic reviews have shown that nutrition labels are perceived
as highly credible and are used to guide food selections [5,6], especially when the nutritional value
of a food is ambiguous [7]. Another review concluded that including more salient information and
ensuring a deeper understanding of the information on nutrition labels are more likely to promote
healthy decision-making [8]. Therefore, in addition to the guideline-daily-amount (GDA) labels that
are typically used, the traffic-light (TL) nutrition label has been widely suggested as a more salient
adjunct label.

The GDA label displays both the amount per serving and the corresponding percentage of the
recommended daily intake for several nutrients. This differs from the TL label, which employs a
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color-coded system to depict the amount of nutrients per 100 g. Nutritional information such as sugar,
fats, and sodium content are identified as red (unhealthy or high levels), yellow (somewhat healthy or
medium levels), or green (healthy or low levels). Several meta-analyses have reported that color-coded
TL labels, compared to purely numeric GDA labels, are more effective in conveying nutritional levels
and increase the selection of healthier products [6,9]. Empirical research has consistently concluded
that TL labels are an effective approach in promoting awareness of the health costs of products [4,10],
encouraging healthier choices [4,11], increasing the value computation of healthy foods [12], increasing
the consumption and sale of healthy items [10,13], and decreasing the consumption and sale of
unhealthy items [13,14]. Additionally, a modelled comparison showed that TL labels are a cost-effective
method for preventing obesity [15].

Studies have begun to examine various mechanisms to determine why TL labels are more effective
in the promotion of health considerations. Eye-tracking studies have revealed that the use of colors in
nutrient-specific labels may attract more attention to nutritional information, which may lead to an
alternative choice [16,17]. More specifically, one study used drift-diffusion modeling to investigate how
color-coded labels alter the process of decision-making [18]. They found that color-coded labels led a
significantly increased rate of preference formation (drift rate) toward healthier options without altering
the starting point, which was followed by the observation of healthier food selections. Moreover,
salient labels increased health sensitivity and decreased the importance of taste, indicating that the
integration of health and taste attributes during the choice process is sensitive to how information is
displayed [18].

An alternate explanation of the effect of nutrition labels may be the different cognitive neural
processes triggered by each type of label; however, most functional magnetic resonance imaging
(fMRI) studies have focused on the effect of the caloric and taste information provided by labels
on neural responses. Conflicting findings have been observed when foods are described as low in
calories on the nutrition label. One study reported that “low calorie” labels did not enhance the
activity of the reward-related ventromedial prefrontal cortex (vmPFC), while another found that the
participants made fast approach movements to earn the food item, accompanied by an increased
activation in the sensorimotor cortex [19,20]. It is considered that these differences are due to individual
food taste preferences. In another study, researchers found that by integrating food taste and health
attributes on labels, the food taste profiles increased the appreciation and appeal of the food, while
the health features increased the proportion of healthy decisions. In the condition where the food
was exclusively described with health attribute labels, the activity in the amygdala was stronger.
Additionally, the amygdala’s functional connectivity with the dorsolateral prefrontal cortex, a region
related to inhibitory control, was stronger [21], indicating that health information provided by labels
can affect the brain and guide healthy food decisions. However, these studies lacked discussion
of the types of nutrition information labels. To the best of our knowledge, only two studies have
compared TL and GDA labels and how they influence neural activity during the evaluation process
to determine the value and healthiness of food products [12,22]. Red TL labels activated portions of
the left inferior frontal gyrus (IFG)/dorsolateral prefrontal cortex, a region implicated in self-control,
and enhanced its coupling with the vmPFC, which is associated with valuation. When presented with
green labels, the posterior cingulate cortex showed increased coupling with the valuation system in the
vmPFC [12]. These results suggest that using salient nutrition labels triggers neurobiological processes
that resemble the self-regulation of eating. However, another study observed no differences in cerebral
activation between TL and GDA labels; compared to GDA labels, TL labels did not affect the strategy
employed [22]. Therefore, the effect of the two types of nutrition labels on neural activity needs to be
analyzed further.

