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Abstract

Machine learning as a field of artificial intelligence is increasingly applied in medicine to assist patients

and physicians. Growing datasets provide a sound basis with which to apply machine learning meth-

ods that learn from previous experiences. This review explains the basics of machine learning and its

subfields of supervised learning, unsupervised learning, reinforcement learning and deep learning. We

provide an overview of current machine learning applications in rheumatology, mainly supervised learn-

ing methods for e-diagnosis, disease detection and medical image analysis. In the future, machine

learning will be likely to assist rheumatologists in predicting the course of the disease and identifying

important disease factors. Even more interestingly, machine learning will probably be able to make

treatment propositions and estimate their expected benefit (e.g. by reinforcement learning). Thus, in fu-

ture, shared decision-making will not only include the patient’s opinion and the rheumatologist’s empir-

ical and evidence-based experience, but it will also be influenced by machine-learned evidence.
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Introduction

Most rheumatic diseases have chronic, fluctuating

courses that involve complex underlying pathophysiology,

which complicates their therapy. Despite the advent of

targeted biological and synthetic treatments, sustained

remission of rheumatoid arthritis (RA) is achieved in only

a minority of patients. For many other rheumatic dis-

eases, such as osteoarthritis (OA), lupus or Sjögren’s syn-

drome (SS), controlled clinical trials for new therapies

have been broadly disappointing owing to different dis-

ease phenotypes. Perhaps the major current unmet clini-

cal need for RA patients, but also for those with other

rheumatic diseases, including OA, is a personalized treat-

ment approach. Given the data-intensive studies neces-

sary to find the best treatment strategies for individual

patients, artificial intelligence (AI) can play an important

role in the development of personalized medicine. In par-

ticular, machine learning (ML), a subfield of AI, can foster

personalized treatment by providing computers with the

ability to learn from experience without rules explicitly

specified by humans. The potential for ML in medicine is

vast and, compared with conventional statistics, ML

offers a plethora of new possibilities.

Although there is a significant overlap in methods

between statistics and ML, the application goals [1]
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and scalability of solutions are generally different.

Conventional statistics has a strong focus on accurate

summaries of data samples, understanding statistical

relationships between variables and correctly estimating

population parameters [2]; the main goal of most ML

methods, in contrast, is predictive performance on un-

seen data. Additionally, ML algorithms can automatically

learn useful data representations and deal with different

sorts of input data, e.g. patient cohorts, medical images

and genetic information. Thus, ML fills a significant gap

in learning from clinical experience. Ideally, it translates

the knowledge gained into clinical evidence, with com-

puters being capable of predicting clinical outcomes,

recognizing disease patterns, detecting disease features

and optimizing treatment strategies.

Deep learning [3], a specialized subfield within ML

that relies on large neural networks, has shown dramatic

successes over the past 10 years, driven by increased

computational power and massive datasets. Deep learn-

ing has shown striking advances in processing and un-

derstanding data, including text [4], speech [5] and

images [6]. Machine and deep learning are increasingly

applied in medicine (e.g. for assistance in medical imag-

ing [7], brain stimulation devices [8] or cancer prognosis

[9]). In its first prospective clinical trials, decision-making

based on ML was superior to decision-making by physi-

cians alone in the treatment of intensive care patients

[10]. Besides its potential to increase the quality of treat-

ment, medical ML also has the potential to increase the

quality of care and reduce costs. The aim of this article

is to explain the basics of ML and its present and future

applications in the field of rheumatology.

Artificial intelligence and machine
learning

Artificial intelligence is a subfield of computer science

devoted to providing computers with capabilities for in-

telligent problem solving (i.e. to solve complex problems

in a way that we would consider as smart). These

capabilities include planning, reasoning, perception or

learning (Fig. 1). Machine learning, a subfield of AI, pro-

vides algorithms (sequences of well-defined computer

instructions that solve a specific problem) that build

mathematical models based on sampled data. These

mathematical models (called functions) map input data

to desired outputs. Inputs can be images and an arbi-

trary sequence of numerical or categorical data. The se-

lected inputs are later referred to as input features.

