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ABSTRACT
The recent coronavirus disease-2019 (COVID-19) outbreak has
increased at an alarming rate, representing a substantial cause of
mortality worldwide. Respiratory injuries are major COVID-19
related complications, leading to poor lung circulation, tissue scar-
ring, and airway obstruction. Despite an in-depth investigation of
respiratory injury’s molecular pathogenesis, effective treatments
have yet to be developed. Moreover, early detection of viral infec-
tion is required to halt the disease-related long-term complica-
tions, including respiratory injuries. The currently employed
detection technique (quantitative real-time polymerase chain reac-
tion or qRT-PCR) failed to meet this need at some point because
it is costly, time-consuming, and requires higher expertise and
technical skills. Polymer-based nanobiosensing techniques can be
employed to overcome these limitations. Polymeric nanomaterials
have the potential for clinical applications due to their versatile
features like low cytotoxicity, biodegradability, bioavailability, bio-
compatibility, and specific delivery at the targeted site of action.
In recent years, innovative polymeric nanomedicine approaches
have been developed to deliver therapeutic agents and support
tissue growth for the inflamed organs, including the lung. This
review highlights the most recent advances of polymer-based
nanomedicine approaches in infectious disease diagnosis and
treatments. This paper also focuses on the potential of novel
nanomedicine techniques that may prove to be therapeutically
efficient in fighting against COVID-19 related respiratory injuries.
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Schematic illustration of potential polymer-based nanomedicine
strategies for the diagnosis and treatment of COVID-19 related
respiratory injury.

Abbreviations: SARS-CoV-2: Severe acute respiratory syndrome
coronavirus 2; COVID-19: Coronavirus disease 2019; WHO: World
health organization; ALI: Acute lung injury; ARDS: Acute respira-
tory distress syndrome; DNA: Deoxyribonucleic acid; RNA:
Ribonucleic acid; ACE2: Angiotensin-converting enzyme 2; AECII:
Alveolar epithelial type II cells; TMPRSS2: Transmembrane serine
protease 2; VILI: Ventilator-induced lung injury; VV-ECMO: veno-
venous-Extracorporeal membrane oxygenation; IL: Interleukin; NF-
jB: Nuclear factor kappa-light-chain-enhancer of activated B cells;
PMMA: Poly(methyl methacrylate); PAA: Poly(amino acid); QCM:
quartz crystal microbalance; COPD: Chronic obstructive pulmonary
disease; POEGMA: Poly(Oligo(ethylene glycol) monomethyl ether
methacrylate); DOTA: 1,4,7,10-tetraazacyclododecane-1,4,7,10-tet-
rakisacetic acid); GMA: Glycidyl methacrylate; DPA: 2-
(Diisopropylamino)ethyl methacrylate; TPE-4SH: Tetrakis[4-(2-mer-
captoethoxy)phenyl]ethylene; pHLIP: pH-low insertion peptide;
PVAS: Poly(vinyl alcohol) sulfate; AMPS: 2-acrylamido-2-methylpro-
pane sodium sulfonate; PPCM: Polyphenylene carboxymethylene;
PLGA: Poly(lactic-co-glycolic acid); PNIPAm: Poly(N-isopropylacryla-
mide); PLA: Polylactic acid; PICA: Poly(isobutyl cyanoacrylate);
pHEMA: Poly(2-hydroxyethyl methacrylate); DDS: Drug delivery
system; PCL: Poly(e-caprolactone); PEG: Poly(ethylene glycol);
VEGFR: Vascular endothelial growth factor receptor; SAHA:
Suberoylanilide hydroxamic acid; DOX: Doxorubicin; HCC:
Hepatocellular carcinoma; COPD: Chronic obstructive pulmonary
disease; PAA: Poly(acrylic acid); AZT-TP: Azidothymidine-triphos-
phate; CDDP: Cis-platinum or cis-diamminedichloroplatinum(II);
HIV: Human immunodeficiency virus; PAMAM: Polyamidoamine;
HSV: Herpes simplex virus; PVP: Polyvinylpyrrolidone; VZV:
Varicella zoster virus; PVL-co-PAVL: Poly(valerolactone)-co-poly(-
allyl-d-valerolactone); PVA: Poly(vinyl alcohol); PLL: Poly-L-lysine;
PPI: Polypropylene polybenzyl isocyanate; gp120: Envelope glyco-
protein GP120; CD4: Cluster of differentiation 4; PCD: Polyanionic
carbosilane dendrimer; MPN-HANP: Metal-phenolic network-
coated hyaluronic acid nanoparticles; PDEAAm: Poly(N,N-diethyla-
crylamide); PEO: Poly(ethylene oxide); PPO: Poly(phenylene oxide);
PVCL: Poly(N-vinyl caprolactam); PDLLA: Poly(D, L-lactic acid);
HAG: Hyaluronic acid hydrogel; ESCs: Embryonic stem cells; iPSCs:
Induced pluripotent stem cells; MSC: Messenchymal stem cells;
siRNA: Small interfering RNA; APCs: Antigen-presenting cells; MHC:
Major histocompatibility complex; VANs: Vaccine adjuvant nano-
particles; CSPG: Chondroitin sulphate proteoglycan; ASCs:
Adipose-derived stem cells;

Background

The outbreak of the novel b-coronavirus (severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2); family: Coronaviridae) responsible for Corona Virus
Infectious Disease-2019 or COVID-19 is considered the worst crisis since World War
II.[1] This pandemic’s impact is frightening as the human race faces a critical situation
with mandatory lockdowns with a long-lasting dent in the world economy. Critically
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ill patients can develop acute lung injury (ALI) and acute respiratory distress syn-
drome (ARDS) (about 30–40%), which is associated with high mortality.[2] ARDS is a
catastrophic disease condition characterized by noncardiogenic pulmonary edema,
decrease pulmonary compliance and acute onset of hypoxic respiratory failure.[3,4] All
of these complications can subsequently trigger a cascade of other severe injuries,
including multiple organ failure. Unfortunately, to date, contemporary therapeutic
strategies to treat ALI/ARDS have not been rewarding.[5,6] Due to the complex patho-
genesis and nature of the infection, some therapeutic targets for the blockade of spe-
cific cytokines and chemokines have failed to show an optimistic outcome.[7–9]

Currently, only protective lung ventilation strategies are the accepted gold standard
for ARDS treatment.[10] However, targeted delivery of anti-viral drugs, proteins, pep-
tides, and silencing RNAs is some potential therapies for ARDS treatments.[11]

Despite these potential candidates’ prospects, their delivery to the lung is a significant
challenge for potential use in preventing viral infection and treating the respiratory
injury.[12,13] A major hurdle in lung tissue engineering is developing lung-appropriate
scaffold materials for soft tissue regeneration.[14]

Nano-therapies have become an attractive approach to overcome these limitations
and the targeted delivery of potential therapeutic candidates to the lung.[15]

Nanocarriers are mainly designed to increase the biodistribution of therapeutic agents
to target organs, which results in improved efficacy with minimizing drug toxicity.[16]

Nanomaterials can also be designed to support the production of bioengineered lung
tissue in lung damage repair.[17] Polymer chemistry offers the capability to develop a
wide range of nanocarriers with broad classes of functional groups to provide unique
possibilities to bypass the conventional limitations of viral infection prevention and
respiratory injury treatments. Among different drug delivery systems proposed for
pulmonary or respiratory applications, biodegradable polymeric nanocarriers’ use rep-
resents more potentiality.[18] Moreover, biocompatible polymeric hydrogel materials
are considered one of the most suitable options to use as scaffolds because of its cap-
ability to provide lung-appropriate three-dimensional (3D) architecture with mechan-
ical properties required to help the breathing and gas exchange processes.[19]

This review article will first focus on lung pathophysiology during the development
of ARDS in COVID-19 infected patients. In the next section, a short synopsis of
polymer-based nanobiosensing approaches for SARS-CoV-2 virus detection will be
given. Later on, conventional treatments of respiratory injury and their shortfalls
will be explored. In the later part of this review, advances in polymer-based nano-
therapies will be emphasized to control respiratory complications and the treatment
of ARDS in COVID-19 infected patients.

