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Abstract: The essential oil from Zingiber cassumunar Roxb. (Plai) has long been used in Thai herbal
remedies to treat inflammation, pains, sprains, and wounds. It was therefore loaded into an elec-
trospun fibrous membrane for use as an analgesic and antibacterial dressing for wound care. The
polymer blend between poly(lactic acid) and poly(ethylene oxide) was selected as the material
of choice because its wettability can be easily tuned by changing the blend ratio. Increasing the
hydrophilicity and water uptake ability of the material while retaining its structural integrity and
porosity provides moisture balance and removes excess exudates, thereby promoting wound healing.
The effect of the blend ratio on the fiber morphology and wettability was investigated using scanning
electron microscopy (SEM) and contact angle measurement, respectively. The structural determi-
nation of the prepared membranes was conducted using Fourier-transform infrared spectroscopy
(FTIR). The release behavior of (E)-1-(3,4-dimethoxyphenyl) butadiene (DMPBD), a marker molecule
with potent anti-inflammatory activity from the fiber blend, showed a controlled release characteristic.
The essential oil-loaded electrospun membrane also showed antibacterial activity against S. aureus
and E. coli. It also exhibited no toxicity to both human fibroblast and keratinocyte cells, suggesting
that the prepared material is suitable for wound dressing application.

Keywords: controlled release; electrospinning; essential oil; fibrous membrane; wound dressing;
Zingiber cassumunar Roxb.

1. Introduction

Zingiber cassumunar Roxb., named Plai in Thailand, is a medicinal plant that has long
been used in Thai traditional herbal remedies for pain, sprains, inflammation, wounds,
skin diseases, asthma, and rheumatism [1–3]. The essential oil and extract from the fresh
rhizome of Zingiber cassumunar Roxb. have been reported to exhibit local anesthetic and
analgesic effects [4,5], reduce pain and inflammation [6–9], and inhibit the growth of
fungi and bacteria [10–12]. Due in part to its reported medical uses and pharmacological
activities, Zingiber cassumunar Roxb. is a good candidate for development as a medical or
health care product.

Wound dressing plays an essential role in accelerating the wound healing process.
The ideal dressing should prevent bacterial infection, remove excess exudates, allow the
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ease of gas exchange, and maintain moisture balance on the wound bed [13,14]. Compared
with typical dressings such as gauzes, lint, bandages, and cotton wool, nanofibers are
more attractive, owing to their large specific surface area, high porosity, and excellent
pore interconnectivity. These extraordinary characteristics exert several advantages for
wound healing, such as assisting cell attachment and proliferation as well as facilitating
the permeability of moisture and gas, which are beneficial for cell growth and allowing the
absorption of additional exudates containing nutrients for bacterial growth. In addition,
nanofiber scaffolds closely mimic the structure of the extracellular matrix (ECM) [15–17].
Therefore, nanofibers are promising candidates for wound dressing materials as they
provide a suitable environment for wound healing.

In recent years, both natural and synthetic polymers have been used to prepare
nanofiber-based wound dressings via the electrospinning process. Among these different
polymers, poly(lactic acid) (PLA), an FDA-approved synthetic biodegradable polymer
derived from renewable resources, is of particular interest. Due to its biodegradability,
biocompatibility, good mechanical properties, and low cost, PLA has become a candidate
of choice in bio-related applications [18–20]. The hydrophobic nature of PLA could render
better interaction with lipophilic drugs or plant essential oils. However, this property
could also reduce cellular interactions and limit exudate uptake capability. Therefore, PLA
needs to be modified in order to adjust its wettability property while retaining its structural
integrity and porous morphology. In bulk modification, hydrophilic polymers such as
polyethylene oxide (PEO) are usually incorporated into the electrospinning solution [21–24].
PEO is biodegradable, biocompatible, non-toxic, and FDA-approved. Thus, it is considered
a suitable choice to produce PLA-based composite nanofibers. It has been reported that PLA
mixed with PEO could successfully be electrospun, resulting in nanofibers with a smooth
surface, high porosity, and enhanced hydrophilicity while maintaining structural integrity
when compared with pure PLA nanofibers [21]. In a previous study, the incorporation
of rapamycin, a water-insoluble antibiotic and antiproliferative agent, into the PLA and
PEO blend solution in the appropriate ratios produced smooth and uniform nanofibers
with high encapsulation efficiency [25]. The blended PLA/PEO nanofiber was also shown
to manipulate and control the release of loaded natural and synthetic compounds [25,26].
In addition, the PLA/PEO fiber blend loaded with grape seed extract (GSE) enhanced
fibroblast cell adhesion and proliferation in comparison with the PLA/GSE nanofiber as a
result of increased hydrophilicity [27].

