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Functional input and membership 
characteristics in the accuracy 
of machine learning approach 
for estimation of multiphase flow
Meisam Babanezhad1,2, Ali Taghvaie Nakhjiri3, Mashallah Rezakazemi4, Azam Marjani5,6* & 
Saeed Shirazian7,8

In the current study, Artificial Intelligence (AI) approach was used for the learning of a physical system. 
We applied four inputs and one output in the learning process of AI. In the learning process, the inputs 
are space locations of a BCR (bubble column reactor), which are x, y, and z coordinate as well as the 
amount of gas fraction in BCR. The liquid velocity is also considered as output. A variety of functions 
were used in learning, such as gbellmf and gaussmf functions, to examine which functions can give 
the best learning. At the end of the study, all of the results were compared to CFD (computational 
fluid dynamics). A three-dimensional (3D) BCR was used in this research, and we studied simulation 
by CFD as well as AI. The data from CFD in a 3D BCR was studied in the AI domain. In AI, we tuned 
for various parameters to achieve the best intelligence in the system. For instance, different inputs, 
different membership functions, different numbers of membership functions were used in the learning 
process. Moreover, the meshless prediction was used, meaning that some data in the BCR have 
not participated in the learning, and they were predicted in the prediction process, which gives us a 
special capability to compare the results with the CFD outcomes. The findings showed us that AI can 
predict the CFD results, and a great agreement was achieved between CFD computing nodes and AI 
elements. This novel methodology can suggest a meshless and multifunctional AI model to simulate 
the turbulence flow in the BCR. For further evaluation, the ANFIS method is compared with ACOFIS 
and PSOFIS methods with regards to model’s accuracy. The results show that ANFIS method contains 
higher accuracy and prediction capability compared with ACOFIS and PSOFIS methods.

Gas–liquid–solid and gas–liquid reactors as bubble columns are utilized in numerous pharmaceutical, biotech-
nological, and chemical industries. Moreover, other multiphase procedures are used as a result of their operative 
mixing and heat and mass transfer features between various phases using comparable energy related to vessels 
with stirred tanks1,2. Tiny bubbles are created through dispersing the gas phase within bubble column reactors 
in the liquid phase, continuously utilizing a tool for distributing the gas. Numerous operating circumstances 
affect the flow pattern, including the geometry, the gas flow rate governing the flow trend, and the gas distribu-
tors controlling the gas’s spatial distribution and determining the primary bubble size distribution. Moreover, 
the bubble–bubble interactions and existence of turbulence and the complex interaction between operating 
circumstances result in complex flow structures and various flow trends dominating the flow’s hydrodynamic 
features. Hence, it is essential to comprehend the instantaneous flow systems completely.

Computational Fluid Dynamics (CFD) simulation was extensively developed over decades as a powerful com-
putational method for predicting the instantaneous flow structures and mean flow profiles3,4. Though, it is still 
difficult to simulate the dynamics of mesoscale coherent flow structures in large-scale BCRs via traditional CFD 
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simulations since fully resolving the dynamic behavior requires to compute the longer physical time (more than 
1000 s) and finer grid resolution (almost 6.5 mm in radial, and 30 mm in the axial directions)5. Mentioning the 
simulation of longer physical time with finer grids requires time. However, a transient simulation of about several 
100 s of physical time on relatively coarser grids is completed within several weeks or months of computational 
time6,7. This lower computational efficiency is caused by the restricted performance of traditional computer 
hardware, indeed, Central Processing Units (CPU) as well as the computational algorithm, including complex 
iterations in mathematical models and fluid solvers, and the incompatibility between computational algorithm 
and computer hardware in particular8. Therefore, coordination of the above issues is raised to effectively enhance 
computation speed and meet the process industry and chemical’s practical need.

