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A huge quantity of microbiome samples have been accumulated, and more are yet
to come from all niches around the globe. With the accumulation of data, there is an
urgent need for comparisons and searches of microbiome samples among thousands
of millions of samples in a fast and accurate manner. However, it is a very difficult
computational challenge to identify similar samples, as well as identify their likely
origins, among such a grand pool of samples from all around the world. Currently,
several approaches have already been proposed for such a challenge, based on either
distance calculation, unsupervised algorithms, or supervised algorithms. These methods
have advantages and disadvantages for the different settings of comparisons and
searches, and their results are also drastically different. In this review, we systematically
compared distance-based, unsupervised, and supervised methods for microbiome
sample comparison and search. Firstly, we assessed their accuracy and efficiency, both
in theory and in practice. Then we described the scenarios in which one or multiple
methods were applicable for sample searches. Thirdly, we provided several applications
for microbiome sample comparisons and searches, and provided suggestions on the
choice of methods. Finally, we provided several perspectives for the future development
of microbiome sample comparison and search, including deep learning technologies for
tracking the sources of microbiome samples.

Keywords: microbiome, search, comparison, distance-based, unsupervised, supervised

INTRODUCTION

Microbiome samples are accumulating at an accelerating rate, representing microbial communities
from every niche (biome) of the human body as well as other host organisms, environments,
and ecological biomes (Mitchell et al., 2020; Figure 1). Comparison of microbiome samples,
as well as searching for microbial community samples among a pool of millions of samples,
thus becomes increasingly important for the discovery of similar samples and their intricate
relationships (Knights et al., 2011; Shenhav et al., 2019), the tracking of possible sample origins
(Lax et al., 2014), and the mining of key species and functional genes (Che et al., 2019).

Microbial source tracking (MST) has a very broad application area, including environment
science, public health, food science, and forensics, etc. (Fu and Li, 2014; Lax et al., 2014;
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Henry et al., 2016; Metcalf et al., 2016; Gu et al., 2020; McHugh
et al., 2020). For example, many MST studies have focused
on determining sources of fecal contamination in waterways,
and they are also providing the scientific community with
tools for tracking both fecal bacteria and food-borne pathogens
contamination in the food chain (Li et al., 2018; Han et al.,
2020). Approaches for MST are commonly classified as library-
dependent methods (LDMs) or library-independent methods
(LIMs). Unsupervised tools and distance-based tools are usually
LDMs, such as FEAST (Shenhav et al., 2019) and UniFrac
(Lozupone et al., 2011). On the other hand, supervised tools
are mainly LIMs, such as Random Forest and the recently
developed ONN4MST1. In general, LDMs and LIMs can both
achieve good performance for MST with a small number of
microbial community samples (usually from a handful to dozens
of samples) and a few biomes (usually no more than 10 biomes).
However, LIMs can also perform well when source tracking with
thousands of samples and hundreds of biomes, but it is difficult
for LDMs to deal with such situations due to limitations of
accuracy and efficiency.

However, as the number of microbiome samples easily
exceeds tens of thousands in a medium-sized data collection,
the efficiency and accuracy of sample comparison and search
becomes a critical bottleneck (Figure 1). Besides, there are
millions of samples from the rapidly diversified biomes (biome
size is about 100–300 samples) in public databases (i.e., MGnify)
(Figure 1). The rapidly increasing number of samples from
various niches on the planet has thus created a difficult hurdle for
knowledge discovery from these samples (Mitchell et al., 2020).

CURRENT METHODS FOR
MICROBIOME SAMPLE COMPARISON
AND SEARCH

Several approaches have been established for microbiome sample
comparison and search. These approaches include the methods
based on pair-wise calculations of sample distances (distance-
based methods), unsupervised methods, and supervised methods
(Figure 2). These methods are different in the utilization
of the microbiome data (species abundance information,
species phylogenetic information, or both), the preprocessing
of the microbiome data (feature selection), the underlining
computational models (distance calculation, model-free
unsupervised calculation, or model-based supervised learning),
and the utilization of the computational resources (multi-thread,
memory-efficient optimization, etc.) (Table 1).