ARDS in COVID-19 patients: Pathological changes of lungs

The primary target organ of SARS-CoV-2 is the respiratory tract, particularly the
upper airways and lungs.[20] The virus initially reaches alveoli, and the spike protein
of the virus binds to angiotensin-converting enzyme 2 (ACE2) and enters alveolar
epithelial type-II (AECII) cells via transmembrane protease serine 2 (TMPRSS2)
catalysis.[21] These cells act as a reservoir of the virus. Pulmonary dendritic cells and
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macrophages sense the presence of viral antigens, thereby initiate an innate immune
response to discharge immense amounts of proinflammatory cytokines, including
Tumor Necrosis Factor-a (TNF-a), interleukin-1 (IL-1) and IL-6, and interferon
(IFN-c), resulting in a ‘cytokine storm’.[22] Elevated levels of secreted cytokines
induce the disruption of the alveolar-capillary membrane. Moreover, these cytokines
also induce endothelial contraction, resulting in vasodilation and increased vascular
permeability.[23] The disrupted alveolar-capillary membrane integrity allows the plasma
leakage into the alveoli and the lungs interstitial spaces. Osmotic pressure gradient loss
leads to a leaky barrier, and enhanced sensitivity to hydrostatic forces is considered key
in diffuse edema formation.[24] The formation of protein-rich edema (also known as
exudate) in the alveolar spaces and interstitium leads to alveolar flooding; such events
make it difficult to breathe and triggers hypoxemia, one of the common symptoms of
COVID-19 related respiratory injury.[23,25] The flooded interstitium provokes alveoli
contraction. Moreover, alveoli collapsing is also induced by the decreased surfactant level
due to the damaged AECII cells. Pulmonary macrophages also release more TNF-a and
interleukins that move towards Polymorpho-nuclear Neutrophils (PMNs) via chemotac-
tic phenomena.[26] Interleukins and TNF-a trigger PMNs of the inflamed tissue to
invade the alveoli and release reactive oxygen species (ROS), neutrophil extracellular
traps (NETs), and proteases that damage different cells existing in the lung inflamma-
tory microenvironment, including endothelial cells and alveolar epithelial cells.[23] These
disease outcomes expedite inflammatory clusters containing fibrinoid materials and mul-
tinucleated giant cells, carbon dioxide diffusion and gas exchange disorders, and vascular
congestion.[27,28] All these pathological changes lead to intractable hypoxemia and a con-
solidation process that enhances and worsens the alveolar collapsing. In normal physio-
logical conditions, the inhaled oxygen reaches the alveoli to oxygenate the blood which
then returns to the heart and then to the body’s different cells.[23] Hence, the alveolar-
capillary membrane in a healthy human is very thin to help exchange of gases. In ALI/
ARDS patients, the inflammatory process is widespread in both alveoli and interstitium,
making the lungs stiff, and it becomes more difficult to inflate due to fluid and inflam-
mation; thus, pulmonary failure occurs in infected patients.

Polymer-based nanomedicine strategies for SARS-CoV-2 detection

Generally, methods for detecting viral infections rely on the detection of genetic
materials or unique markers of the pathogen itself. In the case of COVID-19, the cur-
rently employed detection technique is quantitative real-time polymerase chain reac-
tion (qRT-PCR), where the detection mainly relies on the presence of RNA of the
SARS-CoV-2 virus.[29] Besides, some combined approaches including RT-PCR, chest
X-ray, CT-scans, identification of some biomarkers and their level (e.g. procalcitonin:
low level, IL-6 and 10: high concentrations, C-reactive protein: elevated level, and
lymphocyte counts: low level) in blood have also been practiced for the diagnosis of
COVID-19 infected patients.[30] These techniques are labor-intensive, time-consum-
ing, and cannot be available in resource-limited settings. Moreover, some false posi-
tive/negative responses are also reported in many cases.[31] Contrarily, nanomaterial-
based sensing strategies are suitable for viral detection with better sensitivity and
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selectivity, authenticity, scalability, specificity, and minimal false positive/negative
responses.[32] Among different nano- and biosensing approaches, molecularly
imprinted polymers (MIPs) provide potential applicability and physicochemical
robustness for detecting viral pathogens.[33] Fabrication of MIPs is done by molecular
imprinting of novel functional polymers with pre-designed molecular target selectiv-
ity. MIP-based sensors with unique selectivity and sensitivity can be employed for the
detection of the SARS-CoV-2 virus. Previously, the detection of the Influenza virus,
HIV, Zika virus, Ebola virus, and Dengue virus have been performed successfully by
selecting virus-specific biomarkers as the recognition element.[34–38] For example,
Wangchareansak et al. developed a MIP sensing tool in combination with the quartz
crystal microbalance (QCM) method for proof-of-concept of Influenza A virus sub-
types (H5N1, H5N3, H1N1, H1N3, and H6N1) screening.[37] They used acrylamide,
methacrylic acid, methylmethacrylate, and N-vinylpyrrolidone as the polymer system
for imprinting. Influenza A virus surface antigens are composed of two glycoproteins,
i.e. hemagglutinin (HA) and neuraminidase (NA), that play a vital role in the subtype
classification.[33] In that study, MIP was made for each Influenza virus subtype
whereby each MIP possessed a better recognition property towards its original viral
template. Findings of that study suggest that both the H and N domains play crucial
roles in the molecular recognition of MIP. This report has opened a new option to
screen Influenza A virus subtypes in unknown samples with detection limits of up to
105 particles/mL. Similarly, Tai et al. fabricated MIP-based film in the presence of a
pentadecapeptide (15-mer peptide: linear epitope of the non-structural (NS1) protein
of Dengue virus) onto a QCM chip.[38] Such epitope-mediated imprinting resulted in
an enhanced polymer affinity toward the virus protein. They enhanced the binding
effect using a monoclonal antibody to form a sandwich with the MIP-NS1 protein
complex on the chip. These studies indicated that the detection of SARS-CoV-2 could
be done by selecting a polymer belonging to the acrylic group (e.g. acrylamide, acrylic
acid, methyl acrylate, ethyl acrylate, and methyl methacrylate) and applying the CoV-
specific biomarker as the recognition element.[39] Only polymer-based biosensing
approaches have been summarized here with their potential application to detect the
SARS-CoV-2 virus. A more detailed discussion of other nanomaterial-based biosen-
sors for CoV detection can be found elsewhere.[40]