Previous work has left several questions unanswered. First, it is unclear whether TL and GDA
labels trigger different cognitive neural activities in dieters processing nutritional information because
most food label studies have focused on the general population. Dieting is a commonly used method
for weight control [23], and dieters typically display a more urgent desire to reduce their intake of foods
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high in calories and fat and often rely more heavily on food labels than does the general population.
Therefore, it is necessary to investigate the effectiveness of TL and GDA labels in participants who are
chronic dieters.

Second, it remains unclear how TL and GDA labels influence neural activity during the food
choice process. Decision-making relies on a network of brain regions based in the frontal lobe [24–28].
In particular, the anterior cingulate cortex (ACC) is prominent within a network of regions that
monitor the dynamic outcome of actions and guide appropriate decision-making [25–31]. TL labels are
considered more salient than GDA labels, which may direct attention toward the nutritional aspects of
the food, help evaluate choice outcomes, and alter ACC activity during the decision-making processes.
Red TL labels for unhealthy foods help convey possible negative health consequences and possibly
strengthen inhibitory responses to these foods. Inhibitory frontal lobe regions, including the superior
medial frontal gyrus, the supplementary motor area (SMA), and the IFG, aid in response or motor
inhibition [32–38]. In the rejection of unhealthier options, response inhibition and self-control may be
indispensable; the activity of these inhibitory frontal regions may be stronger under the red TL label
condition than under the corresponding GDA label condition. In response to an unexpected event,
discontinuing an action requires the outcome of the action be monitored and inhibited. Therefore,
red TL labels appear to enhance the functional connectivity between brain regions associated with
information monitoring and inhibitory control. In contrast, green TL labels help signify more nutritious
foods and their health benefits. Previous studies have used fMRI methods to show that labels indicating
low-fat and healthy foods increase activity in the vmPFC and amygdala, which are involved in reward
expectation and emotional processing [12,21]. Accordingly, it is considered that green TL labels increase
the activity in these regions.

Therefore, the present study aimed to use fMRI techniques to determine how TL and GDA
labels influence food decision-making and cognitive neural activity, specifically in chronic dieters.
We hypothesized that, among dieters, red TL labels would elicit increased activation compared to
GDA labels in brain regions associated with salient information monitoring and response inhibition,
whereas green TL labels would elicit relatively increased activation in reward regions.

2. Materials and Methods

2.1. Participants

The present study included 44 right-handed, neurologically and psychologically healthy female
dieters who were recruited from Southwest University in Chong Qing, China. Because restricted
diet is common among women and male dieters are relatively rare [39], to avoid imbalance in the
number of recruited men and women, only women were selected to participate in this study. Moreover,
to avoid the effects of age, our study sample was limited to college students (age, mean (M) = 20.0,
standard deviation (SD) = 1.45). Based on previous studies, the Restrained Eating subscale of the Dutch
Eating Behavior Questionnaire (DEBQ) was used to screen chronic dieters. The inclusion criterion for
participation was an average score greater than 3 (the midpoint on a 5-point scale) on the Restrained
Eating subscale [40–42]. An exclusion was a reported history of, or currently suffering from, an eating
disorder. Obese recruits (body mass index (BMI) > 30 kg/m2) were excluded because of potential
neuro-anatomical variations as a function of BMI. We also excluded potential participants who had
followed a medically prescribed diet within 6 months prior to enrollment, as well as those with
preferences for vegetarian food because this factor could affect dietary choices. Forty-eight women
were finally recruited; however, the data from four participants were excluded because of the presence
of large head movements during fMRI scanning.

