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Abstract

Background: Lymphatic filariasis (LF) has been targeted by the WHO for global eradication leading to the implementation
of large scale intervention programs based on annual mass drug administrations (MDA) worldwide. Recent work has
indicated that locality-specific bio-ecological complexities affecting parasite transmission may complicate the prediction of
LF extinction endpoints, casting uncertainty on the achievement of this initiative. One source of difficulty is the limited
quantity and quality of data used to parameterize models of parasite transmission, implying the important need to update
initially-derived parameter values. Sequential analysis of longitudinal data following annual MDAs will also be important to
gaining new understanding of the persistence dynamics of LF. Here, we apply a Bayesian statistical-dynamical modelling
framework that enables assimilation of information in human infection data recorded from communities in Papua New
Guinea that underwent annual MDAs, into our previously developed model of parasite transmission, in order to examine
these questions in LF ecology and control.

Results: Biological parameters underlying transmission obtained by fitting the model to longitudinal data remained stable
throughout the study period. This enabled us to reliably reconstruct the observed baseline data in each community.
Endpoint estimates also showed little variation. However, the updating procedure showed a shift towards higher and less
variable values for worm kill but not for any other drug-related parameters. An intriguing finding is that the stability in key
biological parameters could be disrupted by a significant reduction in the vector biting rate prevailing in a locality.

Conclusions: Temporal invariance of biological parameters in the face of intervention perturbations indicates a robust
adaptation of LF transmission to local ecological conditions. The results imply that understanding the mechanisms that
underlie locally adapted transmission dynamics will be integral to identifying points of system fragility, and thus
countermeasures to reliably facilitate LF extinction both locally and globally.
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Introduction

Lymphatic filariasis (LF), a highly debilitating vector-borne

macroparasitic disease of humans, has been targeted by the World

Health Organization (WHO) for global eradication [1–5]. This

has led to the rapid development and financing of large scale

national-level intervention programs based primarily on annual

mass drug administrations (MDA), which has led to impressive

reductions in LF infection prevalences in endemic populations

globally [6]. However, as infection levels have fallen in endemic

communities, questions have been raised regarding the need for

improved understanding of the dynamical processes that underlie

infection persistence and extinction dynamics, and hence the

controllability or eradicability of the disease [7–11]. A practical

question in this regard revolves around the nature of LF extinction

dynamics, including the numerical values of LF transmission/

infection endpoints in endemic communities, the resolution of

which is key to reliably determining when parasite transmission

has been interrupted and interventions can therefore be stopped

[12].

Our previous work has highlighted that both inherent

complexity in transmission dynamics and parameter uncertainty

can confound the prediction of extinction endpoints for compli-

cated parasitic systems, such as LF [7,9,11–13]. In particular, this

work has showed that complex ecological dynamics due to high

sensitivity to initial conditions and other locally varying climatic

and geographic factors mean that parasite transmission dynamics
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is likely to be highly variable in space and time [12], with the result

that LF infection endpoints or breakpoints (e.g. threshold values of

the microfilaria (mf) prevalence in humans below which infection

cannot sustain itself) may vary considerably from site to site.

Although it was shown that between-site heterogeneities in a few

biological and socio-ecological parameters controlling the intensity

and distribution of worm burdens in the human host population

may underlie this variability, the results also demonstrated that a

significant source of the variability reflects uncertainties surround-

ing parameter values of key transmission variables [12]. While a

part of this uncertainty reflects epistemic uncertainty regarding

transmission heterogeneity, it is clear that a major portion is also

due to the limited quantity and quality of site-specific data used to

develop/run existing models [12,14,15]. This implies that

reducing parameter uncertainty will require the need for data-

model integration methods that can assimilate information and

update initial parameter values as new information regarding LF

transmission dynamics becomes available either from different

sites or over time from individual sites [7,9,11–13,15–18].

In the context of the current initiative to eradicate LF, effective

model updating using longitudinal infection data from sites

undergoing interventions serves another crucial function, viz.

providing an important means to investigate possible temporal

patterns in the data. A particular focus in this regard of direct

import to managing LF eradication is the determination of

whether the updating of initial model fits (to baseline infection

data) using follow-up data after the start of interventions will result

in significantly altered estimates, particularly in the critical

biological parameters underlying parasite transmission. If this

occurs to the extent of bringing about dynamical behaviour

changes, then it may raise the real possibility of the emergence of

temporally varying endpoints as parasite interventions proceed.