The electrospun nanofiber loaded with Plai oil has been studied previously by Tonglairoum
et al. using polyvinylpyrrolidone (PVP), a hydrophilic polymer, blended with 2-hydroxypropyl-
β-cyclodextrin (HPβCD) [28]. It was found that a maximum of 20% of Plai oil could be
loaded into the nanofiber with high entrapment efficiency. However, entrapment efficiency
decreased markedly when the incorporated amount of Plai oil was increased to 30%. These
findings were primarily due to less hydrophilic-hydrophobic interaction between the PVP
polymer and Plai oil. In addition, the PVP nanofiber showed a relatively short shelf life of
up to one week before they fused together, which could be a result of the hygroscopic nature
of PVP. PLA has been proven to be a promising matrix to improve the entrapment efficiency
of Plai oil as well as prolong nanofiber shelf life [29]. Therefore, this work incorporated
Plai essential oil into a PLA/PEO fiber blend. PEO was blended with PLA to produce a
matrix with enhanced hydrophilicity, resulting in the increased water uptake capacity of
the fiber. The Plai essential oil-loaded fiber blend was prepared through electrospinning
(Scheme 1). Characterization of the prepared materials was carried out using various
techniques. In vitro release, antibacterial, and cytotoxicity tests were also performed to
demonstrate the potential of using the prepared materials as wound dressings.
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Scheme 1. Schematic representation for the fabrication of the Plai essential oil-loaded electrospun PLA/PEO fibrous mem-
brane. 
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with 10% fetal bovine serum (FBS, Gibco®), 1 mM sodium pyruvate (Gibco®), and penicil-
lin/ streptomycin (Gibco®) were supplied by Life Technologies. In addition, (3-(4,5-dime-
thylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner 
salt was from obtained Promega Corporation. All buffer salts and organic solvents were 
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Scheme 1. Schematic representation for the fabrication of the Plai essential oil-loaded electrospun PLA/PEO fibrous membrane.

2. Materials and Methods
2.1. Materials

Plai essential oil was obtained from Thai China Flavours & Fragrances Industry
Co., Ltd. (Bangkok, Thailand). PEO (Mw ~ 100,000) and PLA (Mw ~ 60,000) were ac-
quired from Sigma Aldrich. Dulbecco’s modified Eagle’s medium (DMEM, Gibco®, MD,
USA) with 10% fetal bovine serum (FBS, Gibco®), 1 mM sodium pyruvate (Gibco®), and
penicillin/streptomycin (Gibco®) were supplied by Life Technologies. In addition, (3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner
salt was from obtained Promega Corporation. All buffer salts and organic solvents were of
analytical grade from Merck.