To represent the mapping, different functional repre-

sentations can be used (called models), such as polyno-

mial functions, decision trees [11], support vector

machines (SVMs) [12] and artificial deep neural networks

(Fig. 2). Linear functions cover linear relationships be-

tween input features and a continuous output variable.

Decision trees are tree-like models of decisions and their

possible consequences. An improvement of decision

trees is random forests [13], which are ensembles of de-

cision trees that classify samples by a majority vote of all

trees. The use of ensembles leads to a lower variance

and lower bias. SVMs are trained to find the best possi-

ble separation of different categories by adapting weights

of polynomial functions. Another method, called the k-

nearest neighbour approach, classifies samples by a ma-

jority vote, assigning the class most common among the

k samples with the most similar features.

The above-mentioned models are built or trained in

different ways. During training, most of the ML models

are adapted by calculating the error of the model out-

puts with respect to the desired targets and adapting

the model parameters so that the error is minimized. It

is important not only to learn the samples by heart but

also to be able to detect hidden patterns and rules in or-

der to generalize to new, unseen data. In order to evalu-

ate the quality of the models, datasets are split into

different parts, where the largest part of the data is used

for training (training set). The rest of the data are used

to evaluate the performance (validation and test sets). In

cross-validation methods, k different parts of the data

are held out during training and are only used afterwards

to assess generalization of the trained model to data not

seen during training. All validation results are combined

for a more robust assessment of the model performance

FIG. 1 Cognitive capabilities of artificial intelligence and types of machine learning
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to avoid selection bias and overfitting. The test set is used

only once, for a final, unbiased performance evaluation.

The performance on a test set can be evaluated using dif-

ferent metrics, such as accuracy, sensitivity, specificity

and area under the curve (AUC) for classification tasks

and the mean squared error for regression tasks.

The data used to train ML systems are usually real

data. ML systems can also be trained with artificial data

collected from simulators, where actions can be taken

by trial and error to learn about different outcomes. In

the fields of robotics, games or autonomous driving,

simulators can be used to expose ML methods to a

large number of new situations [14, 15] during training.

In medicine, ML systems are mainly trained and evalu-

ated on historical datasets. In cases showing convincing

performance, they can then be evaluated on real control

groups using rigorous safety precautions and ideally as

a controlled clinical trial.

Machine learning consists of the subfields supervised

learning, unsupervised learning and reinforcement learning

(Fig. 1). Deep learning, another subfield of ML, expands

the capacity of all these areas by using artificial deep neu-

ral networks to map input data to desired outputs.

Deep learning

In deep learning, data representations are learned auto-

matically by deep neural networks. Deep neural networks

can learn highly complex, non-linear mathematical func-

tions. They consist of several sequential layers composed

of many simple non-linear operations [3], so-called neu-

rons. Historically, these operations were loosely inspired

by (simplified) information processing principles in biologi-

cal neurons: input signals coming from dendrites are inte-

grated in the cell body, and once the membrane potential

of the cell exceeds a certain threshold, it generates an ac-

tion potential that is relayed to other connected neurons

via its axon. In an artificial neural network, input features

are fed into the first layer of neurons and are then propa-

gated through the network to the output layer. Deep neu-

ral network architectures can deal with different types of

input data (e.g. medical images, text or any other type of

patient data). There exist different architectures for differ-

ent types of input data, fe.g. fully connected neural

networks (shown in Fig. 3), convolutional neural networks

[3] and recurrent neural networks [16]g.
Convolutional neural networks are typically used for

images and other data with a grid-like structure. They

perform a mathematical convolution operation on every

part of their inputs to learn increasingly abstract features

in multiple layers. A typical example can be seen when

convolutional neural networks are trained on natural

images. The features that arise through the training pro-

cess in the first layers usually specialize in detecting

contours and edges, and features in later layers are able

to combine these earlier features to detect more com-

plex objects, such as joints or hands. To increase inter-

pretability, convolutional neural networks can be used to

generate heatmaps, highlighting areas by colour that

contribute most to the decision of the network. Thus,

abnormal areas, such as structural damage, can be vi-

sualized for diagnostic use.