Traditional methods for microbiome sample comparison
are based on the pair-wise calculation of sample distances
(Figure 2A), and such methods depend heavily on the presence
of species and their relative abundances for individual samples,
no matter whether weighted or unweighted scoring functions are
used (Lin, 1991; Lozupone et al., 2011). For example, Jensen-
Shannon divergence (JSD) is a distance-based method, which
estimates the JSD distance between samples. Specifically, for a

1https://github.com/HUST-NingKang-Lab/ONN4MST
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FIGURE 1 | The accelerating number of microbiome samples, and the rapidly
diversified biomes from where they are collected. Results are based on the
assessment of the EBI MGnify database (publically available samples) from the
year 2011 to the year 2020. The primary (left) vertical axis is the number of
samples. The secondary (right) vertical axis is the number of biomes. EBI
MGnify database is pubilc and available.

pair of samples, it calculates the distance by computing the
distribution similarity of two abundance tables. The procedure
of JSD can be represented by the following formula:

DXY =

∑N
1 (Xi − Yi)

2

N

where X and Y each represent a microbiome sample, DXY is the
JSD distance between the two samples, i is a specific species,
Xi is the relative abundance of species i in sample X, Yi is the
relative abundance of species i in sample Y , and N is the number
of species detected in the two samples. However, such methods
have not considered the specific features of a set of samples from
similar niches, and the distance-based methods have a binomial
increase of time cost with the increase of the number of samples.

Unsupervised methods for microbiome sample comparison
are based on profile-based statistical models, either the Bayesian
model (Knights et al., 2011) or the Expected-Maximization (EM)
model (Shenhav et al., 2019), for more accurate comparison and
search (Figure 2B). Unsupervised methods usually need samples
to be converted into a feature table, which is then used for
statistical inference of similarities. Unsupervised methods are
usually more accurate than distance-based methods, while the
speeds are similar. For example, SourceTracker (Knights et al.,
2011) is an unsupervised method, which requires consideration
of all possible assignments of the test sample sequences to the
different source environments (such as gut, oral, skin, soil, and
water). SourceTracker considers each microbiome sample as a
set of sequences mapped to taxa, where each sequence can be
assigned to any one of the source environments. Then, it conducts
Gibbs sampling to estimate the proportion of bacteria from
source environments. However, since unsupervised methods still
do not consider the specific features of a set of samples from
similar niches, their tolerance to noisy signals in samples remains
poor, and would lead to biased mismatches.

Supervised methods are also referred to as model-
based methods (Figure 2C). The models used in the
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FIGURE 2 | The brief computational workflows for microbiome sample comparison and search based on (A) distance-based methods, (B) unsupervised methods,
and (C) supervised methods.

supervised methods include the Random Forest (RF) model
(Roguet et al., 2018), as well as the neural network (NN) model
(see text footnote 1). Since supervised methods take into
consideration the specific features of a set of samples from
similar niches, they are tolerant to noises in samples, but can still
discover similar samples even from distant niches. Moreover,
model-based methods are magnitudes faster than distance-based

and unsupervised methods, which is mainly because all sample
searches are based on the pre-built model. Therefore, supervised
methods are suitable for large-scale comparisons and searches,
and are superior in both accuracy and speed.

Nevertheless, all three approaches, namely distance-based
calculation and unsupervised matching, and supervised
matching, have their specific application scenarios: for a
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TABLE 1 | Computational resources and data utilization differences among current methods for microbiome sample comparison and search.