2.2. Procedure

The experiment was approved by the Southwest University Human Ethics Committee and
performed in accordance with the guidelines of the Declaration of Helsinki. Written consent was
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obtained from each participant upon arrival at the testing location. Participants were asked to refrain
from eating or drinking (except water) for at least 2 h before arriving at the laboratory to control the
hunger level [42]. Next, participants were familiarized with the fMRI paradigm through practice on a
computer. Subsequently, they were asked to complete a visual analog scale (VAS) to assess individual
and subjective differences in hunger, eating desire, and happiness. Following this, participants
underwent four fMRI runs of a nutrition label decision-making task. Each run included healthy and
unhealthy foods with a TL or GDA label and lasted 398 s. Each run contained 24 trials, including four
types of conditions. The experimental trials were randomly arranged in advance to ensure that the
experimental conditions were not repeated multiple times in succession, so that different experimental
conditions would appear intermittently. In the interval between runs, participants briefly closed their
eyes to rest. The entire procedure lasted approximately 30 min per participant. Finally, participants
were required to describe their impression of the study to ensure that they had not been able to identify
the true purpose of the experiment. Participants verbally reported that they had referenced nutrition
labels in making their food choices but had not known the meaning of the color of the label.

2.3. Materials and Nutrition Label Decision-Making Task

The nutrition label decision-making task involved the presentation of two types of nutrition labels
(TL and GDA) and two types of foods (healthy and unhealthy). We employed food pictures adopted
from previous studies [41,43] comprising 24 unhealthy food choices (high-calorie and high-fat; e.g.,
fried foods, cream cakes, Chinese braised pork) and 24 healthy food choices (low-calorie and low-fat;
e.g., vegetables and fruits). To avoid forcing participants to select foods that they disliked, only those
food pictures that had scored 4 or higher on the tastiness scale (range: 1, not tasty at all to 9, very
tasty) in the previous studies were included [41,43]. The degree of tastiness was not significantly
different for unhealthy versus healthy foods (M = 6.50, SD = 0.98 versus M = 6.04, SD = 0.86; t (46) =

1.73, p = 0.09). The labels described the nutritional content of energy, fat, carbohydrates, and sodium,
which are typically seen on labels of Chinese products. Nutritional information was extracted from
the website www.boohee.com, which is a well-known food database in China. In accordance with
the methods utilized by Enax et al. [12], the TL nutrition labels of unhealthy and healthy foods were
primarily red and green, respectively. The GDA labels of the unhealthy and healthy foods were not
saliently color-coded as were the TL labels. The two types of labels are shown in Figure 1A.

Participants were instructed to observe the processed food items, were provided with their
nutritional value, and then asked to indicate whether they wanted the food. There were four runs
consisting of a total of 96 trials, with each run including four conditions. Each picture was shown
twice but in different runs: one presentation with the GDA label and the other with the TL label. Food
pictures were not repeated in a run. This was performed to ensure that food choices were influenced by
different labels, not by different foods. Trials in each run were presented in a predetermined manner,
illustrated in Figure 1B. Each food and nutrition label were presented for 5 s, followed by a blank
screen for 3–5 s. Participants were then allowed 3 s to indicate whether they wanted to eat the food.
Each trial was separated by a fixation cross presented for 3–5 s. Half of the participants were randomly
assigned to press the “left” key if they wanted to eat the food or the “right” key if they did not; the
other half were asked to press the opposite keys.

www.boohee.com
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Figure 1. Food label decision making task. (A) Sample labels generated for the foods. Left: color-coded 
traffic-light (TL) label for unhealthy (upper) and healthy (lower) foods. Right: guideline-daily-amount 
(GDA) label for the same foods. The food nutrition label is presented to the participants in Chinese 
characters, and their English translations are, from left to right: 能量 = energy, 脂肪 = fat, 碳水化合

物 = carbohydrates, and 钠 = sodium. (B) Illustration of the trial setup. 