Recurrent neural networks, such as long short-term

memories (LSTMs) [17], are a class of artificial neural

networks with an internal memory to process sequences

of data, such as handwriting, speech or numerical time

series. In the field of medicine, LSTMs are used e.g. for

outcome prediction in intensive care units [18], heart fail-

ure prediction [19] or prediction of health-care trajecto-

ries from medical records [20].

Supervised learning

In supervised learning, machine learning models are

trained based on given examples, consisting of inputs

and desired outputs provided by an expert (e.g. the

rheumatologist). Outputs can either be a set of catego-

ries (e.g. active disease, moderate or in remission) or

they can be numbers (e.g. the absolute DAS28 score).

Models trained to output a choice of categories (e.g.

low, moderate or active disease level) are called classifi-

cation models. Models that are trained to output real

numbers are called regression models. The difference

between classification and regression is shown in Fig. 4

for the example of prediction of disease levels.

Unsupervised learning

Unsupervised learning aims to find as-yet unknown un-

derlying patterns or structures in unlabelled data.

FIG. 2 Machine learning models use different function representations to map input features to certain outputs
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FIG. 3 Difference of classification and regression models for disease prediction in RA

FIG. 4 Visualizations of fully connected neural networks

FIG. 5 Heatmap of a hand radiograph indicating regions of high attention for OA Courtesy of ImageBiopsy.
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Unsupervised learning methods are often used to pro-

cess large databases, such as electronic medical

records (EMRs) or large patient cohorts. They can also

cluster patients (subdividing them into groups) and char-

acterize outliers or other important features. Popular

models include hierarchical clustering [21] and k-means

[22]. Furthermore, they can be used to reduce the di-

mensionality of the given data (e.g. with principle com-

ponents analysis [23] or with unsupervised deep

learning models, such as Autoencoder networks [24]).

This can help clinicians to gain a better understanding

of situations, visualize relationships in the data and fo-

cus their practice on a particular disease feature.

Reinforcement learning

In reinforcement learning (RL) [25], computers learn

strategies on how to act optimally in certain situations

with respect to a given criterion (e.g. expected improve-

ment of health). An RL algorithm obtains feedback on

how well it is performing as measured by this criterion

through reward values during training. In the field of

rheumatology, RL could be used, for example, to opti-

mize treatment strategies. Based on the observed data,

a function can be learned that specifies how valuable a

certain treatment is expected to be in the future. This

value function can be represented by regression mod-

els, such as regression trees or deep neural networks.

The strategy can then be extracted from this function by

taking the best treatment with the highest expected

return.

Application of machine learning in
rheumatology

Electronic diagnosis

Online electronic diagnosis systems, also called symp-

tom checkers, are increasingly used by the population

and, to a lesser extent, by health-care professionals.

Most symptom checkers are ruled-based systems,

based on simple (non-machine-learned) decision trees.

Currently, >100 general symptom checkers exist. They

are usually based on textbook knowledge, where one or

multiple symptoms lead to a particular differential diag-

nosis. A survey showed that in-two thirds of cases, the

correct diagnosis was among the top 20 diagnoses

given. The correct diagnosis, however, is provided in

only around one-third of cases and inflammatory arthritis

is correctly diagnosed in <20% [26]. Symptom checkers

are now becoming more advanced in how they commu-

nicate with patients. Chatbot symptom checkers can

process and respond to user input interactively (e.g. in

text or audio chats). Applications such as symptomate.-

com use chatbots for e-diagnosis (https://symptomate.

com/chatbot/). Symptom checkers become more pow-

erful as they shift from simple rule-based systems to

experience-based, deep learning systems that can ex-

ploit collected data (e.g. clinical features, age, imaging).