Method Methods in use Representative tools Pre-process of the data Computational model Utilization of
computational resources

Distance-based Pair-wise sample
distances

JSD (Lin, 1991) Could apply feature
selection before source
tracking

Pair-wise distance
calculation

No optimization

UniFrac (Lozupone et al., 2011)

Meta-Storms (Su et al., 2012)

Meta-Prism (Zhu et al., 2020)

Unsupervised Bayesian SourceTracker (Knights et al., 2011) No feature selection Model-free unsupervised
calculation

No optimization

EM FEAST (Shenhav et al., 2019)

Supervised Ensemble learning Random Forest
(Roguet et al., 2018)

Could apply feature
selection before source
tracking

Model-based supervised
learning

Multi-thread,
memory-efficient
optimization

Neural Network ONN4MST
(https://github.com/HUST-
NingKang-Lab/ONN4MST)

few samples, ranging from a few tens to several hundreds,
both distance-based calculation and unsupervised matching
approaches could provide quick and accurate sample
comparisons, provided that these samples were from a handful
of niches (biomes). Thus, these two approaches are suitable
for a quick comparison of samples in hand. However, if the
number of samples exceeds a thousand, or samples have a high
level of heterogeneity (from many biomes), or some samples
are very similar, then the supervised matching approach would
be more accurate.

In terms of efficiency, both time and memory costs are
important. Provided that all pre-processes are already done,
the supervised matching method is superior to other methods.
However, when considering memory costs, then distance-based
methods are very effective since they do not need to store any
models for comparison. The supervised matching method is also
good since all comparisons are based on pre-built models, and
it is better than distance-based methods when the number of
samples is larger than a thousand. Thus, for large-scale sample
comparisons, the supervised matching method is better than
other methods in efficiency as well. Here we should note that the
supervised matching approach could achieve superior accuracy
and speed for large-scale comparisons and searches, but at the
cost of model building: when the number of samples considered
in the model exceeds one million, the model building process
would take more than 1 day.

Microbiome sample comparison is not only about the
comparison and searching of sample purpose, but also for
knowledge discovery from microbiome big-data. One kind
of such knowledge is about remote similarities between
samples, especially similar samples from different niches.
Such similarity patterns would always lead to the discovery
of patterns that are common for certain environmental
conditions. Another set of information that could be
discovered is the microbiome samples of special functions,
such as adaptation to specific conditions. The third set of
knowledge is about the differences among samples from

similar niches, which could always reflect the evolutionary
patterns of communities.

COMPLEXITY OF THE SOURCE
TRACKING TASK

The complexities of source tracking tasks are heavily dependent
on the number of samples and the number of biomes in a
dataset. Source tracking tasks are usually easy when there are
many samples from a few biomes, while they are usually hard
when there are samples from many biomes (Figure 3). A typical
example of a dataset with low complexity is human gut samples
from different continents, in which a simple Random Forest
method could differentiate samples from these continents fairly
accurately (Yatsunenko et al., 2012). A typical example of a
dataset with high complexity is for “open search” samples from
a pool of millions of samples from hundreds of biomes. Those
datasets, such as those with thousands of samples from the
soil environment or water environment, as well as those with
tens of thousands of samples from the human body, are of
medium complexities.

These datasets are introduced by a relevant study (Zha et al.,
2020). In their study, Zha et al., 2020 collected 125,823 samples
from the MGnify database (mixed dataset), including 53,553
samples from human environments (human dataset), 27,667
samples from water environments (water dataset), and 11,528
from soil environments (soil dataset), and details (also include
download links) about these mentioned datasets can be learned
through the Supplementary Material of their study. Indeed,
these datasets comprise samples from different niches, which are
representative of high-quality samples in public resources.

The fundamental reason for such a complex source tracking
task is that when there are many samples but few biomes,
differences between biomes can be extracted with high fidelity,
making it relatively easy to distinguish samples from different
biomes. On the other hand, when the number of biomes is
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TABLE 2 | The advantages and disadvantages of current methods for microbiome sample comparison and search.