2.2. Analysis of Plai Essential Oil

The chemical constituents and DMPBD content in Plai essential oil were determined
using GC/MS (QP2020, Shimadzu, Japan). Briefly, the analysis was performed using
a capillary column (SH-Rxi-5Sil MS; 30 m length; 0.25 mm ID; 0.25 µm film thickness,
Shimadzu, Japan) with an injection volume of 1 µL. The temperature of the injection port
was fixed at 200 ◦C. The temperature of the oven was increased from 60 ◦C to 150 ◦C
within 18 min, from 150 ◦C to 180 ◦C within 3 min, and then kept at 180 ◦C for 5 min.
The mass scan was operated using the electron impact ionization mode over the mass
range of 45–400 amu. DMPBD was isolated and characterized as previously described
by Wongkanya et al. [29]. Briefly, Plai oil was loaded onto the silica gel column and then
eluted with hexane/ethyl acetate (95:5 v/v). DMPBD, as a colorless oil, was obtained after
solvent evaporation under reduced pressure.

2.3. Fabrication of Electrospun Fiber Blend Membranes

PLA/PEO solutions were prepared in DCM/DMSO (8:2 v/v) at 8%, 10%, and 12% w/v.
The weight ratios of PLA and PEO were 9:1, 8:2, and 7:3 w/w. The effects of polymer
concentration and PLA/PEO weight ratio on fiber morphology were studied. Plai oil
at 30% (w/w, to the polymer content) was added into the polymer solutions and then
thoroughly mixed. The prepared solutions were filled in a 10 mL glass syringe connected
with a blunt needle (20-gauge). The syringe was assembled to the infusion pump, and the
polymer solution was delivered at 0.5 mL/h. The electrospinning was operated using a
high-voltage power supply (ES30P-5W, GAMMA, Ormond Beach, FL, USA) at 20 kV with
the collector/needle tip distance of 15 cm. The experiments were carried out at 25 ◦C and
40% RH. The electrospun fibers were collected on a spinning drum and thereafter stored in
a desiccator in the dark until further study.
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2.4. Materials Characterization
2.4.1. Scanning Electron Microscopy

The electrospun membranes were mounted to the stubs. The samples were subse-
quently coated with gold using a sputter coater. Then, the fiber morphology was visualized
using a scanning electron microscope (Quanta 450, FEI, Eindhoven, The Netherlands) at an
accelerating voltage of 15 kV. Fiber diameters from the SEM micrographs were analyzed
using the ImageJ software (NIH), and the distribution and average of fiber diameters were
determined from 100 random fibers.

2.4.2. Contact Angle Measurement

Water contact angle measurement was conducted by an optical contact angle measur-
ing system (Dataphysics OCA 20). A 5 µL water droplet was dispensed onto the fiber mat,
and the corresponding image of the water droplet was taken. In total, 10 different positions
on the fiber mat were tested, and the average contact angle was calculated.

2.4.3. ATR-FTIR

The pristine fiber, fiber blend, and Plai oil-loaded fiber blend membranes were an-
alyzed by a Fourier-transform infrared spectrometer (Perkin-Elmer Spectrum One FTIR,
USA). The spectra were collected from 4000 cm−1 to 650 cm−1 with 64 scans and a resolu-
tion of 4 cm−1.

2.4.4. Entrapment Efficiency of DMPBD in the Fiber Blend

Solvent extraction of DMPBD from the fiber blend was performed by placing the fiber
membrane in a sealed glass vial containing 20 mL hexane. After continuously agitating
for 6 h, the extraction solvent was collected and the amount of DMPBD extracted was
analyzed by GC/MS. The entrapment efficiency was calculated using Equation (1):

EE% = (wt/wi) × 100 (1)

where wt is the weight of DMPBD extracted from the fiber blend and wi is the initial weight
of DMPBD loaded into the fiber blend.

2.5. In Vitro Release

The in vitro release of DMPBD from the fiber membrane was conducted in PBS
solution (pH 7.4) at ambient temperature. The pre-weighed fiber samples with a diameter
of 16 mm were placed onto a regenerated cellulose membrane and mounted between the
donor and receptor chambers of Franz diffusion cell. At specific time intervals of 0.17,
0.33, 0.5, 0.67, 0.83, 1, 2, 4, 6, 8, 10, 12, 24, and 48 h, 1 mL of solution was withdrawn and
directly replaced with an equal amount of fresh PBS solution. The collected samples were
subsequently extracted with 500 µL hexane twice. After solvent extraction, the hexane
layer was collected, combined, and evaporated. The obtained residue was redissolved in
hexane, and the amount of DMPBD released was quantified using GC/MS.