A press release from the Isabel symptom checker and

triage tool (https://symptomchecker.isabelhealthcare.

com/) proclaimed that its ML used data from >6000

cases. Unfortunately, to the best of our knowledge, no

information on the training data and diagnosis validation

process has been published for this tool. For supervised

diagnosis systems, diagnoses validated by medical doc-

tors are necessary to build up a robust, labelled training

set. In cooperation with IBM Watson (https://www.ibm.

com/watson), Versus Arthritis has launched a cognitive

virtual assistant to provide personalized support for self-

management topics, such as medication and exercise

(https://www.ibm.com/case-studies/versus-arthritis).

Disease detection and stratification

Machine learning is increasingly applied to EMRs in vari-

ous medical fields [27], because they contain large, het-

erogeneous datasets that can be used to train disease

detection or classification approaches using supervised

learning methods. To date, many of the disease detec-

tion approaches in rheumatology have used SVMs or

random forests and are performing classification (which

means assigning categories, e.g. RA/non-RA, see

Supervised learning section).

Carroll et al. [28] used SVMs to detect patients with

RA in an EMR by investigating the billing codes and

medication exposure. With a very small dataset of �100

training samples, they achieved an excellent AUC score

of 0.97. Lin et al. [29] proposed an automatic approach

for detecting RA disease activity from an EMR. Different

machine learning models were trained on a training set

of >2500 clinical notes and laboratory values and then

evaluated on two test sets totalling >2000 notes. The

models extracted terms such as synovitis, pain or stiff-

ness as input features by using a text analysis tool on

clinical notes, and they also used laboratory values of

CRP or ESR. With this clinical and laboratory informa-

tion, the disease activity of each RA patient was pre-

dicted using the following categories: high

(DAS28> 5.1), moderate (DAS28 3.2–5.1), low (DAS28

2.6–3.2) and remission (DAS28<2.6). The best SVM

achieved an AUC score of 0.831. The authors concluded

that automatically discovering RA disease activity from

EMR data was, in principle, a learnable task, with results

approximating human performance.

Shiezadeh et al. [30] performed RA disease detection

on a dataset of �2500 patients referred to a rheumatol-

ogy clinic in Iran. They selected 11 features using

feature-selection techniques such as the v2 test (signifi-

cance test). Painful elbow and knee joints, sex, number

of affected joints and ESR test results had the most im-

pact on the detection. As an ML method, they used an

ensemble of decision trees and compared them with k-

nearest neighbours and SVM techniques. Their best

model yielded 85% accuracy and sensitivity/specificity

of 44%/74%.

A study in the UK used random forests to identify RA

patients from the clinical codes in an EMR [31]. A ran-

dom forest identified eight predictors related to the diag-

nostic codes for RA (i.e. treatment with DMARDs,
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prednisolone or MTX. With a training set of >15 000 and

testing set of >5000 patients from two clinics in Wales,

they achieved 92% accuracy, with sensitivity/specificity

of 86%/94%.

Chin et al. [32] carried out a large-scale, early-disease

risk assessment of RA patients using an EMR in Taiwan.

The goal of early risk assessment was to discover hid-

den factors and establish assessment models based on

the diagnoses collected before a formal diagnosis. The

dataset used 1000 RA and 500 000 non-RA patients,

with diagnostic codes as input features and matrix fac-

torization for computing latent risk factors. Using an

SVM, they identified early-stage RA with sensitivity and

specificity of �74 and �70%, respectively.

Machine learning was applied to a cohort of 120 SLE

patients in order to detect erosive arthritis [33]. Using lo-

gistic regression, they achieved an AUC of 0.8. Feature-

importance analysis showed a relatively high importance

of >40% for anti-CarP antibodies and >30% for anti-

CCP antibodies. In a recent study, SLE patients were

identified efficiently in EMRs based on natural language

processing and logistic regression using ICD-9/10 codes

with a specificity of 97% and a positive predictive value

of 90% [34].