Current therapeutic options to treat ARDS: Limitations and challenges

Despite the improved molecular understanding of the infection, there is still no specific
treatment for ARDS. Some common therapeutic strategies include protective mechan-
ical ventilation, prone-positioning ventilation, fluid-conservative strategy, and other
supportive care.[41] These strategies have some limitations like the development of ven-
tilation-induced lung injury (VILI), exacerbation of lung injury, and stimulating inflam-
matory reactions.[42] Veno-venous extracorporeal membrane oxygenation or VV-
ECMO is an effective life-saving intervention to treat ARDS. However, the routine
application of ECMO as salvage therapy in severe ARDS patients is a matter of
debate.[43,44] Broad-spectrum antiviral therapy could be an option to treat COVID-19
related ARDS patients. However, a low success rate due to ongoing inflammatory
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response, the emergence of rapid mutation of SARS-CoV-2 strains, and antibiotic
administration’s timing make such pharmacologic treatments completely ineffective.[45]

Short-term use of a neuromuscular blockade in the early stage of moderate to
severe ARDS improved survival rates by reducing epithelial and endothelial injury
markers and systemic inflammations.[46] However, such pharmacological therapies
have failed to show long-term benefit.[46] Moreover, a wide range of conventional
anti-inflammatory drugs have been proposed to treat ARDS because these drugs work
by regulating inflammatory signalling targets (Losartan: Angiotensin II receptor
blocker, Tocilizumab, Siltuximab: Interleukin-6 or IL-6 inhibitor, Baricitinib: Janus
kinase or JAK-1/2 inhibitor, Anakinra: IL-1 inhibitor, Polyphenolic compounds:
Kinase inhibitors, and so on) within the inflammatory systems in the body.[8,47–49]

Despite the potentiality of these proposed treatments, developing these therapeutics is
lagging behind the need for them due to extensive research and clinical trials to prove
their efficacy and safety.[50] Recently, Russel et al. investigated the efficacy of cortico-
steroid treatment for COVID-19 related lung injury.[51] This study suggested that
dexamethasone is not effective enough to treat lung injury. Hence, to circumvent life-
threatening complications due to ARDS or other infection-related respiratory injuries,
alternative therapeutic strategies are required on urgent basis to eradicate respiratory
injuries and induce damaged lung tissue repair. In this regard, polymer-based nano-
therapies have drawn the attention recently to overcome all the shortfalls of conven-
tional treatments.

Polymer-based nano-therapies for respiratory injury treatment

Polymeric nanocarriers and drug delivery systems (DDS)

Polymers are soft materials that have been proposed and used in the preparation of
nanomedicine. Natural and synthetic polymers with both hydrophilicity and hydro-
phobicity are used for such purpose. Proteins like albumin, gelatin, lectin, and poly-
saccharides such as cellulose, dextran, chitosan, and alginates are natural hydrophilic
polymers that have been used as nanomedicine.[52] Polymethacrylate (PMMA), poly(-
lactic-co-glycolic acid) (PLGA), polystyrene, poly(N-isopropylacrylamide) (PNIPAm),
polylactic acid (PLA), poly(isobutyl cyanoacrylate) (PICA), poly(hexyl cyanoacrylate)
are some synthetic polymers with hydrophobic property for nanomedicine formula-
tion.[53,54] Various polymeric nanocarriers using these materials have been designed
for the controlled release of drugs.[55,56] To reduce the nonspecific interaction with
healthy cells and serum proteins and avoid uptake by phagocytosis, surface modifica-
tion with several functional groups onto polymeric nanocarriers has been designed
over the past decades.[57] On the other hand, some polymeric materials are sensitive
to environmental stimuli like temperature (e.g. PNIPAm) and pH (e.g.
pHEMA).[58–60] Thereby, nanomedicine strategy from these stimuli-responsive materi-
als can help prevent the drug or biomolecules degradation before reaching the target
site of action which subsequently helps decrease the toxic effects of nonspecific sites
and increase the bioavailability of the delivered therapeutic components.[58] The avail-
ability of stimuli-responsive polymer materials and flexibility of nanocarrier fabrica-
tion techniques with the application of target ligands on the nanocarrier surface

6 M. M. RANA



enables the design of biomolecule loaded nanocarriers to boost antiviral effects. There
are nearly 90 antiviral drug candidates have been approved for the treatment of emerging
viruses.[61] The administration of these drugs is often accompanied by side effects due to
their accumulation in the body’s off-target site. Some drugs require high concentrations
in the body to become effective against the virus, causing toxic effects to host cells with
other side effects. For example, ribavirin is associated with hemolytic anemia.[62] Most of
the approved antiviral drugs are poorly water-soluble as well, which hinders their success-
ful use.[52] Hence, the polymeric nanomedicine strategies can be a potential solution for
delivering a broad range of active moieties like antiviral biologics and nucleic acids to the
target site for the COVID-19 related respiratory injury treatments.

Polymeric nanoparticles

Polymeric nanoparticles are the primary type of nanocarriers that can change the
pharmacokinetic parameters of the encapsulated drug compound, and controlled
drug release helps to reduce required drug concentration for biological activity.
Polymeric nanoparticles can be fabricated by a broad range of fabrication techniques
like solvent evaporation, ionic gelation, spray-drying, living- or free-radical polymer-
ization, nanoprecipitation, and polymer dispersion technique.[52] Nanoparticles as
nanocarriers have some advantages over other drug delivery systems (DDS) like low
toxicity, site-specific delivery and degradation, better cellular uptake, controlled
release of incorporated drug molecules. They can be used as theranostics in antiviral
therapy.[63] Nanoparticles with 100–500 nm in size, which can incorporate the drug
molecules inside its core, are known as nanocapsules. In nanocapsule system, the tar-
geted drug is infused in the inner core, surrounded by the polymeric shell. High drug
loading, controlled release profile, and target specific delivery are vital features of
nanocapsules.[64] For example, nanocapsule consisting of poly(isobutyl cyanoacrylate)
core and polyethyleneimine shell has been designed to deliver azidothymidine-
triphosphate (AZT-TP) into the cytoplasm directly.[65] Contrarily, nanoparticles with
10–200 nm in size are known as nanospheres and the drug molecules can be adsorbed
onto its surface or embedded in the matrix of the particles.[66] This type of nanocarrier
can resist the drug molecules from unwanted degradation, and rapid drug clearance is
observed because of its smaller size. In a study, chitosan nanospheres were developed
with an average size of 200 nm for HSV-1 and HSV-2 treatment.[67] This polymeric
nanosphere loaded with acyclovir showed better permeation and higher potency against
the viral treatment compared to free acyclovir itself. This kind of smaller nanocarrier
also offers site-specific drug delivery and controlled drug release profile.

Nanoparticles developed by polymeric materials such as PLGA, PLA, poly(ethylene
glycol)-poly(e-caprolactone) (PEG-PCL), PLA-PEG, and some others have been studied
exclusively as nanocarriers for the systematic delivery of drug molecules and biomole-
cules for the antiviral and other disease treatment (Figure 1).[68–72] Previously, Li et al.
developed a unique cocktail therapeutic strategy containing biodegradable polymeric
nanoparticles for antiviral treatment.[73] They developed this PEG-PLA-based cocktail
nanoparticles to encapsulate HIV-1 entry inhibitor and conjugate with reverse tran-
scriptase inhibitor, resulting in strong virucidal effects against HIV-1.
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Polymeric nanoparticles can be administered in a systemic route (e.g. dermal, oral,
intravenous, and so on) or directly into the lung via inhalation or intranasal route.[74]

Nanoparticles containing antiviral drugs or small interfering RNA (siRNA) could be
very effective if deliver through nasal epithelia and lungs in order to attack viruses
that infect the respiratory tract, like Influenza viruses, Respiratory syncytial virus, and
Rhinoviruses. Earlier, Jamali et al. developed a siRNA-chitosan nanoparticulate ther-
apy that effectively target viral nucleoprotein to reduce virus infections.[75] They
reported that the intranasal administration of this nanoparticles enhanced therapeutic
effect on mice attacked with a lethal dose of Influenza virus, revealing in vivo anti-
viral activity of such nanoparticles. It is important to note that majority of the studies
performed so far to assess the efficiency of polymer nanoparticles as DDS and recom-
mendation are mostly based on preclinical data performed on lab animals, and these
are not ready yet to administer in humans.[76]

Nevertheless, these investigations provide some promising hope to develop efficient
polymeric nanoparticle-based nano-therapies to deliver antiviral drug molecules and
immunomodulate cytokine storms in COVID-19 infected patients with respiratory
complications.