Release kinetics were assessed using the Ritger–Peppas equation [30], which is often
used to describe the release from the polymeric system. An initial 60% of the cumulative
release data were fitted to Equation (2):

Mt/M∞ = ktn (2)

where Mt/M∞ is the fraction of compound released at time t, k is the rate constant, and n is
the release exponent, which identifies the release mechanism. When n ≤ 0.5, the release is
governed by a Fickian diffusion mechanism. When n ≥ 1.0, the release mechanism follows
the case II transport. The mechanism lies between the previous means for 0. 5 < n < 1 and
is considered an anomalous non-Fickian transport.
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2.6. In Vitro Antibacterial Test

The in vitro antibacterial activity of the fiber blend was tested using a disk diffusion
method. Staphylococcus aureus (S. aureus) (ATCC 25923) and Escherichia coli (E. coli) (ATCC
25922) were chosen as representatives for gram-positive and gram-negative bacterial strains
frequently involved in wound infections [31]. These bacteria were cultured at 37 ◦C for
24 h. Subsequently, the bacterial suspension of 1 × 108 CFU/mL was spread over the
Mueller–Hinton agar (MHA) plate. The fiber membranes (Ø 6 mm) were sterilized with UV
light for 30 min prior to testing. Then, the fiber membranes were mounted on the agar plates
and incubated at 37 ◦C for 24 h. The antibacterial activity of the fiber blend membranes was
thereafter calculated from the diameter of the clear inhibition zone. The experiments were
conducted in triplicate, and the results were reported as the mean ± standard deviation.

2.7. In Vitro Cytotoxicity Test

Human primary fibroblast cells (Normal, Human, Adult (HDFa), ATCC® PCS-201-
012™, Manassas, VA, USA) and immortalized human keratinocytes (HaCaT, human ker-
atinocyte cells, ATCC® Number PCS-200-011™, 300493, CLS, Eppelheim, Germany) were
cultured in Dulbecco’s modified Eagle’s medium (DMEM) with 10% fetal bovine serum
(FBS), 1 mM sodium pyruvate, 100 U/mL penicillin, and 100 µg/mL streptomycin. The
cells were cultured at 37 ◦C and 5% CO2 and were serially passaged at 70–80% confluence.
Then, the experiments were performed with subconfluent cells at passage three in the
proliferation phase.

In this test, cytotoxicity was evaluated by MTS assay. The cultured cells were seeded
1 day prior to the test in 96-well plates (10,000 cells/well for fibroblast and 8000 cells/well
for keratinocyte). The fiber membranes were immersed in PBS for 24 h to obtain the
extraction media at 0.63, 1.25, 2.5, and 5 mg/mL. The extract was then filtered through the
0.22 µm syringe filter. Then, cells were exposed to the extraction media at the different
concentrations. PBS was used as a negative control for the test. The supernatant was
removed after 24 h of incubation, and cells were rinsed twice with PBS. Fresh media
(100 µL) containing MTS (20 µL) was added in each well plate. Then, cells were incubated
at 5% CO2 at 37 ◦C for another 3 h. For viable cells, the colorless MTS reagent was converted
into a soluble-colored 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan product, which
absorbed light at 490 nm. Cell viability was then calculated based on a change in absorbance
at 490 nm compared to the negative control.

2.8. Statistical Analysis

The experimental data are reported as mean ± standard derivation (SD). The re-
sults were analyzed by one-way ANOVA. The p-values of less than 0.05 were statistically
accepted as significant.