The outcome of such a qualitative change in overall system

dynamics will, by affecting attractors, basins of attraction and

stability, be that LF endpoints could become dynamic ‘moving’

targets. The implication of such changes for LF elimination may

be the prolonging of interventions in some settings, while in others

we may need to develop and implement other adaptive control

strategies, including supplementation by vector control or with

more frequent mass treatments. If on the other hand, model

updates show that values of critical biological parameters

underpinning transmission do not vary appreciably or are robust

in response to the effect of interventions, then it might be possible

to derive estimates of transmission endpoints from post-interven-

tion monitoring data. This will be a significant step forward in the

management of elimination efforts against LF since it would allow

the estimation of target endpoints for interventions even in the

absence of baseline infection data for those sites which have only

post-intervention monitoring data. Such results would also

facilitate uncovering of the environmental or other conditions

that constrain or bound the transmission and extinction dynamics

of LF to an endemic setting [19,20]. This will in turn enable

insights into countermeasures that can disrupt the local robustness

in transmission, increase system fragility and more reliably push

the locally adapted transmission system into extinction [19,21–23].

Sequential calibration/updating of LF transmission models

using post-intervention follow up data on infection levels could

also produce additional information relevant to predicting the

impacts of interventions. For example, such model updates will be

important for a more direct estimation and evaluation of drug

related parameters, such as worm and mf killing efficacies,

reduction in worm fecundity, and drug lasting effects that impact

the duration of suppression in mf production [10,24–26]. Present

estimates of these effects are still largely based on best guestimates

[7]; better attempts to quantify such parameters using field data is

thus a distinct need and will be critical to improving control

predictions and hence intervention planning in endemic localities.

In a similar vein, the sequential fitting of models to follow-up

data could additionally offer the potential for allowing the

backward estimation of pre-control baseline infection patterns.

Reconstructions of historical baseline infection patterns (particu-

larly in terms of age-profiles of mf prevalence levels) will be

important because many LF intervention monitoring sites

currently do not have such data even though this information is

clearly essential for predicting trajectories in infection declines

from baseline levels as a result of applied interventions [27,28],

which will be essential for evaluating if interventions are

progressing as expected [27,29].

Here, we report on our efforts to undertake a first systematic

examination of each of the above issues in the context of a detailed

field trial to evaluate the impact of MDA for reducing LF infection

in endemic communities from the Dreikikir region of Papua New

Guinea [30]. We begin by first describing the extension and use of

a recently developed numerical modelling and Bayesian Melding

data-model integration tool to sequentially fit the Anopheles-

mediated LF transmission model [11] to baseline and follow-up

human mf age-prevalence data recorded from each of our

Dreikikir study communities. We then use the modelling results

to address the following set of specific questions: 1) do biological

parameters controlling LF transmission remain stable (with

regards to baseline estimates) in the face of the specific

interventions implemented in each community; 2) is it possible

to use the fits to data from each intervention period to reliably

perform backward extrapolation to reconstruct baseline age-

infection patterns; 3) is it possible to use the post-intervention

infection monitoring data to estimate LF transmission/infection

breakpoints consistent with those estimated using baseline only

data; and 4) can the modelling and fitting framework developed in

this study allow better estimates of drug treatment-related

parameters, including determination if such parameters may also

vary in their values between treatment populations? We end by

discussing the significance of the findings regarding the ecological

factors that may underlie LF transmission and extinction dynamics

in local settings, the importance of good quality intervention

monitoring data, including drug coverage information, and the

value of the applying the Bayesian model-data assimilation method

used here, for guiding the WHO-directed program to achieve the

eradication of LF globally.