Polymeric micelles

Polymeric micelles are amphiphilic block copolymers consisting of a hydrophobic
core incorporate water-insoluble drugs and a hydrophilic shell that acts as a barrier
to protect the drug. This type of nanocarrier structure allows higher drug loading and

Figure 1. Different types of polymeric nanocarrier systems. (A) Different nanoparticles used to
deliver antioxidants in chronic obstructive pulmonary disease (COPD) treatment. Reprinted from Xu
et al.[68] Owing to some advantages of nanocarrier systems like small size, high stability, targeted
deposition, sustained release, biodegradation, and reduced dosing frequency, they can be used to
integrate and deliver hydrophobic and hydrophilic drugs in COPD treatment. Some of the promis-
ing novel DDS for COPD treatment include polymeric nanoparticles, micelles, dendrimers, micro-
spheres and microparticles, nanoemulsion, lipid nanoparticles, and liposomes. Copyright 2020
BioMed Central. (B) PEG-PAA block copolymer endowed micelles with on-demand functionalities
and specific targetability. Reprinted from Nishiyama et al.[69] Polymeric micelles can be engineered
through block copolymers’ self-assembly with a controllable size range of 10–100 nm. These
micelles have a core-shell structure where biocompatible PEG shell surrounds the drug-loaded core.
Copyright 2016 John Wiley & Sons Australia.
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minimizes the premature drug release in the off-target site.[77] Polymeric micelles can
be used as a targeted drug delivery vehicle by surface modification with specific
ligands. In a recent study, e-caprolactone has been used as a hydrophobic core to
encapsulate silibinin and further grafted with methoxy PEG (mPEG) to form amphi-
philic block copolymeric micelles.[78] Such micelles are bioengineered auto-assembly
copolymers formed in a liquid medium. Due to the micelle’s hydrophilic outer layer,
the whole micelle remains stable and biocompatible with tissues and blood. A recent
study reported the development of polymeric micelles of isoniazid and rifampicin
using the di-block polymer, PEG and PLA.[79] This formulated drug-loaded polymeric
miceller delivery was reported to enhance the efficacy by reducing minimum inhibi-
tory concentration (MIC) against Mycobacterium tuberculosis up to 8-fold. In a
different study, polymeric micelles of isoniazid and rifampicin using ethylene oxide-
propylene oxide tri-block copolymers, PluronicVR was developed.[80] A multifunctional
PLA-b-PEG copolymer modified methyl-b-neuraminic acid (mNA) has been prepared
as drug delivery micelles to treat Influenza virus infection.[81] It has been found that
amantadine loaded in these micelles inhibit hemagglutination by binding to the hem-
agglutinin of Influenza viruses and efficiently alleviating viral infection.

The limited intracellular intake of antiviral drugs due to limited aqueous solubility
is one of the major drawbacks to the successful treatment of respiratory illness in
COVID-19 infected patients. Hence, due to the amphiphilic auto-assembly nature of
polymeric micelles, these nanocarrier systems can be served as vehicles for delivering
insoluble hydrophobic antiviral and anti-inflammatory therapeutics for the COVID-
19 related ARDS treatments.

Polymeric conjugates

Conjugation of polymer with the targeted drug can be obtained by covalent bonding
between a polymer and the therapeutic drug molecules. Polymeric conjugates are
another potential delivery vehicle candidate for the treatment of COVID-19 because
of several advantages like lower dosages of the required drugs that cause fewer side
effects, decreasing the likelihood of drug resistance, and useful for the delivery of
multiple drugs with different physicochemical properties.[82] A wide variety of nega-
tively charged polymers and glycosaminoglycans like heparin, chondroitin sulphate,
keratan sulphate, dermatan sulphate, and heparan sulphate have the potentiality to
bind to the HIV envelope and resist the entry of viral particles inside the host
cells.[83] Conjugation of azidothymidine (AZT) and ribavirin with synthetic polymers
like methacrylates have been investigated broadly.[84] Results from these studies have
shown greater antiviral potency with decreased toxicity. Conjugation of AZT with
some natural polymers such as chitosan and dextrin via succinic ester linkage has
shown longer plasma half-life and high drug loading capacity. In another study, con-
jugation of antiviral drug compound stavudine with chitosan by phosphoramide link-
age has shown beneficial results in viral infection treatments.[84] Despite the benefits
of polymer-drug conjugates for a wide range of treatments, optimizing the drug con-
jugation rate with polymers is still an uphill task. Some optimization challenges
include controlling the interaction between two or more drugs and the release profile
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of individual drug from the conjugated cargo system.[85] Hence, it is recommended
that high-throughput screening profiles are needed to understand the biological inter-
actions and find out if there is any synergism present or not (Table 1).

Other polymeric carriers to treat respiratory injury

Dendrimers are radially symmetric, highly branched, monodisperse, and homoge-
neous, nanoparticles with greater ability to attach multiple functional groups on their
surface. Like polymeric micelles, dendrimers are made up of a central core, an inner
shell composed of repeating units of building blocks, and an outer shell with many
functional groups attached. Such configuration of dendrimers enables them to encap-
sulate non-water soluble, hydrophobic therapeutic agents in their core and specific
surface functional groups to allow them to interact with the target biological site to
deliver encapsulated agents. Such nanocarriers can be used as theranostics due to
their outstanding ability to uptake by cells, longer circulation times, and improved
stability and solubility in targeted drug delivery. Some of the commercially available
dendrimers are poly(propyleneimine) (PPI), polyamidoamine (PAMAM), and poly-L-
lysine (PLL).[112] Dendrimers’ strong ability to interact with the viral cell surface and
enhance antiviral activities can be used to treat viral infection in the host, such as
HIV and Influenza virus infections.[113] PLL-based dendrimers with anionic naphtha-
lene disulphonate surface have been designed to block the entry of HIV viruses by
binding to the gp120 protein (viral envelope protein), thereby preventing the forma-
tion of CD4-gp120 complex.[114] Poly(phosphor-hydrazone) is a biodegradable
dendrimer with end phosphoric acid functionalities, which have been proposed for
anti-HIV activity.[115] Polyanionic carbosilane dendrimers (PCDs) have been
designed, and combination therapy of PCDs with tenofovir and maraviroc has shown
enhanced efficacy against HIV and minimizes the emergence of multidrug-resistant
HIV mutants.[116] It has also been reported that some nanocarriers’ surface properties
have shown promising result in binding ACE2 receptor.[117] The cationic PAMAM
nanoparticles have the property to bind to the ACE2 receptor, blocking angiotensin’s
cleavage, causing ARDS.[118]