Method Methods in use Suggested
sample size

Suggested
biome size

Search
accuracy

Time cost
(s/query)

Memory cost
(GB/query)

Representative tools

Distance-based JSD 1∼105 1∼10 0.5∼0.8 101
∼102 100

∼102

UniFrac 1∼105 1∼10 0.6∼0.8 100
∼101 100

∼102

Meta-Storms 1∼105 1∼102 0.5∼0.8 10−1
∼100 101

∼102

Meta-Prism 1∼105 1∼102 0.5∼0.8 10−1
∼100 10−1∼100

Unsupervised Source tracker 1∼104 1∼102 0.8∼0.9 102
∼104 100

∼101

FEAST 1∼105 1∼102 0.8∼0.9 101
∼103 100

∼102

Supervised Random forest 1∼106 1∼103 >0.9 10−2∼10−1 100
∼101

ONN4MST 1∼106 1∼103 >0.9 10−2∼10−1 100 ˜101

Values in bold indicate the best performance among these methods in accuracy and efficiency. Estimations of search accuracy and efficiency are based on the results of
recent studies (Shenhav et al., 2019; Zha et al., 2020).

large but the number of samples is small, it is difficult to clearly
distinguish the biomes due to the lack of sample taxonomic
characteristics.

Datasets with different complexities could serve well for
bench-marking and comparison of various source tracking
methods. A complex dataset (dataset containing samples mostly
from “soil” biomes; Mitchell et al., 2020; see text footnote 1),
which covers less than 20,000 samples from more than 10 biomes,
could provide the opportunity to assess the potential extremes of
accuracy for these methods. Meanwhile, a huge dataset (dataset
containing samples from “human,” “soil,” and “water” biomes;
Mitchell et al., 2020; see text footnote 1) which covers more than
100,000 samples, could provide the opportunity to assess the
efficiency of both time and memory for these methods.

DISTANCE-BASED METHODS

Distance-based methods, also known as similarity score-based
methods or difference score-based methods, represent the first
generation of attempts for microbiome sample comparison
and search. These methods include JSD, Bray-Curtis distance,

the UniFrac series, and the Meta-Prism series. These methods
differ in the utilization of microbiome data (species abundance
information, species phylogenetic information, or both), and
the optimization of computational resources (multithreading,
memory-efficient optimization, etc.).

Among distance-based methods, some consider phylogenetic
relationships of species in samples and some do not. JSD (Lin,
1991) is a typical method that does not consider the phylogenetic
relationships of species in samples. Bray-Curtis (Beals, 1984)
distance is another typical distance-based method but still does
not consider the phylogenetic relationships of species in samples.
The UniFrac, Fast UniFrac, and Striped UniFrac methods are
commonly used methods that do consider the phylogenetic
relationships of species in samples (Lozupone et al., 2011).
Meta-Storms and Meta-Prism methods are also widely used
methods that do consider the phylogenetic relationships of
species in samples. Meta-Storms and Meta-Prism methods are
different from the UniFrac series mainly due to the different
scoring functions used (Su et al., 2012; Zhu et al., 2020):
while UniFrac calculates the similarities between samples, the
Meta-Storms and Meta-Prism methods calculate the distances
between samples, and the detailed scores are also different.
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Meta-Prism has also been optimized in a sample data storage
format and in multithreading computation for better processing
speed (Zhu et al., 2020).

Distance-based methods are most suitable in situations under
which we need to quickly identify the similarities among samples
on a global scale, while they are not very suitable for scrutinizing
the tiny differences among samples, largely due to the imprecise
nature of the distance-based methods.

However, distance-based methods are usually slow. For
example, searching for a sample against a database of more
than one million samples takes JSD a few minutes, while
UniFrac takes tens of minutes. On the other hand, all distance-
based methods are optimized in sample storage as well as
multithreading computation for better efficiency. Meta-Prism
is one of the most efficient methods for sample searches by
optimizing computational thread and memory. For example,
Meta-Prism could complete a search in less than 1 s by only using
1 GB of memory when searching a sample against a database of
more than one million samples. Striped UniFrac could reach a
similar speed but requires more than 10 GB of memory.

UNSUPERVISED METHODS

Distance-based methods could be used for microbiome sample
comparisons and searches, but are not very accurate. Thus, one
might consider unsupervised methods to solve this same problem
with higher accuracy. Unsupervised methods for microbiome
sample comparison and searches include Bayesian and EM
(expected maximization) methods, etc.