Prediction of disease progression

Given that long-term disease development can be influ-

enced by many unforeseen factors, prediction of dis-

ease progression is much more sophisticated than

disease detection. However, ML can be used to learn

disease prediction models, which are of great interest

for treatment choice or consultation intervals. In 2018,

EMR data were used in The Netherlands to predict

flares in RA patients and to steward treatment tapering

[35]. A flare was defined as an increase of DAS28 and

swollen joint count or an increase in medication from

the last visit. Demographic, laboratory and medication

data along with clinical data (follow-up time, DAS28 and

swollen joint count) were used as input features. In 314

patients, they trained different ML models, i.e. random

forests, logistic regression and k-nearest neighbour

models. The best performance was achieved by a ran-

dom forest, predicting flares with a mean AUC of 0.8.

A mortality prediction model based on a random sur-

vival forest [36] (variant of random forest) was used by

Lezcano-Valverde et al. [37] to predict the mortality of

patients, using a training set of a cohort with >1400

patients from a clinic in San Carlos and a validation set

of 280 RA patients from a clinic in Madrid. The survival

tree identified five mortality risk groups. For 1 and

7 years of follow-up, a sensitivity of 0.79–0.80 and spe-

cificity of 0.43–0.48 were reached.

In a recent paper from 2019, deep learning was ap-

plied to forecast RA disease activity in 820 patients using

data from a US EMR [38]. For disease prediction, the dis-

ease activity [clinical disease activity index (CDAI)] was

translated into a binary disease activity state consisting

of remission/low (CDAI � 10) or moderate/high (CDAI

>10). The features considered were demographics (age,

sex and ethnicity), prior CDAI score, ESR and CRP level,

DMARDs, oral and injected glucocorticoids and autoanti-

bodies (RF and/or ACPAs). The authors reported an AUC

of 0.91 in a test cohort of 114 patients. CDAI was the

most important feature for prediction of disease, followed

by cortisone injections and CRP. Individual DMARDs

were less important for prediction of disease activity, po-

tentially owing to the low number of patients and eight

different DMARDs.

In a dataset of 1892 RA patients, Guan et al. [39]

used a regression model based on Gaussian processes

[40] to predict the response to anti-TNF therapy after

MTX failure, taking into account demographic and clini-

cal data in addition to genetic data (single-nucleotide

polymorphisms). Here, the model classified the response

to anti-TNF treatment with 78% accuracy. In a Swedish

RA registry with 300 patients, three distinct patient sub-

groups (low, median and high) of persistent pain intensi-

ties were identified using unsupervised learning.

Additionally, a random forest was used to find predictive

parameters among 21 different demographic, patient-

rated and objective clinical factors and to patient pain-

related subgroups. Using disease severity, swollen joint

count and tender joint count acquired as features, an

accuracy of 59% was achieved for 3 month predictions.

Hügle et al. [41] used a novel dynamic deep neural

network, designed for multimodal clinical data, to pre-

dict the disease progression to follow-up visits in RA

patients. The dynamic deep neural network architecture

outperformed random forests and fully connected neural

networks, achieving a mean squared error of 0.9, which

corresponds to an error of 8% in the range of the target

value (change of DAS28-BSR).

Genetic and transcriptomic biomarkers

In oncology, gene mutations play an increasing role in

treatment choices (e.g. in the form of companion drug

use). Genetic background is also of growing importance

in rheumatology, although clinically gene-expression

patterns seem more significant in chronic inflammation

(e.g. IFN or other cytokine signatures). Given the techni-

cal progress, in the future, genetic and transcriptomic

types of data will probably be taken into account for dis-

ease classification or treatment choice. Datasets con-

taining DNA or gene expression data could be used to

develop new biomarkers, and large, heterogeneous ge-

netic or epigenomic datasets could be used to find new

disease patterns and abnormalities.