2.4.2. Visual Analog Scale 

A VAS was used to assess individual differences in hunger, eating desire, and happiness. 
Participants were asked: “How hungry are you currently?,” “How strong is your eating desire 
currently?,” and “How happy are you currently?”. The questions were answered by selecting a point 
on a straight line representing a VAS score ranging from 0% to 100%. 

2.5. fMRI Data Acquisition 

Images were obtained using a Siemens Allegra 3 T head-only MRI scanner. Functional data were 
acquired with T2 *-weighted gradient echo planar imaging (EPI) sequences. For each participant, 199 
brain volumes were collected during each functional run. EPI sequences used the following 
parameters: repetition time (TR) = 2000 ms, echo time (TE) = 30 ms, flip angle = 90°, field of view = 
220 × 220 mm2, matrix size = 64 × 64, in-plane resolution = 3 × 3 mm2, 32 interleaved 3-mm-thick slices, 
and inter-slice skip = 0.99 mm. To provide detailed anatomical images aligned to functional scans, 
high-resolution T1-weighted images were obtained using a magnetization-prepared rapid gradient 
echo (TR = 2530 ms, TE = 3.39 ms, inversion time = 1100 ms, flip angle = 7°, resolution matrix = 256 × 
256, slices = 176, slice thickness = 1.33 mm, and voxel size = 1.3 × 1 × 1.3 mm3). 

2.6. Behavioral Data Analysis 

For compatibility with analysis of variance models, which require continuous rather than 
dichotomous variables for parametric assumptions to be met, the decision-making results were 
converted to percentage choice scores by calculating the number of times a food was chosen divided 
by the total number of trials. A 2 × 2 repeated measures analysis of variance was then conducted for 

Figure 1. Food label decision making task. (A) Sample labels generated for the foods. Left: color-coded
traffic-light (TL) label for unhealthy (upper) and healthy (lower) foods. Right: guideline-daily-amount
(GDA) label for the same foods. The food nutrition label is presented to the participants in Chinese
characters, and their English translations are, from left to right: 能量 = energy,脂肪 = fat,碳水化合物 =

carbohydrates, and钠 = sodium. (B) Illustration of the trial setup.

2.4. Measures

2.4.1. Restrained Eating Subscale of the DEBQ

The Restrained Eating subscale of the DEBQ consists of 10 items (e.g., “When you put on weight,
do you eat less than you usually do?”) that instructs participants to rate each item on a 5-point scale
from 1 (never) to 5 (very often). Higher scores on this subscale are indicative of higher degrees of
restraint in eating behavior. This scale has a reported internal consistency α of 0.95 [44]; however,
in the present study, its internal consistency was α = 0.78.

2.4.2. Visual Analog Scale

A VAS was used to assess individual differences in hunger, eating desire, and happiness.
Participants were asked: “How hungry are you currently?,” “How strong is your eating desire
currently?,” and “How happy are you currently?”. The questions were answered by selecting a point
on a straight line representing a VAS score ranging from 0% to 100%.

2.5. fMRI Data Acquisition

Images were obtained using a Siemens Allegra 3 T head-only MRI scanner. Functional data were
acquired with T2 *-weighted gradient echo planar imaging (EPI) sequences. For each participant,
199 brain volumes were collected during each functional run. EPI sequences used the following
parameters: repetition time (TR) = 2000 ms, echo time (TE) = 30 ms, flip angle = 90◦, field of view = 220
× 220 mm2, matrix size = 64 × 64, in-plane resolution = 3 × 3 mm2, 32 interleaved 3-mm-thick slices,
and inter-slice skip = 0.99 mm. To provide detailed anatomical images aligned to functional scans,
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high-resolution T1-weighted images were obtained using a magnetization-prepared rapid gradient
echo (TR = 2530 ms, TE = 3.39 ms, inversion time = 1100 ms, flip angle = 7◦, resolution matrix = 256 ×
256, slices = 176, slice thickness = 1.33 mm, and voxel size = 1.3 × 1 × 1.3 mm3).