The Bayesian method and EM method are unsupervised
methods that can accurately compare microbiome samples,
taking into consideration the phylogenetic relationships of
species in the community. SourceTracker is a typical sample
search method based on the Bayesian algorithm (Knights et al.,
2011). SourceTracker’s distinguishing features are its direct
estimation of source proportions, and its Bayesian modeling of
uncertainty about known and unknown source environments.
The Bayesian approach requires consideration of all possible
assignments of the test sample sequences to the different source
environments, SourceTracker has explored this joint distribution
using Gibbs sampling, a technique widely used in the exploration
of complex posterior distributions.

The EM method is more efficient than the Bayesian method
for sample source tracking. FEAST is a typical sample search
method based on the EM algorithm (Shenhav et al., 2019). The
statistical model used by FEAST assumes each sink is a convex
combination of known and unknown sources. FEAST has two
hyperparameters: the convergence threshold and the maximum
number of iterations. The convergence threshold determines
the minimum value difference between the sum of all sources’
probabilities and 1 in the M step (maximization). The number
of iterations determines the maximum number of rounds in the
E step (expectation) runs.

Unsupervised methods are most suitable when there are a
few samples for quick comparison, or the dataset to be searched
is very small so that model-based methods are not necessary.

However, unsupervised methods do not consider the specific
features of a set of samples from similar niches, its tolerance
to noisy signals in samples is not high, thus would lead to
biased mismatches. Again, faced with millions of samples for
source tracking, the unsupervised methods fall short in speed and
memory utilization (Table 2).

SUPERVISED METHODS

Though unsupervised methods are accurate for microbiome
sample comparison and searches, it is easy to think of model-
based methods as solving the same problem with higher
accuracy and speed. However, it was not until recently that
supervised methods were realistic, largely due to the number of
samples accumulated.

The Random Forest method (Roguet et al., 2018) is a
classification method that calculates the highest probability from
which class the query sample belongs. The Random Forest
algorithm creates decision trees on data samples and then obtains
a prediction from each of them and finally selects the best
solution through voting. It is an ensemble method that is better
than a single decision tree because it reduces the over-fitting
by averaging the result. With the accumulation of microbiome
samples, more decision trees could be created for the Random
Forest algorithm and thus be more accurate in MST.

The neural network (NN) approach is a typical supervised
approach for sample comparison and searches. A neural network
model for MST can generally be divided into three parts. The
input layer receives microbial community sample data, the
hidden layer would learn the distribution of all samples, and the
output layer gives the contribution of each biome for samples.
The ontology-aware neural network (ONN) approach (see text
footnote 1) is an improved supervised approach that takes into
consideration not only the phylogenetic relationships of species
in the community, but also the hierarchical relationships of
biomes (Mitchell et al., 2020)2. Additionally, the ONN approach
employs a hierarchical architecture of the neural network that fits
in with the biome ontology and thus can source track microbial
community samples with high accuracy in every layer of biome
ontology. Moreover, the ONN approach also shows superiority in
time and memory cost. However, it should be noted that current
supervised methods are heavily dependent on the completeness
of the sample collections for building the model, which is an
inherited limitation of supervised approaches.

In summary, all three approaches have advantages and
disadvantages (Table 2). Since these three approaches have
specific niches in which they are most suitable for application,
there is constant improvement in all of these three approaches.
For example, the recently developed Striped UniFrac (McDonald
et al., 2018) has largely improved the search efficiency of the
UniFrac series of tools. Despite these ongoing developments,
supervised methods have shown superior performances in terms
of both accuracy and speed for large-scale microbiome sample
comparison and searches.