3. Results and Discussion
3.1. Fabrication and Characterization of Fiber Blend Membranes

The oil-free PLA/PEO fiber blend membranes were successfully prepared through the
electrospinning of the PLA/PEO mixture solutions at the polymer concentrations of 8%,
10%, and 12% w/v. The weight ratios of PLA and PEO were 9:1, 8:2, and 7:3 w/w. The effects
of polymer concentration and PLA/PEO weight ratio on fiber size and morphology were
studied by SEM. As shown in Figure 1, the fibers prepared at the polymer concentrations
of 8% and 10% exhibited a grooved and wrinkled structure at every blend ratio. The
formation of this secondary surface morphology is attributed to the fast solvent evaporation
(dichloromethane) at the early stage of electrospinning, followed by phase separation and
the creation of tiny holes on the fiber surfaces. After the elongation and solidification of the
polymer jet, the created voids turned themselves into grooves and wrinkles on the fiber
surfaces [32]. On the contrary, at 12% of the polymer blend, uniform fibers with a smooth
surface were obtained. This suggests that the low polymer concentration is preferable for
the formation of grooves and wrinkles, as previously reported by Liu et al. [33]. Hence,
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12% of the polymer blend concentration was chosen to prepare the essential oil-loaded
fibrous membranes for further investigation. There are no obvious differences in the SEM
images at the same polymer concentration, suggesting that the PLA/PEO weight ratio
had no apparent effect on fiber morphology. The Plai oil-loaded fiber blend membranes at
different PLA/PEO ratios were obtained by electrospinning the polymer blend solutions
(12% w/v) incorporated with Plai oil. As seen in Figure 2a–c, the oil-loaded fibers had
a round shape with smooth surfaces similar to those without Plai oil, revealing that the
loading of Plai oil did not affect fiber morphology.

The average fiber diameters were determined from the SEM micrographs and are
summarized in Table 1. At the same polymer concentration but different PLA/PEO blend
ratios, the fiber diameters were not statistically different, suggesting that the blend ratio
exerted no apparent effect on the fiber size. When the polymer concentration increased,
the mean diameter increased as a result of the increase in molecular entanglement and
viscosity of the solution. On the contrary, the mean diameters of the Plai oil-loaded fiber
blend membranes were relatively smaller than those without Plai oil. This is possibly due
to the decrease in solution viscosity after incorporating Plai oil into the blend solution.
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Figure 1. SEM images of the PLA/PEO fiber blend prepared at different polymer concentrations and PLA/PEO ratios:
(a) 8% PLA/PEO (90:10), (b) 8% PLA/PEO (80:20), (c) 8% PLA/PEO (70:30), (d) 10% PLA/PEO (90:10), (e) 10% PLA/PEO
(80:20), (f) 10% PLA/PEO (70:30), (g) 12% PLA/PEO (90:10), (h) 12% PLA/PEO (80:20), and (i) 12% PLA/PEO (70:30).
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Figure 2. SEM images of the Plai oil-loaded fiber blend prepared at 12% polymer concentration with different PLA/PEO
ratios: (a) PLA/PEO (90:10) + Plai oil, (b) PLA/PEO (80:20) + Plai oil, (c) PLA/PEO (70:30) + Plai oil, and their corresponding
images after three months storage: (d) PLA/PEO (90:10) + Plai oil, (e) PLA/PEO (80:20) + Plai oil, and (f) PLA/PEO
(70:30) + Plai oil.

Table 1. Mean fiber diameters of electrospun membranes.