2.6. Behavioral Data Analysis

For compatibility with analysis of variance models, which require continuous rather than
dichotomous variables for parametric assumptions to be met, the decision-making results were
converted to percentage choice scores by calculating the number of times a food was chosen divided
by the total number of trials. A 2 × 2 repeated measures analysis of variance was then conducted for
food decision-making, with label (TL versus GDA) and food (unhealthy versus healthy) as factors and
BMI, hunger and eating desire as covariates.

2.7. fMRI Data Analysis

2.7.1. fMRI Data Analysis Processing

All preprocessing steps were carried out using the toolbox for data processing and analysis for
brain imaging [45] based on the SPM8 software package (Wellcome Trust Centre for Neuroimaging,
London, UK). Slice timing was used to correct slice order, the data were realigned to adjust for any
motion, and the first five volumes of the functional runs were discarded to achieve magnetically
steady-state images. Images were then normalized to the Montreal Neurological Institute space with
a 3 × 3 × 3 mm3 voxel size. The normalized data were spatially smoothed with a Gaussian kernel;
the full width at half maximum was 6 × 6 × 6 mm. After preprocessing, participants whose head
movement exceeded 2.5 mm on any of the six head-motion parameters were excluded.

2.7.2. General Linear Model (GLM) Analyses

After preprocessing, SPM8 was used to analyze the imaging data. Two contrasts were specified in
the first-level analysis to determine individual differences in activation: unhealthy foods, TL versus
GDA labels; and healthy foods, TL versus GDA labels. In addition, six ongoing motion parameters
obtained during realignment were included as no interest variables. All these eight regressors
were convolved with the canonical hemodynamic response function and restricted to a whole-brain,
gray-matter mask. A GLM then generated statistical parametric maps. The resulting single-participant
contrast images were then entered into a second-level, random-effects group analysis for each of
the corresponding contrasts. The original voxel-wise FDR considers that voxels are independent of
each other. However, voxels are not independent of each other after fMRI data smoothing, which
causes the FDR obtained using this voxel-wise FDR correction to be very high for an activated brain
region. The topological false discovery rate (FDR) is based on the gaussian random field theory, which
considers that voxels are not independent. Voxels beyond the T threshold constitute a cluster, and then
FDR is used to correct these clusters, so that the independent units (used to be the total number of
voxels, but now is the number of clusters) are greatly reduced [46]. Therefore, the statistical threshold
was set at a whole-brain corrected value with a topological FDR of p < 0.001 to visualize the main effects.

2.7.3. Psychophysiological Interaction (PPI) Analyses

We performed PPI analyses to investigate how activity within brain regions is modulated as a
function of the label condition. Because ACC was the core brain region of food decision-making, it was
selected as the seed area to perform the PPI analyses. The PPI models applied at the single-participant
level included the following main regressors. The first regressor consisted of the time series of activity
in the seed brain area (the ACC) identified in a separate analysis, as described below. The time
series was extracted in each participant by drawing a 6-mm sphere around the peak voxels from the
second-level analysis, which was then used to guide the isolation of each participant’s peak voxels
within that sphere. The second regressor consisted of a task-related contrast (unhealthy foods—TL
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label versus unhealthy foods—GDA label), and the third regressor consisted of the interaction between
the first and second regressors. The contrast maps for the PPI analyses were obtained from the same
first-level model as the contrast maps for the other analyses as described in Section 2.5, Section 2.7.1,
and Section 2.7.2. The TL vs. GDA contrast for healthy foods was not used for the PPI analyses because
we did not find any significant whole-brain clusters, including in the ACC’s response to healthy
foods with TL and GDA labels, and thus could not extract the signal value of the ACC (described in
Section 3). Therefore, PPI analysis was only conducted for unhealthy foods with TL and GDA labels.
The statistical threshold was initially set at a whole-brain corrected value with a topological FDR of
p < 0.001 to visualize main effects. However, as no brain regions were found at the 0.001 level, we
further set it to p < 0.005 to explore the results.