The phase-volume-averaged models, such as mixture or two-fluid models, are more feasible, although Direct 
Numerical Simulation (DNS)9,10 or Eulerian–Lagrangian model11,12 are more accurate and unaffordable. How-
ever, the mixture model is much simpler owing to the relatively weak coupling within phase equations and 
gives reasonable predictions for BCRs13. This simplicity in the model structure becomes more appropriate for 
computation acceleration with Graphics Processing Units (GPU). Hence, it is possible to obtain reasonable 
simulation accuracy and make the compatible model structure with GPU-accelerated parallel computation14,15. 
Nevertheless, numerical issues and convergence problems exist in all computing techniques that are sometimes 
very time-consuming.

Some examples of soft computing approaches in the literature include evolutionary algorithms, adaptive 
neuro-fuzzy inference system (ANFIS), neural networks support vector machines, and simulated annealing to 
simulate the physics and predict the flow of a bubble column reactor. ANFIS is more interesting in this regard by 
its capability for training complex relationships16–18. Many powerful and practical techniques have been produced 
by artificial intelligence to overcome the difficulties in different fields and solve complicated problems in the 
real world. Numerous researchers have employed artificial intelligence (AI) technology as a result of high-speed 
operation, its easy use, and acceptable accurateness not requiring to comprehend the physical issues. Azwadi 
et al.19 utilized the ANFIS technique for predicting the flow and temperature in a cavity. They performed the 
simulation of heat transfer behavior in a two-dimensional system considering different Reynolds numbers. They 
found that the flow fields and temperature are trained accurately predicted by the ANFIS algorithm in signifi-
cantly less time. Machine learning methods are recently widely used to link to computational fluid dynamics 
to better predict the turbulent kinetic spectrums, gas hold-up, the liquid flow pattern, and other flow features 
in the BCR20. By this combination, a great framework is created to map the results or provide multiple input/
output parameters21,22.

Researchers have conducted successful research about the prediction of different physical processes, such as 
multiphase flow, bubbly flow, and thermal analysis23. They have also tried to unlock the complicated processes, 
such as multiphase flow, the interaction between gas and liquid, and the interphase characteristics of the dispersed 
and continuous phases. They have mainly concentrated on the prediction of processes, based on experimental 
or numerical results24,25. They have also proposed different ways to train, test, validate, and then predict the 
processes and datasets. In addition to this analysis, they have illustrated the full intelligence flow pattern against 
the numerical flow pattern. However, machine learning methods have an excellent ability to understand the 
significant parameters and connectivity between input and output parameters. The level of complexity for each 
input parameter has not been thoroughly investigated. Alternatively, output parameters, such as flow character-
istics (i.e., gas fraction, fluid velocity, and thermal distributions) or turbulence properties, solved by numerical 
methods, have not thoroughly been used in the input dataset. This study will address some of these research gaps. 
It will try to have more input parameters in the training process, a combination of geometry input parameters 
(location of computing points/nodes), and flow properties solved by CFD. Additionally, the complexity and con-
nectivity between datasets are investigated to understand more about the process’s input and output parameters.

In particular, in the current research paper, a 3D BCR is modeled via CFD, and the data from CFD is used in 
the training stage of the AI, and also used in the prediction stage via fuzzy logic. This BCR is 3D, and the data 
from x, y, and z-direction are trained, and data from solving the Navier–Stokes equation, which is air volume 
fraction, is also utilized in the training process of our data. Water liquid velocity is predicted as an output, and all 
of the models are studied with different functions. The effect of each input is tested in the accuracy of the model.

Computational methodology
Geometrical structure.  A bubble column reactor (BCR) was studied at ambient temperature (23 °C) and 
atmospheric pressure in the current research. The arrangement of ring sparger orifices was orderly at fixed gaps 
in the termination of the multiphase domain. The bubble is detached based on the separation of the spherical 
bubbles that have clear shape distinction. Besides, it is further assumed that the bubbles possess minimum strike, 
with occurring the least breakup as well. Altogether, the above openings create a homogeneous flow regime with 
typical uniform bubble sizes in the multiphase flow domain.