2https://www.ebi.ac.uk/metagenomics/biomes
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ASSESSMENT OF DIFFERENT
METHODS ON A STANDARD
BENCHMARK DATASET

To compare the accuracy and efficiency of these three types of
methods, we conducted an assessment on a standard benchmark
dataset. We used the subset of EMP (Earth Microbiome
Project) in the CAMDA challenge competition (year 2019)3 for
the following evaluation. There were 3,043 earth microbiome
samples from 21 soil associate biomes, out of which eight biomes
contained more than 100 samples (Supplementary Table 1).
We randomly selected 800 samples from these eight biomes
(100 samples per biome). Among these 800 samples, 90%
(720 samples) were used for sources (training samples) and
the remaining 10% (80 samples) were used for sinks (testing
samples), and this training/testing data separation procedure was
repeated eight times. We applied three representative tools for
comparison, including the distance-based method (i.e., Bray-
Curtis), unsupervised method (i.e., FEAST) and supervised
method (i.e., neural network).

Results have shown that the supervised method has superior
performance compared to the other two methods in accuracy
and efficiency. For instance, the simple neural network achieved
an accuracy of 0.900 with a time cost of 11 s, while though
the unsupervised method and distance-based method took much
longer, their accuracies were much lower (Table 3).

APPLICATIONS OF MICROBIOME
SAMPLE COMPARISON AND SEARCH

Microbiome sample comparison and search methods have
a broad application area (Table 4), especially in sample
source tracking.

In all health systems, tracking the source of a hospital sink
sample is an important issue for the prevention of possible
infectious diseases (Lax et al., 2014; Brown et al., 2019).
Identification of possible contamination from hospital sinks and

3http://camda2019.bioinf.jku.at/

TABLE 3 | The comparisons of current methods for microbiome sample searches’
accuracy and efficiency.

Method Representative
tools

Accuracy
(MEAN ± STD)

Time
costa

Memory
costb

Distance-based Bray-Curtis 0.525 ± 0.323 34 s 0.21 GB

Unsupervised FEASTc 0.775 ± 0.238 4 h 0.78 GB

Supervised Neural Networkd 0.900 ± 0.050 11e s 0.53 GB

aRunning time on a single core.
bMaximum memory cost when programs running.
cDue to its low efficiency, FEAST is tested on 80 source samples only.
dA simple neural network with two fully connected layers as hidden layers and
ReLU as the activation function.
eQuery time only (excluding training time). Accuracy is measured by dividing the
number of samples with correctly predicted source biomes, over the number of all
samples.

other niches has thus become an urgent need. SourceTracker
has been applied in several hospital sink sample source tracking
applications to identify human and animal contamination with
high confidence (Lax et al., 2014; Brown et al., 2019). FEAST
reanalyzed some of these datasets, confirming the contamination
sources qualitatively, yet with different quantitative assessment
results (Lax et al., 2014; Shenhav et al., 2019).

In public health research, sample source tracking is also key
for fast and accurate action against infectious diseases4. With
the ever-increasing size of cities, possible pollution from city
residents to the environment, especially fecal contamination to
the environment, has become a critical public health issue (Henry
et al., 2016; Staley et al., 2018). SourceTracker has been applied for
these datasets and identified the sources of fecal contamination
with high fidelity.

During the recent outbreak of COVID-19, microbiome
sample source tracking also played an important role in
finding the relationships among patients. It has already been
reported that COVID-19 patients have profoundly different gut
microbiota compared with healthy individuals (Gu et al., 2020).
By using the Random Forest method, researchers selected five
biomarkers for distinguishing COVID-19 patients from healthy
controls, results showed high accuracy with an area under the
curve (AUC) up to 0.89 (Gu et al., 2020).

In forensic studies, corpse sample source tracking is a critical
issue (Metcalf et al., 2016). Based on microbiome samples, it
has already become possible for forensic scientists to identify
the microbial sample coming from important suspects/sources
based on microbial community dissimilarities (Carter et al.,
2020). Researchers sampled the skin and gravesoil associated with
four decomposing human bodies, as a consequence, microbial
succession during decomposition appears to be a predictable
process that has implications for biogeochemical cycling and
forensic science (Metcalf et al., 2016).