A variety of sulfated polymers, including sulfated derivatives of PVA, polystyrene,
poly(vinylsulfonic acid), poly(anethole sulfonate), and poly(2-acrylamido-2-methyl-1-
propanesulfonic acid), have been reported earlier to inhibit HIV replication.[119]

Sulfated polymers like poly(vinyl alcohol) sulfate (PVAS) have also proved their effi-
cacy to inhibit HSV, Cytomegalovirus, Respiratory syncytial virus, Vesicular stomatitis
virus, and Retroviruses.[120] Previously, Danial et al. investigated combining the anti-
viral lamivudine with a terpolymer synthesized from sulfonated side chains (2-acryla-
mido-2-methylpropane sodium sulfonate (AMPS)).[121] They found that at higher
concentrations, the homopolymer poly(AMPS) combined with lamivudine exhibited
nearly full inhibition against HIV infection. Polyphenylene carboxymethylene
(PPCM) is a broad-spectrum antiviral polymer that binds to the viral envelope glyco-
proteins V3 loop and interferes with the interaction between gp120 and
CD4þT cells.[122]
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Polymer hydrogels are 3D crosslinked networks of hydrophilic polymer chains that
can swell and hold a bulk amount of water while maintaining the polymers’ structure.
The crosslinking structure provides the physical integrity of the hydrogels and
required mechanical strength as well. Hydrogels can be synthesized using both natural
and synthetic biodegradable polymers. The hydrogels’ high-water content can possess
similarity (e.g. the higher degree of flexibility, biocompatibility) to that of normal tis-
sue.[123] These advanced properties of hydrogels make them potential candidates for
nanomedicine applications. Stimuli-responsive hydrogels are another potential nano-
carrier system for the specific delivery of therapeutic agents (Figure 2).[124,126–128]

One example of such hydrogel-based delivery systems is thermoresponsive inject-
able hydrogels. Hydrogels of this group can show phase-transition behavior below
and above the physiological temperature.[129] Thermoresponsive hydrogels including
PNIPAm, poly(N,N-diethylacrylamide) (PDEAAm), poly(ethylene oxide)/poly(propyl-
ene oxide) (PEO/PPO), poly(N-isopropylmethacrylamide) (PNIPAm), poly(N-vinyl
caprolactam) (PVCL), PEG-based biodegradable polyester copolymers have been
designed and developed as drug delivery systems.[129,130]

Polymer-based cellular nanosponges are another novel nanomedicine strategy to
combat COVID-19 related infections. Zhang et al. recently prepared two cellular
nanosponges (i.e. Epithelial-nanosponge (NS) and Macrophage-nanosponge or MU-
NS) by coating cell membranes of human lung epithelial cells and macrophages onto
polymeric nanoparticle cores made from biodegradable PLGA.[131] These nano-
sponges carry the same identified and unidentified protein receptors required by

Figure 2. Stimuli-responsive polymer-based nanocarrier systems. (A) Thermo-responsive PNIPAm-
cellulose nanocrystals (CNC) hydrogels for wound dressing application. The thermal stability of this
hybrid hydrogel decreased while the rheological property increased with increasing CNC content.
This smart hydrogel showed good drug-loading ability at room temperature and sustained drug-
release at 37 �C. Reprinted from Zubik et al.[124] Copyright 2017 MDPI. (B) Core cross-linked micelles
(CCL) fabricated with fluorescence and magnetic resonance (MR) dual imaging modalities from tet-
rakis[4-(2-mercaptoethoxy)phenyl]ethylene (TPE-4SH) fluorophores, and DOTA(Gd)-POEGMA—
P(DPA-co-GMA) and benzaldehyde-POEGMA-b-P(DPA-co-GMA) deblock copolymers via co-assembly
and click chemistry. Further, pH-responsive CCL micelles were fabricated with pH-low insertion pep-
tide (pHLIP) through Schiff base linkage formation. Under a neutral pH state, pHLIP of the micelles
formed coil state while turned to a-helical conformation under acidic pH conditions. Such transition
helps to enhance cellular internationalization and allows for imaging in live cells. Reprinted from
Tian et al.[125] Copyright 2016 MDPI.
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SARS-CoV-2 for cellular entry. The results obtained after incubation of these nano-
sponges indicate that both have the comparable ability to inhibit the viral infectivity
of SARS-CoV-2. Moreover, MU-NS can neutralize the viral activity early to reduce
the viral load in the host and the later stage of the infection. It is well established
that macrophages play a significant role in the pathogenesis of respiratory virus infec-
tion.[131] Hence, MU-NS may play significant roles in treating inflammatory viral
infections such as SARS-CoV-2 and related complications.

It is important to note that advances in polymer chemistry along with patho-
physiological changes in human due to COVID-19 infection can enable us to develop
smart biodegradable polymeric delivery systems with the great potential for controlled
delivery of immunomodulatory therapeutic agents to treat respiratory injuries in crit-
ically ill patients.

Polymer-based nanomedicine strategies for COVID-19 vaccine delivery

From the history of vaccine development, it is well established that vaccination is one
of the most effective strategies to prevent and control the spread of infectious dis-
eases, where naturally developed immunity induces protective long-term immune
memory in patients.[132] In general, vaccines introduce specific viral antigens on the
cell surface of antigen-presenting cells (APCs), particularly dendritic cells, embodied
in the major histocompatibility complex (MHC) I and II.[133] Such an event triggers
the adaptive immune system by recognizing these antigens as invaders and induces
antibodies production or T cells to eliminate these unwanted invaders. Consequently,
memory B cells in the body develop virus-specific antibodies on its cell surface, which
triggers a fast immune response to clear the similar viral infection in the future.
There are three different generations of vaccine formulations currently used to trigger
immune responses against infection, including live attenuated (whole inactivated
pathogen) vaccines or first-generation vaccines, recombinant subunit vaccines
(second-generation), and RNA/DNA vaccines or third-generation vaccines.[134,135]

Since the outbreak of COVID-19, several different vaccine candidates have been
developed and reached clinical phases due to a high urgency to halt the
pandemic.[136]

In the novel vaccine development for COVID-19, some studies have indicated that
the viral S protein or receptor-binding domain (RBD) and N-terminal domain of S
protein can be an excellent target for vaccine preparation in order to enhance the
immunological response.[137] Different mRNA, DNA, and non-replicating adenovirus
vector-based vaccines are under clinical trial to check their efficacy in COVID-19
treatment. The University of Oxford, in collaboration with AstraZeneca, developed a
vaccine (AZD1222; formerly known as ChAdOX1) composed of a non-replicating
adenovirus vector and able to replicate the S protein of SARS-CoV-2.[138] Some
recently developed mRNA vaccine candidates are Moderna’s mRNA-1273
(NCT04405076), Arcturus Therapeutics’ LUNAR-COV19, BioNTech and Pfizer’s
BNT162a1, b1, b2, and c2, Globe Biotech’s BANCOVID, and an CVnCoV developed
by CureVac.[139–143] These mRNA vaccine candidates target the S protein (or a spe-
cific region of S protein) of the SARS-CoV-2 cell surface. On the other hand, vaccine
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candidates developed by Inovio Pharmaceuticals (INO-4800), Genexine’s GX-19, and
Zydus Cadila’s ZyCoV-D are some DNA vaccines targeting viral S protein.[144,145]