In 2019, the genetic markers of 7000 psoriasis

patients were used as input for ML models to distin-

guish between patients with PsA and cutaneous-only

psoriasis [42]. Using 200 genetic markers, the models

identified nine new loci for psoriasis or its subtypes.

Prediction of PsA in patients with cutaneous psoriasis

was achieved with a remarkable precision of >90% and

specificity of 100%.

Microarray-based transcriptome data from synovial

tissue were recently used to differentiate between OA

and RA [43]. Random forests were used to find the most

Maria Hügle et al.
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differential genes by computing the importance of fea-

tures. With random forests, k-nearest neighbours and

SVMs, they achieved a very high accuracy of 96%, with

a sensitivity of 100% and specificity of 90%.

Machine learning methods were applied to whole-

blood transcript data to predict responses to MTX treat-

ment at 6 months after drug initiation in RA patients

[44]. ML outperformed statistical models considering

clinical covariates only (e.g. baseline disease activity,

sex). With regression models such as Ridge regression

[45], they achieved an AUC of 0.78 and 0.63 with and

without transcript data, respectively.

Image recognition

Machine learning is increasingly being used for image

interpretation in musculoskeletal radiology. Over the last

decades, the use of deep learning has increased the

performance of image interpretation methods signifi-

cantly, especially with the development of convolutional

neural networks [3]. Automatic image interpretation can

serve as a diagnostic aid for physicians in clinical prac-

tice e.g. for detection of lesions or regions of high inter-

est by heatmaps (Fig. 5). This is particularly relevant for

semi-quantitative or quantitative assessments, which are

extremely time consuming (and therefore costly) to per-

form manually. ML offers the opportunity to provide

such quantitative assessment in a more practical, fast

and reliable way. In the following paragraphs, examples

from the OA literature are given that have been most

prolific in terms of the application of AI to rheumatologi-

cal disorders.

Several methods have been used to detect OA on

knee or hip radiographs. Brahim et al. [46] used tibial

texture analysis to detect OA on 1024 knees in the OA

Initiative dataset, achieving 83% accuracy and sensitiv-

ity of 87%, with a specificity of 81%. In a study on 420

pelvic radiographs, Xue et al. [47] achieved 93% accu-

racy and a sensitivity of 95% and specificity of 91%,

which are results comparable to a senior radiologist.

Although radiography has long been the imaging

mode of reference for assessing OA, MRI has now

emerged as the mode of reference for assessing all the

articular components involved in the development of

OA. Liu et al. [48] achieved a sensitivity of 81% and

specificity of 88% in the automatic detection of femoro-

tibial cartilage lesions using two-dimensional convolu-

tional neural networks. Three-dimensional convolutional

neural networks detected menisci and patellofemoral

cartilage lesions from MRI datasets [48] with a sensitiv-

ity/specificity of 90%/82% and 80%/80%, respectively,

comparable to clinical experts [50].

Imaging can also provide a tool to grade the severity of

OA (regression, supervised learning). This has typically

been done manually by radiologists using semi-

quantitative scores, such as the Kellgren–Lawrence (KL)

radiographic scoring system or, for MRI, using the Whole

Organ Magnetic Resonance Imaging Score (WORMS) or

Boston Leeds Osteoarthritis Knee Score (BLOKS). Tiulpin

et al. [51] used a convolutional neural network to predict

five different disease levels (graded according to the KL

scale). They achieved 66% accuracy and an AUC of 0.93

(comparable to clinical experts) in predicting the severity

of OA among 3000 randomly selected radiographs from

the OA Initiative cohort. Furthermore, they used attention

maps to highlight the radiological features affecting the

convolutional neural network decisions. In a similar study,

Norman et al. [52] obtained similar results.