In a food chain, sample source tracking could also help
for the detection of possible contaminates (Fu and Li, 2014).
The ability to trace fecal indicators and food-borne pathogens
to the point of origin has major ramifications for food
industries, food regulatory agencies, and public health. Such
information would enable food producers and processors to
better understand sources of contamination and thereby take
corrective actions to prevent transmission. Microbial subtyping
and source tracking have also been used to investigate the
transmission of other major zoonotic pathogens from pre- to
postharvest food animals. Salmonella has been associated with
poultry meat and egg products, and these bacteria are capable
of colonizing in live poultry in their intestinal tracts. Source
tracking and horizontal transmission pathways of Salmonella
serovars were delineated in a turkey production environment
(Nayak and Stewart-King, 2008).

In agriculture research, sample source tracking is a powerful
tool against pollutants (McHugh et al., 2020). This study set out
to use molecular methods to provide an important description
of the microbiota of a food processing pipeline by tracking

4https://www.epa.gov/sciencematters/microbial-source-tracking-how-did-get-
there
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TABLE 4 | Current applications of microbiome sample comparison and searches.

Example Description References

Hospital sink Microbial contamination detection in
built environment

By using SourceTracker, researchers found that draft genomes of potential
human pathogens observed on a kitchen counter could be matched to the
hands of occupants.

Lax et al., 2014

Public health COVID-19 source tracking By using the Random Forest method, researchers selected five biomarkers
for distinguishing COVID-19 patients from healthy controls, results showed
a high accuracy with an area under the curve (AUC) up to 0.89.

Gu et al., 2020

Forensic studies Microbial community assembly and
metabolic function during mammalian
corpse decomposition

Researchers sampled the skin and gravesoil associated with four
decomposing human bodies, as a consequence, microbial succession
during decomposition appears to be a predictable process that has
implications for biogeochemical cycling and forensic science.

Metcalf et al., 2016

Food chain MST methods in an application to
understand the source and
transmission of food-borne pathogens

Researchers discussed microbial source tracking methods application for
identifying sources of bacterial contamination in the food chain in three main
aspects: water for agriculture and aquaculture, food animals in a farming
environment, and food products in post-harvest processing

Fu and Li, 2014

Agriculture research Tracking the dairy microbiota from farm
bulk tank to skimmed milk powder

This study set out to use molecular methods to provide an important
description of the microbiota of a food processing pipeline by tracking the
microbiota of raw milks on farms to a final skimmed milk powder.

McHugh et al., 2020

Environmental
research

Evaluation of SourceTracker for the
assessment of fecal contamination of
coastal waters

Application of SourceTracker to recreational beach samples identified
treated effluent as a major source of human-derived fecal contamination,
present in 69% of samples.

Henry et al., 2016

Conservation
biology

Linking watershed modeling and
bacterial source tracking to better
assess E. coli sources

This study proposed a model to identify critical source areas of E. coli in
mixed land uses in south Texas, and results showed that wildlife
contribution is the major source of E. coli in streamflow, and may remain to
be significant after land use change with urbanization.

Jeong et al., 2019

the microbiota of raw milks on farms to the final skimmed
milk powder. With the routine implementation of these source
tracking methods, understanding the causes that lead to different
species being dominant in the final product can be determined
and lead to informed decisions regarding product fate, in turn
leading to increased food safety, reduced risk, and reduced
economic losses.

In environmental research, sample source tracking could
help toward better environmental protection (Hagedorn et al.,
2011), as well as for the protection of public health indirectly
(Harwood et al., 2014). SourceTracker applied a Bayesian model
to derive proportions of sources within sink samples. However,
it was recognized that the model reported high variability
in estimates for sources present at low concentrations. This
limitation is a potential problem for the detection of human
fecal contamination within coastal waters where levels are often
low but still pose public health risks. FEAST applied the EM
algorithm to derive proportions of sources within sink samples,
it could get a high resolution when faced with problems in
pollution detection, and thus protect us from potential public
health risks. Besides, in conservation biology research, sample
source tracking could also help researchers to better understand
the contributing sources of bacterial contamination, assessing
the management of critical sources (i.e., wildlife animals), and
reducing concentrations of pollution indicator bacteria in wildlife
environments (Byappanahalli et al., 2015; Jeong et al., 2019).