Epivax is a cocktail vaccine made up of antigens (i.e. non-structural proteins and
nucleoproteins) other than S protein to provide partial protection against the
virus.[146] Gamaleya Research institute developed Gam-COVID-Vac, and CanSino
Biologics developed Ad5-nCoV to fight against SARS-CoV-2.[147] Johnson & Johnson
also developed a vaccine candidate (Ad26.COV2.S), a recombinant, replication-
incompetent adenovirus serotype 26 (Ad26) vector encoding a stabilized full-length
SARS-CoV-2 S protein.[148] Previously, this Ad26 vector was approved by the
European Medicines Agency for the Respiratory syncytial virus, Zika virus, and Ebola
virus.[148,149] Vaccine made of Ad26 vector is considered safe and highly immuno-
genic.[149] A couple of vaccine candidates developed by Sinopharm in collaboration
with the Beijing Institute of Biological Products are currently in phase III clinical
trial[146]. Some other protein-based vaccines, including COVAX-19 by Vaxine PTY
Ltd. and NVX-CoV2373 by Novavax, are under clinical trials to evaluate their efficacy
against COVID-19.[150] So far, vaccine candidates developed by Pfizer-BioNTech,
Moderna, Oxford-AstraZeneca, Johnson & Johnson, CanSino, Sinopharm, Gamaleya,
and Sinovac have been approved by health regulatory agencies throughout the world
for early and emergency use.[151]

In COVID-19 vaccine research, some significant challenges are finding practical
approaches to stimulate both the T cell and B cell immunity against the virus and
developing precise next-generation vaccine for patients with compromised immun-
ity.[152] Besides, poor immunogenicity and premature degradation of the antigens in
harsh in vivo conditions and failing to reach the target sites of DNA and RNA vac-
cines are some other limitations that result in the weak immune response.[153]

Therefore, it is crucial to develop smart strategies to deliver the COVID-19 vaccine
more protectively, providing enduring protection with enhanced patients’ immunity.
Nanocarrier-based vaccine delivery program can be an option to deliver vaccines to
induce complimenting immunomodulatory effects. Polymeric nanocarriers can be
used to deliver antigens without premature degradation and potential side-effects,
which allow directed targeting of the vaccine towards APCs.[117] Additionally, with
the growing interest in RNA and DNA vaccines to fight against coronavirus, combin-
ing them with nanoscale cargo devices will be an effective approach to overcome all
the limitations mentioned above. It has been already reported that the nanocarrier-
based strategy can be an effective approach to deliver small interfering RNA (siRNA)
for the treatment of malignancies, infections, and autoimmune diseases.[154]

The vaccine delivery using nanocarrier systems can be done either by encapsulat-
ing the antigen or DNA/RNA within the nanocarrier or by attaching antigens on the
nanocarrier surface.[155] The antigen encapsulated nanocarrier-based vaccine delivery
strategy shows the potential efficacy that prolongs the antigen exposure towards the
immune cells.[117] Antigens with amphoteric nature are suitable candidates to be
adsorbed on polymeric nanocarrier surfaces like chitosan and dextran sulphate-based
nanoparticles.[156] In such cases, nanocarriers are predesigned with stimuli-responsive
properties like pH, temperature, and ionic strength to release antigens from the car-
rier surface inside patients’ bodies. PLGA nanoparticles are suitable candidates for
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encapsulating the antigens within the nanocarrier to provide extended and controlled
biological release.[157] Previously, these PLGA nanoparticles have shown efficacy pre-
clinically in carrying antigen vaccines like HBsAg, Malaria antigens, Bacillus anthracis
spores to generate extended cellular and humoral immune response.[158,159] For
example, Galloway et al. developed a PLGA nanoparticle-based Particle Replication in
Non-wetting Templates (PRINTVR ) technology to deliver influenza vaccine anti-
gens.[160] This vaccine delivery approach requires low amount of vaccine antigens to
induce immune responses. Naked mRNAs are prone to degradation by extracellular
RNases; therefore, it is essential to deliver them in a protective way to prolong their
efficacy.[161] Some of the polymeric nanocarriers are under investigation to use for
the delivery of mRNA-based vaccines. These mRNA nanocarriers include PEG-lipid
functionalized dendrimers (200 nm), polyethyleneimine (PEI) nanoparticles
(100� 300 nm), chitosan (cationic) nanoparticles (300� 600 nm), and protamine (cat-
ionic peptide) nanoliposomes (�100 nm).[156] Like mRNAs, naked DNAs also experi-
ence premature degradation by nucleases and require protective delivery to boost
immune response.[156] Polymeric nanocarriers with DNA encapsulation helps to pre-
vent premature inactivation of DNA and provide controlled release.[156] Composite
PLGA nanocarriers with cationic glycol-chitosan or PEIs are under investigation to
improve DNA loading efficiency, systemic protection, and controlled release.[157]

Surface electroporation of DNA coated-PLGA nanoparticles has been developed
recently to improve DNA/RNA delivery across the cells and nuclear membrane.[162]

This electroporation strategy has shown efficient delivery of DNA to elicit T cell and
B cell response in pigs.[162] This kind of portable electroporation approach is, there-
fore, become an attractive option in COVID-19 vaccine research. Vaccine adjuvant
nanoparticles (VANs) are designed to tackle the shortfalls of conventional molecular
adjuvant delivery and improve the efficacy and safety of the generated immune
response.[163] Vaccines and vaccine adjuvants which induce T helper type 1 or Th1-
biased immune responses are highly preferrable to fight against COVID-19 or related
viral infections.[164] It has been reported that five protein subunit vaccine candidates
using a combination of antigen and adjuvant are in the pipeline of preclinical
COVID-19 vaccine candidates.[165] Recently, a SARS-CoV-2 recombinant full-length
S protein nanoparticle vaccine combined with the saponin-based Matrix-MTM adju-
vant has been developed by Novavax.[150] This vaccine candidate is currently in phase
I/II clinical trial (NCT04368988), and it has been demonstrated that the adjuvant trig-
gers the entry of APCs into the injection site and induces the antigen presentation in
local lymph nodes, resulting in enhanced immunological response.[166] Some in vivo
studies of PLGA and calcium phosphate nanoparticles co-encapsulating both adju-
vants and antigens have shown improved efficacy by inducing antigen uptake, APC
activation, and higher antibody titers.[167] VANs like PLGA are also used to co-
deliver immunoregulatory drugs or self-antigens as adjuvants to trigger antigen-
specific peripheral tolerance of autoreactive T cells and obstruct any possible auto-
immune response as well.[156]

Emulsion-based adjuvants like Freund’s adjuvant and montanide ISA51 are easy to
develop at comparatively very low cost among different adjuvants available for vac-
cination. These adjuvants can be made as water-in-oil (W/O) emulsion with dispersed
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antigenic media and continuous oily phases.[168] These adjuvants based on emulsion
have the advantages of improving the vaccine’s nontoxicity and securing long-term
protective immunity. Nevertheless, these adjuvants’ preparation time, difficulties dur-
ing injection by syringe, and localized toxicities at the injection sites are some com-
mon problems with these emulsions.[169] Synthetic low molecular weight block
polymer has been proposed as a better replacement to reduce the toxicity of surfac-
tants used during the manufacturing of such adjuvants. TiterMax is an ideal example
of this kind of modified adjuvant for vaccination. TiterMax is a squalene-based W/O
emulsion containing polyoxyethylene-polyoxypropylene-polyoxyethylene (POE-POP-
POE) polymer.[170] To overcome the mild toxicity and poor degradability of
TiterMax, recently, Huang et al. have reported multiphase emulsion based on the
hydrophilic polymeric emulsifiers PEG-b-PLA, PEG-b-PCL, and PEG-b-PLACL in the
antigen phase of oily ISA51-adjuvant-based vaccines.[171] This hydrophilic polymer-
stabilized ISA51 emulsion increase fluidity and conceptually diminish local reactions.
The excellent biodegradability and biocompatibility of these modified adjuvants make
them promising candidates for SARS-CoV-2 vaccine delivery applications. Huan et al.
recently studied the effect of CoVaccine HTTM (W/O emulsion type adjuvant) against
the SARS-CoV-2 spike S1 protein in mice.[172] The CoVaccine HTTM has already pro-
ven its efficacy in Malaria, Zika, Ebola, and other antiviral vaccine formulations.[173]