Finally, along with morphological datasets, MRI enables

the use of compositional techniques, particularly T2 map-

ping, which now enables three-dimensional quantitative

assessment of tissue structure [53, 54]. Tools to auto-

mate the analysis of compositional imaging techniques

and integrate morphological data would be very beneficial

to the field of rheumatology. Ashinsky et al. [49] showed,

with 75% accuracy, that patients progression to symp-

tomatic OA can be detected using T2 mapping data.

Discussion

Machine learning is a young but emerging field in rheu-

matology [55]. Automated image recognition and scoring

lesions on radiographs will probably be some of the first

applications assisted by AI to enter routine clinical use.

As shown in recent studies, individual disease prediction

models will certainly follow. Supervised learning is cur-

rently the method most often applied for disease

FIG. 6 Cycle of artificial intelligence-supported data management and clinical decision-making in rheumatology
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detection and risk assessment in RA. ML models are

typically trained using EMR or national cohorts. Here,

algorithms can automatically detect and process clini-

cally useful information and can be used for AI-assisted

quality control in smaller patient samples (e.g. how

many and which patients in your consultations are in re-

mission or not). Although cohorts and local registries of-

fer smaller datasets than EMRs, they are often labelled

more specifically and thus enable more sophisticated

applications of ML, notably for disease prediction. Using

these data optimally, ML applications can help clinicians

to gain a better understanding of disease courses and

potentially adapt treatments earlier. Current data and

our own experience indicate that ML is particularly good

at predicting remission, thus helping clinicians to de-

escalate or stop treatments and reduce monitoring [35].

In the future, ML will probably also help rheumatolo-

gists to find the best patient-specific treatment (e.g. by

using reinforcement learning). The more information

available, the better ML will perform to support the rheu-

matologist in disease prediction and treatment choice.

Patient-reported outcomes, along with laboratory values,

genetic and transcriptomic information (e.g. from syno-

vial biopsies) and radiological data will increase the

quality of ML evidence. Once ML learns from its own

decisions, we really can speak of AI-supported medi-

cine. To do so, an architecture of data collection, stor-

age, processing, algorithms and, finally, integration in

the clinical system and validation of AI support is neces-

sary (Fig. 6). All these elements are important steps to

ensure user acceptance, both by physicians and by

patients. Although data storage, processing and learning

algorithms can be fully automated, data entry, usability

and data validation seem to be most crucial.

One of the main challenges for ML applications remains

the time for objective clinical assessment (e.g. joint swell-

ing) and data input. In future, whether this is performed

purely by the rheumatologist or by specialized nurses and

how this process can be automated (e.g. by image recog-

nition) remain to be clarified. Data safety, privacy and

compliance are other main challenges. Regulations for

ML-assisted applications in the sense of software as a

medical device are currently being developed.

We postulate that future shared decision-making pro-

cesses will be likely to change. Currently, clinical deci-

sions are based on scientific evidence, the

rheumatologist’s personal experience and the patient’s

preference. Machine-learned evidence could become a

cornerstone of shared decision-making in certain situa-

tions. We do not think that this new element in clinical

decision-making will affect patient–doctor relationships

in a negative way. It is more likely, because ML-

generated evidence is a neutral tool, that it will empower

patients and, to some extent, make them less depen-

dent on the opinion of their doctor.

There are, nevertheless, also technical challenges to

overcome before ML can be applied successfully to all

medical data; two challenges are the quantity and quality of

the data. Deep neural networks, in particular (which are

currently the most powerful ML method in many applica-

tions), generally require massive training sets. Poor-quality

training data (e.g. noisy data, missing values, irregular visits)

from EMRs will reduce the overall quality of the model.

Taken together, ML has already shown clinically useful

applications in rheumatology. It has the potential to sup-

port doctors in clinical and experimental medicine and

to foster personalized medicine. For patients, ML offers

the possibility of more transparency and autonomy.

Integrated databases have the greatest potential to pro-

vide sufficient data.
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