Fiber Membranes Mean Diameter (µm)

8% PLA/PEO (90:10) 0.53 ± 0.12a

8% PLA/PEO (80:20) 0.54 ± 0.09a

8% PLA/PEO (70:30) 0.57 ± 0.12a

10% PLA/PEO (90:10) 0.61 ± 0.14b

10% PLA/PEO (80:20) 0.62 ± 0.12b

10% PLA/PEO (70:30) 0.64 ± 0.14b

12% PLA/PEO (90:10) 0.71 ± 0.13c

12% PLA/PEO (80:20) 0.72 ± 0.12c

12% PLA/PEO (70:30) 0.74 ± 0.11c

12% PLA/PEO (90:10) + Plai oil 0.67 ± 0.12d

12% PLA/PEO (80:20) + Plai oil 0.68 ± 0.13d

12% PLA/PEO (70:30) + Plai oil 0.70 ± 0.12d

The statistically significant differences (p < 0.05) are indicated with different superscript letters.

The water contact angle measurement was performed to investigate the surface wetta-
bility of the prepared fibrous membranes after blending PLA with PEO at different weight
ratios. As evidenced by the water contact angle measurement in Figure 3, the average
contact angle of the fibers tended to decrease with the increasing amount of PEO. The mean
contact angles of the PLA fiber and the blend at the PLA/PEO weight ratios of 90:10, 80:20,
and 70:30 were 143.7◦ ± 3.1◦, 112.9◦ ± 3.3◦, 77.2◦ ± 2.8◦, and 41.5◦ ± 3.6◦, respectively. As
the weight amount of PEO increased, the contact angle decreased, similar to the previous
report by Athanasoulia et al. [34]. The contact angle of the blend at the PLA/PEO ratio of
70:30 was the lowest, indicating the most hydrophilic surface and suggesting the highest
water uptake ability. Increasing those properties is particularly important for the dressing
application as they enhance the wound exudate absorption, thereby promoting the wound
healing process. Hence, the blend at the 70:30 weight ratio was chosen for further study.
After loading Plai oil into the fiber blend, the contact angle increased to 47.8◦ ± 4.4◦, indi-
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cating a slightly more hydrophobic surface due to the lipophilic nature of Plai oil. However,
the fiber blend membrane still exhibited high surface wettability, even in the presence of
Plai oil.
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Although the hydrophilic Plai oil-loaded PVP electrospun fiber mat has already been
established [28], it has a limited storage life of less than one week due to the hygroscopic
property of PVP, which causes the fibers to melt and fuse together. On the contrary, the
Plai oil-loaded fiber blend membrane prepared within this work was found to be stable
for at least three months. No change in fiber morphology was found in the SEM images
of the membranes after three months of storage (Figure 2d–f). This indicates that the
PLA/PEO blend is an excellent polymeric matrix for fabricating hydrophilic fiber-based
wound dressing. Its physical stability against moisture in the air remained high, even after
long-term storage. Furthermore, its wettability can also be promptly tailored by altering
the blend ratio.

To further confirm the suitability of the PLA/PEO blend as a platform for Plai oil
loading, the entrapment efficiency of Plai oil was evaluated. The entrapment efficiency
was determined based on the amount of DMPBD entrapped within the fiber blend. The
DMPBD underwent solvent extraction from the Plai oil-loaded fiber blend membrane and
was then quantified by GC/MS. The entrapment efficiency was found to be as high as
94.6 ± 3.2%, indicating that the electrospinning did not cause any apparent changes to the
bioactive compound. This high entrapment efficiency can be primarily attributed to the
excellent miscibility of Plai oil with PLA [29]. In the previous report on the Plai oil-loaded
HPβCD/PVP nanofiber, the entrapment efficiency was found to be only 55.5% [28]. This
further confirms that the PLA/PEO blend is a good matrix for Plai oil loading.