This adjuvant is composed of negatively charged sucrose fatty acid sulfate ester and
plant-derived squalene.[174] In that study, they compared the potency and efficacy of
CoVaccine HTTM against two gold standard adjuvants (i.e. alum and Th2 adjuvant).
They found that the CoVaccine HTTM induced cell-mediated immune responses,
antigen-specific antibody titers and virus-neutralizing antibody titers significantly
compared to alum adjuvant. High potency, efficacy, biodegradability, and biocompati-
bility are key features in these modified adjuvants that make them attractive for
SARS-CoV-2 vaccine delivery applications.[164]

Polymers in lung tissue engineering applications

Tissue engineering is a process to reconstruct a tissue for clinical use or repair dam-
aged ones by seeding stem cells (e.g. ESCs, iPSCs, and MSCs) on a biological scaffold
with extracellular matrix (ECM) proteins. The seeded cells are expected to proliferate
and differentiate into the proper cell populations, followed by reconstructing targeted
organs or tissue for clinical applications. In ARDS injury, one way to alleviate lung
injury is to regenerate physiologically functional lung tissues to replace the damaged
tissue.[175] In tissue engineering approaches, a scaffold is used as a 3D substrate that
maintains the specific biological environment for tissue regeneration, keeps the mech-
anical structure of the regenerated tissue or organ, and provokes a minimal toxicity
level, low or no inflammation.[176] Scaffolds can be synthesized using polymeric mate-
rials either from natural or from synthetic sources (Figure 3).[177–179] The first 3D
scaffold has been made of Gelfoam (vacuolar sponge based on gelatin) and used to
culture rat fetal lung cells.[180] In that study, it has been reported that fetal lung cells
survived both in and around the collagen matrix and proliferated into new epithelial
and endothelial cells. In another study, chondroitin sulphate proteoglycans (CSPGs)
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scaffold has been developed for pulmonary tissue regeneration, and further studies
indicated its potentiality to construct biomimetic matrices for inducing lung epithelial
morphogenesis.[181]

On the other hand, synthetic materials are another potential candidate for use as
scaffolds in tissue engineering applications, although these materials’ low biocompati-
bility hinders their broad applications. Synthetic materials are combined with natural
biomaterials to overcome this limitation and enhance scaffold properties. Elasticity
and biodegradability are two key features for materials to be used as a scaffold for
lung tissue engineering. Synthetic materials containing biodegradable polymers like
PLGA are vigorously explored to develop porous scaffolds for tissue engineering.[182]

Due to the lack of biocompatibility, synthetic polymers often fail to drive the differ-
entiation of cultured cells.[183] Even sometimes, synthetic polymers coated with nat-
ural ECM proteins failed to guide seeded cells into required destiny despite the cells’
initial attachment onto the scaffold. Therefore, it is necessary to employ some surface
modification approaches (e.g. coating with instructive peptide domains) to enhance
scaffolds’ biocompatibility.[184] Besides, elastomeric polymers with more organotypic
mechanical properties essential for cell growth and differentiation can also be useful
for better cyclic respiration strain.[185] A widely used biodegradable polymer is poly(-
glycolic acid) (PGA), which has been used previously as a patch grafted to the rat’s

Figure 3. Polymer-based scaffolds in tissue engineering applications. (A) PVA/Collagen composite
nanofibrous electrospun scaffold for application in tissue-engineered cornea. Reprinted from Wu
et al.[177] Copyright 2018 MDPI. (B) Peptide/GO/b-TCP/PLGA scaffold from cryogenic 3D printing for
critical-sized bone defect repair. Reprinted from Zhang et al.[178] Copyright 2019 MDPI. (C)
Fabrication of an injectable, porous hyaluronic acid-based hydrogel by in-situ and bubble-forming
hydrogel entrapment process. Reprinted from Wang et al.[179] Copyright 2020 MDPI.
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incised lung.[186] It is reported that the adipose-derived stem cells (ASCs) seeded
onto PGA graft succeeded to regenerate alveolar and vascular tissues.[187] Another
popular biodegradable hydrophobic polymer is poly(D,L-lactic acid) (PDLLA) that is
suggested to be used as a scaffold for lung tissue due to its elasticity feature that
resembles the lung environment.[188] Few polymeric hydrogels have been designed to
meet certain requirements (i.e. mechanical strength, elasticity, stiffness, and controlled
degradation kinetics) needed for lung tissue regeneration. A novel porous hydrogel
scaffold has been developed recently from a blend of hyaluronic acid hydrogels
(HAG) gel.[189] This hydrogel scaffold provided a lower inflammatory response, high
elasticity with rapid hydration ability due to the interconnected porous network. This
novel HAG gel fulfilled the characteristics compatible with lung engineering.
Polymer-based porous matrices are considered ideal scaffolds because of their appro-
priate 3D structure, biocompatibility and biodegradability. Hence, they operate as
appropriate substrate to induce stem cells’ differentiation by regeneration of physiolo-
gically functional lung tissues.

Scope of polymer-based nano-therapies to combat respiratory injury:
Progress, prospects, and challenges

For the detection of respiratory viruses, various polymeric nanobiosensors, including
MIP-based sensors, have been developed in recent years.[40] Modification and surface
functionalization of MIPs are unique nanobiosensing strategies for faster and more
specific detection of viral infection. In recent years, these low-cost, affordable, and
highly selective detection systems have drawn the research community and biomed-
ical industry’s attention to replacing costly, time-consuming, and labor-intensive trad-
itional detection techniques. It is well established that patients with severe COVID-19
infection experience long-term respiratory complications of the infection.[190]

Therefore, detection of early-stage infection is vital to mitigate long-term complica-
tions. The low-level detection of a specific SARS-CoV-2 biomarker can be an option
for early evaluation, management, and infection treatment. Nanobiosensors with
multi-functionalities could also have the potential for immediate detection of the
SARS-CoV-2 virus. Despite their potential application in virus detection, there are
still some significant limitations like reliability, reproducibility, and diagnosis per-
formance and accuracy. Therefore, more elaborative analyses and research should be
conducted in the near future to solve these drawbacks.