CFD simulations.  Eulerian CFD technique is applied to model the gas bubble and liquid interaction in the 
multiphase framework, representing the approximation of gas and liquid volume fraction and not the interphase 
between two phases. The Eulerian model formulation, designated in this CFD research, is based on momentum 
transport equations and ensemble-averaged mass for the gas and liquid, respectively. As indicated below, the 
momentum transfer equations and continuity are denoted for the Euler–Euler multiphase framework, respec-
tively (solved for the bubbles and liquid phases separately)26:

(1)
∂

∂t
(ρkǫk)+∇(ρkǫkuk) = 0
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where ϵk and uk show the volume fraction of phase k and average velocity, respectively. To discretize the conserva-
tion equations, the control volume approach is employed in this numerical study. To solve the fluid flow issues in 
the CFD, some existing solution approaches include finite difference27, Lattice Boltzmann, and finite volume26,28. 
The finite volume discretization method is the most powerful procedure in which CFX is based. The momentum 
formulation for liquid phases and gas phase can be defined as26:

The stress term of phase k in the above equation is represented as below26:

In Eq. 3, μ denotes effective liquid viscosity, consisting of 3 terms: turbulence viscosity, molecular viscosity, 
and viscosity based on bubble stimulated turbulence26:

The operative viscosity of gas is written as:

Sato and Sekoguchi29 suggested that two terms influence the turbulent shear stress in bubble flow. First, the 
inherent liquid turbulence does not depend on bubbles’ relative motion in the liquid phase. Second, the extra 
liquid turbulence term created with bubble stirring26:

The total interfacial force is the final term in the momentum transfer equation as defined below26:

The above-mentioned total interfacial forces represent the turbulent distribution and drag force with neglect-
ing the virtual mass and lift. The interphase momentum transfer between liquid phase and gas bubble because 
of drag force is presented below26:

In Eq. (8), the parameters CD and dB refer to the drag coefficient and bubble diameter, respectively. Diam-
eters of 0.44 and 4 mm are chosen for the bubble diameter and drag coefficient, respectively, as recommended 
previously5 by experimental outcomes and numerical conditions of Plfeger and Becke5. According to earlier 
researches30,31, the turbulent dispersion force model is applied for the present CFD examinations to increase the 
flow field prevision against the walls. The above model, developed by Lopez de Bertodano32, is based on interplay 
and molecular movement analogy. That estimates a turbulent diffusion of the bubbles by the liquid eddies and 
is expressible as26:

In Eq. (9), CTD and k represent turbulent dispersion coefficient and liquid Turbulent Kinetic Energy (TKE), 
respectively. A variety of values for the turbulent dispersion coefficient have been proposed in the literature26,30.

Besides interfacial forces, it is essential to select an appropriate turbulence model to properly predict bub-
ble column hydrodynamics31,33. k–ε turbulence model is used to approximate velocity distribution and eddy 
structure due to gas and liquid interaction. This model is very popular in industries and academia due to fast 
calculation compared to direct numerical simulation or large-eddy simulations26,33. The turbulent eddy viscosity 
for multiphase flow (the interaction between gas bubbles and liquid) is expressed as:

The energy dissipation rate (ε) and its turbulent kinetic energy (k) are computed using the principal equa-
tions as follows26:

where k and ε are determined using their conservation equations.
Parameter G specifies the production of turbulent kinetic energy26:

(2)
∂

∂t
(ρkǫkuk)+∇(ρkǫkukuk) = −∇(ǫkτk)− ǫk∇p+ ǫkρkg+MI,k

(3)τk = −µeff,k

(

∇uk + (∇uk)
T −

2

3
I(∇uk)

)

(4)µeff,L = µL + µT,L + µBI,L

(5)µeff,G =
ρG

ρL
µeff,L

(6)µBI ,L = ρLCµ,BIǫGdB|uG − uL|

(7)MI,L = −MI,G = MD,L +MTD,L

(8)MD,L = −
3

4
∈G ρL

CD

dB
|uG − uL|(uG − uL)