3. Results

3.1. Effect of Label Condition on Decision-Making

We observed a significant main effect of label, F(1,43) = 4.580, p = 0.039, η2 = 0.108, in that foods
with GDA labels were more often chosen (M = 0.66, SD = 0.29) than were those with TL labels (M = 0.59,
SD = 0.35). The main effect of food was significant, F(1,43) = 8.819, p = 0.005, η2 = 0.188, because
healthy foods were more frequently chosen (M = 0.85, SD = 0.14) than were unhealthy foods (M = 0.40,
SD = 0.29). We also found a significant two-way interaction between label and food, F(1,43) = 5.067,
p = 0.030, η2 = 0.118. More unhealthy foods were selected in the GDA label condition (M = 0.46, SD =

0.28) than in the TL label condition (M = 0.33, SD = 0.30), F(1,43) = 21.639, p < 0.001, η2 = 0.363; however,
a significant difference was not found for healthy foods with GDA labeling (M = 0.85, SD = 0.14) vs.
TL labeling (M = 0.86, SD = 0.13), F(1,43) = 1.221, p = 0.276, η2 = 0.031 (Figure 2). These results suggest
that TL labels on unhealthy foods are more effective in reducing unhealthy dietary choices.
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Figure 2. A comparison of food choices between the label conditions. GDA = guideline-daily-amount
condition; TL = traffic-light-like condition; * p < 0.05.

3.2. Effect of Label Condition on Regional Brain Activity

Whole brain analysis showed increased activation in the ACC, superior medial frontal, SMA, and
the fusiform, lingual, and middle occipital gyri in response to unhealthy foods with TL labels vs. GDA
labels (topological FDR p < 0.001; Table 1, Figure 3). However, the contrast between healthy foods with
TL vs. GDA labels did not elicit whole-brain significant clusters (topological FDR p < 0.001). These
results suggest that the TL labels were possibly superior in enhancing the activity of inhibitory frontal
regions only when co-presented with images of unhealthy foods.
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Table 1. Significant results of the fMRI analyses during unhealthy food presentation with GDA and
color-coded TL labels.

Effect Brain Area Laterality Cluster Size x y z t

U-TL label > U-GDA
label a Anterior cingulate cortex L 98 −6 27 27 4.13

Medial frontal gyrus L 65 −3 30 42 3.66
Supplementary motor area 25 0 18 48 3.87

Fusiform gyrus R 112 24 −72 −9 5.78
Lingual gyrus R 64 12 −78 0 3.64

Middle occipital gyrus R 147 30 −84 17 3.98
PPI: H-TL label >

H-GDA label Inferior frontal gyrus L 104 −51 45 3 3.85

(seed area: Anterior
cingulate cortex) b Middle frontal gyrus R 22 39 60 0 3.51

Middle temporal gyrus R 213 60 −24 −6 3.44

Note: fMRI = functional magnetic resonance imaging; GDA = guideline daily amount; TL = traffic light; U =
unhealthy food; PPI = psychophysiological interaction; a whole-brain corrected for topological false discovery rate p
< 0.001; b whole-brain corrected for topological false discovery rate p < 0.005.Nutrients 2020, 12, x FOR PEER REVIEW 8 of 13 
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Figure 3. Contrast maps for presentation of unhealthy foods with guideline-daily-amount (GDA) and
color-coded traffic-light (TL) labels. Note: U = unhealthy food, SMA = supplementary motor area,
SMF = superior medial frontal gyrus, MOG = middle occipital gyrus, ACC = anterior cingulate cortex.