Materials and Methods

Data
The data used in this analysis represent baseline and annual

follow-up monitoring data on changes in lymphatic filariasis

infection prevalences obtained from five communities (Peneng,

Albulum, Yauatong, Nanaha and Ngahmbule) in the Dreikikir

region of Papua New Guinea (PNG) [30–34]. These data were

collected as part of an open-label field study to compare the

population impacts of a single annual mass administration of

diethylcarbamazine plus ivermectin (DEC+IVR) with that of a

single annual dose of DEC alone for reducing LF infection

transmitted by anopheline mosquitoes. The data on individual

host mf status for the baseline period was collected in 1994 before

the start of mass treatment intervention and thereafter at the end

of one-year intervals for a period of 5 years [34]. Three of the five

villages (Peneng, Albulum, and Yauatong) were classified as high

transmission communities and the remaining as exposed to a

moderate rate of transmission based on annual mosquito biting
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rates [30–32]. Annual population sizes, totals of individuals

sampled, numbers of mf-positives out of these samples, yearly

drug coverages and the drug regimen for each of these villages, are

provided in Table 1. Infection status of individuals were assessed

using 1 ml of blood, whereas prevailing vector abundances (in

terms of annual biting rates per person) were determined using

man landing catches in all communities [30,31]. Note that as per

WHO guidelines at the time of the field trials, individuals under

five years of age were excluded from treatment with drugs during

the MDA period in any of these villages [30].

Methods
Deterministic model of anopheline-mediated LF

transmission. We employed the recently developed Anopheles-

vectored transmission model of LF to carry out the modelling work

in this study [7,9,11,12]. Briefly, the state variables of this hybrid

coupled partial differential and differential equation model vary

over age (a) and/or time (t), representing changes in the adult

worm burden per human host (W (a,t)), the mf level in the human

host modified to reflect infection detection in a 1 ml blood sample

(M(a,t)), the average number of infective L3 larval stages per

mosquito (L), and a measure of immunity (I(a,t)) developed by

human hosts against L3 larvae. The state equations comprising

this model are:

LW

Lt
z

LW

La
~l

V

H
y1y2s2h(a)Lg1(I)g2(W ){mW

LM

Lt
z

LM

La
~aq(W ,k)W{cM

LI

Lt
z

LI

La
~W{dI

dL

dt
~lkg

ð
p(a)(1{f (M))da{sL{ly1L

L�~
lkg

Ð
p(a)(1{f (M))da

szly1

The above equations involve partial derivatives of three state

variables (W - worm load; M - microfilaria intensity; I - immunity

to acquiring new infection due to the pre-existing worm load),

whereas given the faster time scale of infection dynamics in the

vector compared to the human host, the infective L3-stage larval

density in mosquito population is modeled by an ordinary

differential equation. This basic coupled immigration-death

structure of the model, as well as our recent extensions to reflect

transmission by anopheline mosquitoes in endemic areas, such as

in the Dreikikir region in PNG, have been extensively discussed

previously [7,11,12,35,36]. The parameters and functions of the

model and L* are described in Table 2.

Note that the biological parameters of the model are classified

into site-specific and site-invariant parameters, based on results

from our previous work which suggest that it is useful to distinguish

between biological parameters specific to the disease, and which

therefore can be assumed to apply to parasite and vector

populations that range over extended geographical areas, and

those which vary between localities [12,49].

The Bayesian Melding Framework
Our strategy was essentially to integrate follow-up field

observations on LF infection in populations undergoing mass

drug treatments with simulation model outputs to, firstly, update

the uncertainty in model parameters, and then use the calibrated

model to examine: (1) the stability of transmission-driving

parameters in the face of mass treatments, and (2) the utility of

sequential model fits to allow reliable back-extrapolation of

baseline infection dynamics as well as estimation of infection

endpoints and drug treatment-related parameters. We used the

statistical framework founded on the Bayesian Melding (BM)

algorithm to address this sequential model-fitting and analysis

problem [50–55].

The BM approach may be described as a procedure whereby

two priors on a model output are compared and ‘‘melded’’ together

in order to obtain the posterior parameter space in which the

model may reliably explain the underlying natural system

dynamics [52,56]. One of the priors on model output is the set

of observed data; for example, in our case the survey data on LF

prevalence collected from each endemic community before the

Table 1. Annual survey data for lymphatic filariasis (LF) mf prevalence for each of the five PNG study villages used in this work.