(9)MTD,L = −MTD,G = −CTDρLk∇ ∈L

(10)µT,L = ρLCµ

k2

ε

(11)
∂

∂t
(ρL ∈L k)+∇(ρL ∈L uLk) = −∇

(

∈L
µeff,L

σk
∇k

)

+ ∈L (G− ρLε)

(12)
∂

∂t
(ρL ∈L ε)+∇(ρL ∈L uLε) = −∇

(

∈L
µL,eff

σε
∇ε

)

+ ∈L
ε

k
(Cε1G− Cε2ρLε)



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17793  | https://doi.org/10.1038/s41598-020-74858-4

www.nature.com/scientificreports/

Grid.  For the generation of computing domain in CFD study, hexahedral grids are generated throughout the 
multiphase domain. The meshes’ non-uniform structure is copied in different levels of the reactor from sparger 
to bubble column surface zones. As the flow regime in this work is homogeneous flow with typical uniform 
spherical bubbles, we validated the gas hold-up in the reactor and liquid flow pattern with the existing dataset 
in literature for homogeneous flow regime. In the big difference between CFD outputs and experimental obser-
vations, we need to check CFD boundary conditions and numerical implementation. However, sometimes, in 
experimental observations, we cannot fully observe the bubble column reactor’s flow behaviour due to experi-
mental noise and errors.

Adaptive‑network‑based fuzzy inference system (ANFIS).  ANFIS is a fuzzy-based simulation sys-
tem for the precise prevision of the action of complex physical/chemical systems . Three dissimilar kinds of fuzzy 
rationale exist for which Sugeno and Takagi recommended if–then approach to be employed in the structure of 
ANFIS34. The function of the ith rule for different input parameters are defined as35:

(13)G = τL : ∇uL

Figure 1.   ANFIS training and testing processes using one input and different types of membership functions 
when number of membership functions is 2 for each input.

Figure 2.   ANFIS training and testing processes using two inputs and different types of membership functions 
when number of membership functions is 2 for each input.
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where wi is the outcoming signal of the 2nd layer’s node, and μAi, μBi, μCi and μDi are incoming signals from MFs 
applied on inputs, x coordination (X), y coordination (Y), z coordination (Z) and air volume fraction (AVF), to 
the 2nd layer’s node35.

Weight function for different patterns of prediction are described as:

In Eq. (15), wi  is named normalized firing strengths. The 4th layer used the structure of a consequent if–then 
rule suggested by Sugeno and Takagi34. Therefore, the node function may be defined as:

where pi, qi, ri,, si and ti are the if–then rules’ parameters termed consequent parameters35.

(14)wi = µAi(X)µBi(Y)µci(Z)µDi(AVF)

(15)wi =
wi

∑

(wi)

(16)wifi = wi

(

piX + qiY + riZ + SiAVF + ti
)

Figure 3.   ANFIS training and testing processes using three inputs and different types of membership functions 
when number of membership functions is 2 for each input.

Figure 4.   ANFIS training and testing processes using four inputs and different types of membership functions 
when number of membership functions is 2 for each input.
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Results and discussion
Sixty percent of data was applied for learning process in the current study, and the remaining data was studied 
in the testing process. As mentioned before, different functions with a variety in number were studied in learn-
ing, and we consider the best signaling for the intelligence of the system in our study, and for achieving the best 
intelligence in the system, we optimize the system. As shown in Fig. 1, one input was used for all the functions 
and the membership function in the system. Using one input leads to having very low intelligence in the system. 
When one input is used in training, generally, the data does not have the prediction capability.