3.3. Effect of Label Condition on the Functional Connectivity of the ACC

Given that the ACC is prominent within a network of regions that monitor the dynamic outcome
of actions and guide decision-making, this region may show label-dependent functional connectivity
with other inhibitory regions. We tested this hypothesis using a functional connectivity analysis with
the ACC as the seed area. Therefore, a PPI analysis was performed to test for a stronger correlation
between the ACC and other inhibitory frontal regions with unhealthy foods and TL labels vs. GDA
labels. This analysis revealed stronger positive coupling between the ACC and inferior frontal and
middle frontal gyri in unhealthy foods with TL labels condition than in the unhealthy foods with GDA
labels condition (Table 1, Figure 4).
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4. Discussion

To the best of our knowledge, the present study is the first to use fMRI techniques to investigate
and compare the effectiveness of information-based and more visually salient nutrition labels among
dieters during food decision-making processes. Consistent with our hypothesis and compared to a
purely information-based GDA label, the more salient red TL labels for unhealthy foods reduced the
frequency with which dieters selected unhealthy foods and increased the activity in the ACC, superior
medial frontal gyrus, and SMA. Additionally, the ACC exhibited a stronger functional connectivity
with the IFG and MFG when presented with a red label. However, we failed to find evidence for
the effectiveness of green nutrition labels in promoting healthy dietary choices, and for healthy
foods, the neural processes associated with reward did not differ when participants saw a purely
information-based label vs. a more salient nutrition label.

Similar to the way a red traffic light delivers a signal to stop the car, the foods with red TL labels
may signal participants to avoid them. Previous studies have found that conveying information
on food (such as a high calorie content) to indicate that it is unhealthy, or highlighting labels with
traffic-signal colors, directly reduced unhealthy eating behaviors [4,11,47]. Our results are similar to
these findings, in that TL labels were found to be a potential approach to reducing unhealthy choices
among dieters.

More importantly, we found increased activation in the ACC, superior medial frontal gyrus, and
SMA in response to unhealthy foods with red TL labels than with GDA labels. The stages-of-change
model of Prochaska and DiClemente emphasizes that individuals weigh the advantages and
disadvantages during the decision-making process, considering the rewards and risks of each option [48].
This implies that the process of decision-making involves activity in the ACC because this is a region
that monitors the dynamic outcome of decision-making [25–31]. Moreover, in a study by Enax et al. the
task required participants to perform a value computation of food products. This task mainly activated
the vmPFC, a brain region consistently associated with value computations across task modalities [12].
In the present study, we did not find activity within this region, likely because our tasks, and therefore
the involved cognitive processes, greatly differed from those of Enax et al. However, similarly to these
researchers, we found that cognitive neural processes associated with inhibitory control are important
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in conditions involving red TL labels. In addition to the increased activation of the IFG discovered
by Enax et al. other inhibitory regions including the superior medial frontal gyrus and SMA, were
more active in the red TL label condition than in the respective GDA-label condition. This provides
potential evidence that red TL labels for unhealthy foods convey a negative health message, thereby
allowing individuals to refrain from selecting such foods, despite employing value computation in the
decision-making process. Furthermore, Enax et al. found that the vmPFC, which is related to value
computations, exhibited stronger functional connectivity to the IFG in the red TL label condition than
in the respective GDA label condition [12]. Accordingly, we found that the ACC was associated with
monitoring the dynamic outcome of the decision-making process and also exhibited stronger functional
connectivity with the IFG and MFG during the red TL label condition. Our results showed that the red
TL labels for unhealthy foods enhanced the corresponding monitoring of decision-making and the
activation response in behavioral inhibition regions during the food selection process. Additionally, the
red TL labels promoted functional connectivity between the corresponding food value computations
and activity in inhibitory brain regions, possibly contributing to the reduction of unhealthy decisions.
Taken together, the results constitute further evidence for the potential effectiveness of red TL labels
and how this type of labeling can prevent unhealthy eating.