It is well established that COVID-19 infected patients often experience hyperin-
flammation correlated with acute respiratory injury, e.g. ARDS. Such respiratory
injury might cause severe, long-lasting damage to the lungs, resulting in a substantial
reduction of the patient’s life quality. Therefore, it is crucial to develop a unique
treatment strategy to treat the consequences of COVID-19 infection, including
attenuation of the inflammatory response leading to respiratory injury. In respiratory
injuries, microvascular leakiness is the outcome of inflammatory vasoactive factors
that induce permeability.[191] Hence, drugs can be administered systemically and will
localize to the lungs by passive targeting.[192] A controlled drug delivery system is an
innovative, passively targeted therapeutic strategy that maximizes efficacy and
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increases inflammation resolution, resulting in reducing collateral damage to healthy
organs in patients. Polymeric nanoparticles as nanocarriers have already proved their
ability in anti-viral treatment.[193] Such nanocarrier systems have shown improved
and efficient drug delivery against HIV, Influenza virus, HSV, Respiratory syncytial
virus, Zika virus, and Monkeypox virus.[194] Therefore, the nanoencapsulation of anti-
viral drug candidates for COVID-19 may be an attractive and safer treatment strat-
egy.[195] Theranostic nanoparticles as nanocarriers have already been investigated
against various viral infections like SARS or MERS.[196] Theranostic nanocarriers can
improve the drug delivery, ensure selective delivery of siRNA, block viral entry inside
the cells, and trigger host cells’ immune systems.[196] Therefore, biocompatible thera-
nostic nanocarriers can be another promising strategy to deliver therapeutic agents
via the intranasal route to combat against CoV-related respiratory injuries.

Despite the potentiality of polymeric nanocarrier systems, some bottlenecks must
be addressed to facilitate its broader implementation. Since most recent studies have
used in vitro approaches to evaluate the biocompatibility, it is crucial to ensure the
safe use of nanomaterials inside the biological systems. Developing polymeric nano-
carrier to deliver drugs, vaccines, genes, and other biologics in a controlled manner
that can precisely cure the respiratory injury and other COVID-19 related complica-
tions is the ultimate goal of nanotechnology experts. The development of such smart
polymeric nanocarrier with high efficacy and target specific functionality in the
human body is very challenging to achieve. Additionally, the nanocarrier-based deliv-
ery system’s efficacy is also related to the size, shape, and the surface charge of the
nanoparticles.[16] It has been reported that spherical nanoparticles compared to rod-
shaped particles are more prone to phagocytosis by macrophages and APCs (e.g.
dendritic cells).[197] Positively charged nanomaterials are taken up more easily by the
epithelial cell membranes due to its anionic nature. Due to the multifaceted interac-
tions between nanomaterials and biological systems, nanomaterials’ fate and behavior
can be changed under physiological conditions. A high dose of these agents may
cause severe side effects inside human body due to the off-targeting feature can be
worse than SARS-CoV-2 infection. However, it is challenging to foresee the response
of the nanomaterials under harsh biological conditions particularly in SARS-CoV-2
virus infection. Once the nanocarriers reach the blood circulation inside the body,
they can interact with proteins to form protein corona.[198] Other complications may
appear when nanoparticles enter blood circulation due to the complex matrix con-
taining ions, small molecules, proteins, and cells in the circulation.[199] Thus, the
characterization of protein corona is a vital step to be investigated during polymeric
nanomedicine development to treat COVID-19 related complications including
respiratory injury. Moreover, reliable in vivo models are required to explore the toxi-
cokinetic behavior of the nanoparticulate carriers in the body. In the case of aerosol
therapy of nanoparticles, although the incidence of adverse events is minimized, how-
ever, some observational studies have indicated that there is potential to cause local
or systemic toxicity in the form of coughing, airway irritation, bronchospasms, and in
some cases pulmonary injury.[191] Therefore, a more detailed investigation to assess
the safety profile of polymeric and other organic/inorganic nanoparticles that are con-
sidered for delivery via aerosol therapy is necessary. Off-targeting limitation of the

20 M. M. RANA



nanocarrier can be overcome by introducing stimuli-responsive nanocarrier that can
deliver therapeutic agents to the infected respiratory system in a controlled and target
specific manner to combat CoV-associated symptoms. Polymeric hydrogels (e.g. PEG)
are widely used for the controlled release of biomolecules. Control of gelation is cru-
cial in delivering therapeutic agents because appropriate dosing and release kinetics
rely on the understanding of fundamental gelation kinetics of hydrogel-based nano-
carrier systems.[200] Thermoresponsive injectable hydrogels (e.g. PNIPAm) is a type
of hydrogel-based delivery system developed in recent years as a drug delivery system
and cell encapsulation system.[129] These hydrogels are free-flowing solutions below
physiological temperature, and after in vivo injection, they convert into non-flowing
gels at body temperature. A key feature of living systems is the ability to sense and
react to external environmental stimuli. Therefore, cells and tissues’ physiological
responses with advances in polymer chemistry can enable the development of stim-
uli-responsive biohybrid hydrogels that can functionally interconnect with the living
systems. These hybrid hydrogel-based delivery systems can be a promising nanomedi-
cine strategy for drug or other biomolecule delivery applications to treat CoV-related
respiratory injury.

The addition of cells to the scaffold to produce tissue construct under the con-
trolled addition of specific growth factors to support tissue growth in vitro is the clas-
sical tissue engineering approach. Interestingly, lung tissue reconstructs using this
classic approach are not suitable because the reconstructed tissues lack appropriate
vascularization and the intricate organizational patterns found in normal lung tis-
sue.[201] Bioprinting offers the advantages of placing various cell types in layer-by-
layer constructs into a soft scaffold using a computer-controlled design template to
resolve this issue.[201] Concurrent printing of hydrogel scaffold containing biomole-
cules will allow for precise placement of cells and proteins within 3D structures of
complex tissues like lung. This hydrogel-based organ printing approach will also pro-
vide the advantage for spatial control of the scaffold structure, the type and arrange-
ment of cells, the thickness of the tissue, and the formation of capillaries and vessels
to make physiologically functional lung tissue. Despite these technological advantages
in polymer-based lung tissue engineering, precise control of hydrogel properties like
porosity remains a major hurdle in scaffold design.[202] The porosity, pore architec-
ture, and interconnectivity between pores are some significant features that play a
vital role in cell survival, proliferation, and migration during tissue regeneration.[202]

Control of these features can influence the scaffold’s cell movement and movement of
oxygen and nutrients and regulate cell attachment to the scaffold. Therefore, it is
now crucial to develop hybrid stimuli-responsive hydrogel scaffolds with ECM com-
ponents similar to natural tissue to provide cells and developing lung tissue with the
environment required to function like natural tissue in a native in vivo environment.

Concluding remarks

Amid the COVID-19 pandemic, primary diagnostic tools for SARS-CoV-2 detection
are mainly based on RT-PCR-based assays. Although PCR-based tools are broadly
applied in recent times, such tools are only limited to detect viral nucleic acids.
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Moreover, the testing capacity, cost, detection time, and availability are some issues
of this technique. Contrarily, polymeric nanobiosensing devices are more versatile
and can be used for antigen, antibody, and nucleic acid detection. These novel sens-
ing tools can also provide rapid, reliable, broadly accessible, and low-cost diagnosis in
this pandemic. A wide range of treatment strategies using polymer-based nanotech-
nologies has been developed and commercialized so far for different viral infections
like HIV and HSV-1 and 2. Advancements in these nano-therapeutics developments
can help to invent novel treatments and vaccines to tackle COVID-19 related compli-
cations to the next level. Although polymer-based nano-therapies offer a broad range
of antiviral therapeutics opportunities, it is still in the infantile stage. Some of the
major barriers in nanomedicine development are long-term toxicity, fabrication and
characterization complexities, and large-scale production difficulties. Moreover, tissue
engineering approaches in respiratory injury treatment is still limited and far from
clinical use. Therefore, future perspective should focus on addressing and solving cur-
rent drawbacks of polymeric nano-therapies to develop a revolutionary solution for
the treatment of COVID-19 and other viral infection related respiratory injuries.
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