By enhancing the number of inputs, a significant change in the error domain is seen. As shown in Fig. 2, the 
system’s accuracy increases compared to 1 input, and a slight difference can be seen when the functions in the 
system change, but the positive point is that by increasing the inputs in our system, the system reaches a good 
intelligence. On the other hand, Fig. 3 shows that when the number of inputs is increased to 3, the system’s R 
reaches 0.76, and we can see an escalating trend in the system. Analyzing the data shows us that the accuracy of 
the system stays steady when the functions change.

Figure 4 shows four inputs in learning, and a significant improvement is visible in the accuracy of the system, 
and R reaches 0.89, which is a suitable number, and even for some functions, R reaches 0.9.

A point worth mentioning about Fig. 5 is that the number of inputs is kept constant, and the membership 
functions changes. So, when the membership functions increase, the system sends a suitable intelligent sig-
nal; therefore, the system can be considered the absolute intelligence of the BCR. The same figure shows that 

Figure 5.   ANFIS training and testing processes using four inputs and gaussmf as the best type of membership 
function with changes in number of membership functions (2,3 and 4).

Figure 6.   ANFIS structure in the best intelligence using four inputs and number of membership functions is 4 
for each input with type of gaussmf.
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membership functions 2, 3, and 4 were considered, and R for the mentioned membership functions are 0.9, 0.97, 
0.99 successively. As is evident, the membership function for number 4 is a very high number. Figure 6 shows 
the neural networks for four inputs. As shown, a bulky neural network is created according to the high number 
of membership functions and the system’s inputs.

Figure 7a–d show the number of membership functions and inputs keeps in the best condition meaning 
that the former and the latter are kept 4. Also, the changes in the system show us their effects on the error by 
considering the inputs. As illustrated in Fig. 7a, the velocity of liquid results from the function of input 1, and 
the data from CFD and AI overlap each other.

In Fig. 8a–f, we consider the 3D faces for the general prediction. Also, we consider inputs 1 and 2 with the 
output. As shown on top of the BCR, the highest amount of increase in the fluid velocity is seen. The fluid move-
ment in the corner of the BCR is aggregated, which is shown in Fig. 8. Figure 9 compares the CFD and ANFIS 
data. As shown, AI and CFD patterns are generally similar. We used a full meshless method, and some data were 
not used in the AI, so AI could predict the data very intelligently, which overlaps with the CFD results.

To understand more about the impact of the number of membership functions on the method’s accuracy 
and prediction capability, the degree of membership functions were analyzed as a function of each input param-
eter. This analysis also showed the connectivity between inputs and outputs parameters and the level of input 

Figure 7.   (a) Validation of ANFIS prediction (liquid velocity) and BCR simulated results (liquid velocity), 
considering first input (x-direction). (b) Validation of ANFIS prediction (liquid velocity) and BCR simulated 
results (liquid velocity), considering second input (y-direction). (c) Validation of ANFIS prediction (liquid 
velocity) and BCR simulated results (liquid velocity), considering third input (z-direction). (d) Validation of 
ANFIS prediction (liquid velocity) and BCR simulated results (liquid velocity), considering forth input (air 
volume fraction).
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complexity. Figure 10a,b showed the degree of membership function as a function input parameters. First, two 
functions on each input were considered. The results showed that considering two membership functions in each 
input function could not cover the whole range of input parameters. In this regard, the number of membership 
functions increased in each input for Fig. 10b, the results illustrated that more functions could represent an input 
parameter in a better way.