However, the green TL nutrition labels did not positively promote healthy food decisions or
increase the activity in reward-expectation-related brain regions compared to the respective GDA
labels, possibly because of factors related to participant selection and the experimental material. First,
the selected healthy foods had a high degree of appeal to avoid forcing participants to choose foods
they did not like. Second, our participants were long-term dieters, and thus most of the healthy foods
were palatable to them and compatible with their goal of weight loss [49]. Therefore, our data may
be showing a ceiling effect caused by the selection of palatable, healthy foods, regardless of the label
condition. As a result, a nutrition labeling effect was not seen during the process of healthy food
decision-making, and we did not observe any differences in neural activity or behavior under the two
labeling conditions. Moreover, highly palatable but unhealthy foods are not conducive to a dieter’s
weight control; therefore, such foods were selected to a lesser degree than healthy foods. Especially,
dieters reduced their choice of unhealthy foods under the red TL label than under the GDA label
condition, suggesting that the red TL nutrition label could effectively activate cognitive resources to
prevent the participant from selecting the food. While green TL labels failed to strengthen the selection
of palatable, healthy foods, our post-hoc hypothesis is that green TL labels may be useful when healthy
foods are less palatable. A recent study showed that TL labeling was not advantageous compared to
GDA [22], which may be due to subjective perceived enjoyment of the food. Therefore, the effects of
TL and GDA nutrition labels on choices involving unpalatable foods should be compared in future
research. In addition, society considers healthy food advantageous for physical health. Therefore, there
may have been a social desirability effect involved in the selection of healthy food in the experiments.
Moreover, the participants orally reported after experiment that they were not aware of the meaning of
the color label; hence, their healthy food choices were not influenced by prior knowledge of what the
labels signified. In contrast, a difference was found between the two nutrition labels for unhealthy
foods, indicating that TL labels indeed have an effect on unhealthy food choice. In future study,
the social desirability effect should be controlled to more accurately explore the effect of TL labels on
healthy food.

Several limitations of the present study should be noted. Dieting is the most popular method
of weight loss [23]; therefore, we specifically recruited dieters to investigate the possible effects of
nutritional labels on food selection. However, a previous study showed that TL labels are likely to
be a cost-effective method for preventing obesity on a behavioral level [15]. As we only recruited
participants who were chronic dieters and of healthy weight, it is unclear if this same effect would be
seen in participants who are overweight or obese. Further research using fMRI should be conducted
to confirm whether TL nutrition labels are equally effective for obese individuals. Furthermore,
the current study lacked a control condition, i.e., making a choice with no label present, and therefore
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baseline food choice in the absence of labels could not be examined. In addition, there are individual
differences in food preferences. Although this study attempted to control for the taste of food, it could
not resolve this issue entirely. Therefore, personalized experimental materials should be used in future
studies to avoid the influence of individual differences.

Future studies should address the effectiveness of nutrition labels in specific situations.
For example, it would be advantageous to study dieters during states of negative emotion or resource
depletion because they often display emotional eating tendencies when faced with stress or negative
emotions [43] and their food-specific inhibitory control is often decreased after depletion of cognitive
resources [41]. Whether appropriate nutrition labels can block unhealthy dietary decisions in these
situations is an important subject for further study. In addition, the currently used process of food
choice-related decision-making is not ecologically valid. Future research should simulate online food
purchases, providing corresponding numerical nutritional information or more prominent nutritional
labels alongside the orders. In addition to exploring the underlying neurobiological effects of nutrition
labels, it would be beneficial to also track eye movements during simulated online food purchases to
better elucidate how nutrition labels alter unhealthy dietary choices from an attentional perspective.

5. Conclusions

In sum, the present study found that, compared with GDA label, salient TL labels may reduce
unhealthy food choice decisions by increasing the activity in brain regions implicated in response or
motor inhibition and by increasing their connectivity with the ACC, a salient information monitoring
region. The use of red TL labels can potentially inform dieters and help them stop selecting unhealthy
dietary options and may be a more effective public policy intervention than is the use of GDA labels.
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