Structural determination and compatibility between Plai oil and the blend were stud-
ied using Fourier-transform infrared spectroscopy (FTIR). As shown in Figure 4, the PLA
fibrous membrane exhibited strong characteristic peaks of C=O, stretching of the carbonyl
group at 1755 cm−1, and corresponding bending at 1267 cm−1. It also showed strong
peaks of C–O–C as well as stretching of the ester entity at 1184 cm−1 and 1088 cm−1. C–H
stretching peaks at 2996 cm−1 and 2946 cm−1 as well as C–H bending at 1455 cm−1 are
also typically found in the PLA spectrum. The pristine PEO showed typical C–H stretching
peaks of the methylene group at 2948 cm−1 and 2884 cm−1, C–H bending at 1466 cm−1,
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CH2 wagging at 1340 cm−1, and CH2 rocking and twisting at 960 cm−1. Its spectrum also
exhibited the C–O–C stretching peaks of the ether moiety at 1108 cm−1 and 1059 cm−1,
and bending at 841 cm−1. As a blend, the PLA/PEO fibrous membrane showed all of the
characteristic peaks of the pristine PLA and PEO at the same positions, suggesting that
blending did not change the chemical structures of both polymers. After incorporating
Plai oil into the fiber blend membrane, all of the characteristic peaks of PLA and PEO were
still present in the same position as the blend without oil loading, suggesting that Plai oil
also did not affect the chemical structures of both polymers. Furthermore, it also means
that the interactions between Plai oil and the polymer blend were not strong enough to
shift the peak positions. As the majority of chemical components in Plai oil are monoter-
penes, their typical C–H stretching and bending peaks overlapped with those of PLA and
PEO. This resulted in a slight increase in peak intensity at those stretching and bending
regions after incorporation of Plai oil. The additional C–H stretching peak can also be
observed at around 2906 cm−1 after the oil loading. Furthermore, the oil-loaded fiber blend
membrane also showed vibrational peaks of aromatic constituents between 1575 cm−1 and
1513 cm−1 [29,35]. This confirms the presence of DMPBD in the fiber blend membrane.
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3.2. In Vitro Release Study

The cumulative release of DMPBD from the essential oil-loaded PLA and PLA/PEO
(70:30) fiber blend membranes is depicted in Figure 5. The release of DMPBD for both
membranes was fast at the initial state, mainly due to the burst release of the loosely
bound DMPBD located at or near the essentially large fiber surfaces. After the initial fast
desorption, a sustained release of the DMPBD embedded within the fibers was observed.
The release at this region gradually decreased until reaching equilibrium.

At the early stage of release, the fiber blend showed a steeper slope than that of the
PLA-based membrane. Afterward, the release of the marker compound from the blend
increased continuously and nearly reached a plateau at an interval of 12 h. On the contrary,
only ca. 80% of DMPBD was discharged from the PLA fibrous membrane at 12 h and
almost 100% was released after 24 h. These findings reveal that the fiber blend exhibited
a faster discharge of DMPBD. The higher hydrophilicity and water uptake ability of the
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blend membrane is believed to be a driving force in accelerating the release of non-polar
DMPBD from the blend matrix. Contrarily, the release of DMPBD was delayed by the more
hydrophobic nature of PLA. Although both membranes showed different release rates,
their cumulative release eventually reached 100%. This high release may well arise from
the large surface-area-to-volume ratio and the highly accessible interconnected pores of
the fibrous membranes. Thus, the liquid medium can thoroughly penetrate the membrane.
Therefore, the active compound can be released effectively from the matrix. The faster
release of the active compound from the blend membrane will be beneficial for wound
dressing applications to exert immediate local anesthetic and analgesic on wounds. On the
other hand, slower release from the PLA membrane will facilitate transdermal application
to prolong the pain-relieving and anti-inflammatory effects on the muscles [28]. This
indicates that the blending of different proper polymers can modulate the properties of the
material as well as tailor their applications.
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Figure 5. Cumulative release of DMPBD from the Plai oil-loaded fibrous membranes.