Different learning algorithms, such as ACO and PSO methods, were considered in the training process for a 
better comparison between the current AI method with other traditional AI methods. All numerical conditions 
for machine learning methods are similar, such as the percentage of the training dataset, type of membership 
functions, and the number of numerical iterations (See Table 1). In this regard, the training accuracy level and 
the prediction capability were evaluated for the ANFIS method. Figure 11 showed that the ANFIS method’s 
accuracy is higher than ACOFIS and PSOFIS methods with regards to the training and testing processes. For 
instance, the ANFIS method contained R > 0.99, while ACOFIS and PSOFIS methods were less than 0.96 for 
R criteria. Apart from the accuracy of this for the training and testing process, the behavior of this method in 
the prediction of the fluid flow pattern in the domain should be considered. Figure 12 compared the fluid flow 
pattern prediction for different machine learning and CFD methods. The results illustrated that there is a good 
agreement between the ANFIS method and CFD results, and this method of prediction can accurately estimate 
the flow pattern in the domain. For more analysis and error assessment, all training and testing process for the 
ANFIS, ACOFIS, and PSOFIS methods were compared together (see Table 2). The results show that the ANFIS 
method can accurately train datasets and then predict them. This method contained a minimal error with regards 
to R,R2,RSME and STD evaluation analysis.

Figure 7.   (continued)
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Figure 8.   (a) Liquid velocity predicted surface with x-direction and y-direction as inputs. (b) liquid velocity 
predicted surface with x-direction and z-direction as inputs. (c) Liquid velocity predicted surface with 
x-direction and air volume fraction as inputs. (d) Liquid velocity predicted surface with y-direction and 
z-direction as inputs. (e) Liquid velocity predicted surface with y-direction and air volume fraction as inputs. (f) 
Liquid velocity predicted surface with z-direction and air volume fraction as inputs.



10

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17793  | https://doi.org/10.1038/s41598-020-74858-4

www.nature.com/scientificreports/

Figure 8.   (continued)
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Conclusions
By analyzing the results, we understood that increasing the number of inputs, the system has an intelligent sig-
nal, and we can easily use AI in the three-dimensional BCR for the prediction of fluid flow and gas in the BCR. 
We modeled the three-dimensional BCR with CFD, and different hydrodynamic parameters in the BCR were 
simulated via the CFD method. Then they were inputted to the AI, and by changing the inputs in the AI system 
including changing in the number of membership function, the number of nodes, and different membership 
functions, we could reach an AI system which is fully intelligent. When the number of inputs increases to 4, the 
system shows an exemplary reaction, meaning that it reaches its best conditions. For evaluation of the current AI 
method, this method is compared with ACOFIS and PSOFIS methods regarding training accuracy, prediction 
capability, and pattern recognition. The method of the ANFIS showed a significant level of prediction compared 
with other AI methods, and it can accurately track the fluid flow pattern in the domain. The current study shows 
us that AI can be used in different flow regimes, and the relations among the flow regimes can be found with AI. 
But before finding the relations among the regimes, the system must reach its highest intelligence. The current 
prediction method can only distinguish between gas and liquid phases, which are based on the data-driven train-
ing. This method can only predict the process within the range of training. In this regard, this method cannot 
predict different flow regimes or phases outside the training datasets. The AI method can be an assistance tool 
besides numerical methods to understand the process better, find a significant parameter in the process, and 
optimize the process for many operating conditions.

Figure 9.   Comparison of CFD data and ANFIS prediction using data which was absent in learning processes 
(Y-direction = 1.3 m).
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Figure 10.   (a) Degree of membership using guass2mf as type of MFs when number of MFs for each input is 2. 
(b) Degree of membership using guass2mf as type of MFs, when number of MFs for each input is 4.
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Table 1.   Initial parameters of ANFIS, ACOFIS and PSOFIS methods.

Method ANFIS ACOFIS PSOFIS

MaxIteration 70 70 70

Number of inputs 4 4 4

Number of P 60 60 60

Clustering type Grid partition Subtractive clustering Subtractive clustering

Cluster influence range (CIR) as a parameter of subtractive clustering – 0.15 0.15

FIS type sugeno sugeno sugeno

Number of rules 256 122 125

Number of membership function for each input 4 122 125

Number of membership function for output 256 122 125

Type of membership function gauss2mf gaussmf gaussmf

Figure 11.   Regression plot of the best prediction using ANFIS, ACOFIS and PSOFIS methods.

Figure 12.   Comparison of predictions pattern by ANFIS, ACOFIS and PSOFIS methods.
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