All in all, computational method microbiome sample
comparison and searches could have a very broad application
area, including applications related with the host-associated
microbiome, as well as the environmental microbiome. This
again emphasizes the importance of fast, accurate, and reliable

methods for microbiome sample comparison and searches,
especially those related with sample source tracking.

DISCUSSION AND CONCLUSION

Pronounced applications depend on accurate and fast
microbiome sample comparison and searches. The microbiome
sample comparison and searches, especially faced with millions
of microbiome samples, has thus become one of the most
important problems in the microbiome research field.

Three main approaches, namely the distance-based method,
unsupervised method, and supervised method, are presently
commonly used for microbiome sample comparison and
searches. They represent the paradigm shift in the area, and are
in line with the microbiome big-data. Though distance-based
methods, such as Striped UniFrac (McDonald et al., 2018) and
Meta-Prism5, have been optimized to the minimum usage of
memory and near-optimal speed, their accuracies are lagging
behind machine learning methods, especially when the number
of samples to be searched against exceeds tens of thousands up
to millions. Among the machine learning methods, model-based
supervised methods are superior to unsupervised methods, both
in terms of accuracy and efficiency.

How far are we to the final solution to the problem of
microbiome sample comparison and searches? In regard to
accuracy, not far if we are using supervised methods based
on pre-built models. However, this is not realistic if a sample
from totally new niches is sent in for a search. Therefore, the

5https://github.com/HUST-NingKang-Lab/Meta-Prism-2.0
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combination of several approaches might still have its usage
for a long time. In regard to efficiency in time and memory
usage, we can confidently say that current methods have reached
a limit, provided that current parallel computation and GPU
computation have no revolutionary update. This is said based
on the fact that there is very little margin between the time and
memory usage for a sample search, compared with the cost of
only conducting I/O of the sample, in regard to the actual or ratio
of the time/memory space used (Table 2).

Currently, the reference-free methods, which do not need
to decipher the community structure of the samples, but are
rather dependent on using sample features (i.e., k-mers), have
emerged as an alternative approach for sample comparison
and searches (Comin et al., 2020). The limitation of such
an approach is also apparent, one of which is the weak
interpretability of the results. Crowd sourcing might be another
way toward the optimal solution of microbiome sample
comparison and searches. The MetaSUB challenge (metasub.org)
is a good example of citizen science working toward better
microbiome sample searches and source tracking. The spike-
in of synthetic DNA into the samples is another very
promising strategy for accurate source tracking (Qian et al.,
2020), yet it needs the combination of both experimental and
computational techniques.

What could we do after an accurate sample search? Gene
mining, function mining, etc. So many microbiome functional
mining tasks have been utilized in the past, and deep learning
approaches might be the powerful tool for the way forward
(Wang et al., 2019). Apart from the developed algorithms
for better microbiome sample comparison and searches, these
powerful methods could be applied on the yet-to-be-realized
microbiome dark matters. The microbiome dark matter samples
that need to be searched include: virome (Paez-Espino et al.,
2016), protist (Miao et al., 2020), etc.

Finally, based on the advanced machine learning methods,
together with all types of microbiome data, it has become clear
that in the area of microbiome research, comparison and searches
should not be limited to sample level analysis, but should be
extended for other meaningful pattern discoveries. These more

diverse sets of patterns that need to be searched include direct
functional gene searches (Arango-Argoty et al., 2018; Hannigan
et al., 2019), specie-species relationship searches (Vieira-Silva
et al., 2016), network patterns, and network motif searches (Jing
et al., 2020), etc.

In summary, the development and application of microbiome
sample comparison and searches have already advanced to the
point that researchers could reliably use them for accurate
and fast sample searches. However, this is not the end of
the research along this line, but rather provides several more
interesting venues for researchers to explore for more in-depth
understanding of the microbes and their functions within and
across the microbial communities. We foresee that accelerated
research on these venues in the near future would yield more
exciting results soon.
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