To explain the release mechanism, the Ritger and Peppas model was used to fit the
release data. The correlation coefficients (R2) signifying the goodness of the curve fitting
were found to be 0.9923 and 0.9905 for the PLA/PEO blend and PLA fibrous membranes,
respectively, revealing that the release kinetics of DMPBD were well-fitted to the Ritger
and Peppas model. The calculated kinetics exponent (n) value was used to categorize the
release profile. When n is lower than 0.5, the release is governed by a Fickian diffusion
mechanism. When n is equal to 1.0, the release follows a swelling-controlled mechanism
(case II transport). When n is between 0.5 and 1.0, the release is defined as an anomalous
non-Fickian transport. It combines the swelling-controlled drug release with diffusion. The
n value was found to be 0.46 for the PLA-based membrane, suggesting that the release of
DMPBD was diffusion-controlled. The release depends on the concentration gradient of the
drug between the release media and the polymer matrix [27]. In the case of the PLA/PEO
blend membrane, the n value was 0.53, meaning that the blend exhibited an anomalous
(non-Fickian) transport mechanism, in which the release was caused by diffusion and
matrix swelling [36] due to the presence of hydrophilic PEO. The combination of both
phenomena explains the faster release of DMPBD from the fiber blend membrane.

3.3. Antibacterial Test

Antibacterial activity of the fiber blend membranes was tested against two represen-
tative bacterial strains (i.e., S. aureus, E. coli) typically found in wound infection by the
disk diffusion method. The fibrous membranes were mounted and incubated on the MHA
agar plates for 24 h. Then, the clear inhibition zones were measured. In Figure 6, the
PLA/PEO fiber blend, as a control, shows no inhibition zones against both bacterial strains,
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but the oil-loaded membrane exhibits the clear zones with the diameters of 17.33 ± 0.29
and 12.67 ± 0.76 mm against S. aureus and E. coli, respectively. This indicates that the Plai
oil is responsible for the inhibition rather than the PLA/PEO blend. Therefore, the pre-
pared Plai oil-loaded fiber blend membrane can be considered an alternative antibacterial
wound dressing.
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3.4. In Vitro Cytotoxicity

The indirect in vitro cytotoxicity study of the PLA/PEO blend fiber membrane with
and without Plai oil was carried out through MTS assay on human dermal fibroblast and
keratinocyte cells (HaCat). The membranes were cut into pieces and immersed in PBS
buffer for 24 h to obtain the extract media at 0.63, 1.25, 2.5, and 5 mg/mL. After 24 h
incubation of the tested cells to the extraction media, the cell viability was evaluated, as
shown in Figure 7. A cell viability higher than 80% is considered non-toxic in this test.
The viability of both fibroblast and keratinocyte cells after treatment with the extraction
media of both membranes at every concentration was in the range of 95–116%, indicating
that both materials are non-toxic to the tested cells. This suggests that the present Plai
oil-loaded fiber blend membrane is safe for use as a wound dressing material.
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4. Conclusions

In this study, Plai essential oil with analgesic, anti-inflammatory, and antibacterial
activities was successfully loaded into the electrospun PLA/PEO fiber blend. The mem-
brane obtained consisted of smooth fibers with diameter in the nanometer range. The
hydrophilicity of the membrane can be simply modulated by blending PLA with PEO at
different weight ratios. Although the membrane was hydrophilic, the Plai oil entrapment
efficiency and physical stability against moisture in the air were still high, implying that the
blend is a good platform for the loading of Plai oil. The hydrophilic fiber blend membrane
loaded with Plai oil initially showed a fast release of DMPBD, followed by a sustained
release in the following hours. This will be beneficial for wound care to exert immediate
local anesthetic and analgesic on wounds and to maintain these effects for several hours.
As the fibrous membrane had a large surface to volume ratio and highly interconnected
macropores, the liquid medium could thoroughly impregnate the membrane. As such, the
complete release of DMPBD was as expected. Further in vitro antibacterial and indirect
cytotoxicity tests also showed that the Plai oil-loaded fiber blend membrane could inhibit
the growth of both S. aureus and E. coli and exhibited no toxicity to human skin cells. This
suggests that the present fiber blend membrane has promising potential for use in a new
generation of analgesic and antibacterial wound dressings.
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