High Transmission Zone Low Transmission Zone

Village Peneng Albulum Yauatong Nanaha Ngahmbule

Regimen DEC+IVR DEC+IVR DEC alone DEC+IVR DEC alone

ABR 8194 42328 37052 11611 4346

Year T (PS) Mf+ C T (PS) Mf+ C T (PS) Mf+ C T (PS) Mf+ C T (PS) Mf+ C

1993–94 63(69) 42 n/a 50(71) 40 n/a 131(169) 121 n/a 211(281) 116 n/a 346(428) 177 n/a

1994–95 65(67) 40 50.38 60(60) 44 61.54 144(145) 104 66.19 238(247) 115 71.60 343(353) 118 70.24

1995–96 88(89) 18 77.98 69(69) 26 63.46 111(113) 58 57.75 208(210) 57 65.80 299(308) 79 60.69

1996–97 89(89) 12 75.21 70(70) 18 66.35 123(123) 44 62.57 196(211) 26 62.82 318(323) 30 65.20

1997–98 92(92) 5 68.42 75(75) 11 58.20 138(138) 27 65.85 221(224) 2 66.77 235(236) 11 47.44

1998–99 109(109) 4 71.92 64(64) 3 52.89 91(91) 8 43.69 166(172) 1 49.40 290(294) 5 56.40

Table keys: ABR - Annual Biting Rate (average number of mosquito bites per person per year); T - the total number of individuals sampled, with the bracketed numbers
showing the total population sizes (PS) of the study villages; Mf+ - the number of mf-positive samples out of the total individuals sampled; C - population-level drug
coverage, the percentage (%) of people who took the prescribed drug regimen during annual mass drug treatments; DEC - diethylcarbamazine; IVR – ivermectin. The
baseline survey was done in 1993–94. The 5-year intervention period ranged from 1994–95 through 1998–99. Wherever required in the paper, the post-intervention
years are indicated by Year 1 (i.e., 1994–95) through Year 5 (i.e., 1998–99).
doi:10.1371/journal.pone.0067004.t001
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Table 2. Description the basic LF model parameters and functions used in the model.

Parameter Definition (units) Range Source

Intrinsic Biological parameters

l Number of bites per mosquito (per month) [5,15] [11,12,37,38]

y1 Proportion of L3 leaving mosquito per bite [0.12, 0.7] [39]

y2s2 The establishment rate1 [0.0000398, 0.00364] [11,12,40]

m The worm mortality rate (per month) [0.008, 0.018] [11,12,41–44]

a Production rate of microfilariae per worm (per month) [0.25, 1.5] [11,12,39]

c The death rate of the microfilariae (per month) [0.08, 0.12] [12,39,43]

g Proportion of mosquitoes which pick up infection when biting an infected host [0.259, 0.481] [12,45]

s Death rate of mosquitoes (per month) [1.5, 8.5] [12,40]

k Maximum level of L3 given mf density [3.955, 4.83] [12]

c Strength of acquired immunity [0.0000003, 0.0109] [12]

d Immunity waning rate (per month) [0, 0.000001] [12]

Extrinsic Biological parameters

V/H Ratio of number of vector to hosts MBR/l [12], data

Hlin A threshold value used in h(a) to adjust the rate at which individuals of age a are
bitten: linear rise from 0 at age zero to 1 at age Hlin in months (h(a) = a/Hlin for a,Hlin;
h(a) = 1 otherwise)

[12, 240] months [12,36]

r Gradient of mf uptake2 [0.0495, 0.22] [12]

IC Strength of immunosuppression3 [0.5, 5.5] [12]

SC Slope of immunosuppression function4 (per worm/month) [0.01, 0.19] [12]

k0 The basic location parameter of negative binomial distribution used in aggregation
parameter (k = k0+kLinM)

[0.000036, 0.00077] [12,46,47]

kLin The linear rate of increase in the aggregation parameter defined above [0.00000024, 0.282] [12,46,47]

Drug’s efficacy related parameters & Coverage

v Worm killing efficacy (instantaneous) [0.1, 0.85] [7]

e Microfilariae killing efficacy (instantaneous) [0.55, 0.95] [7]

dreduc Reduction in the worm’s fecundity over a period of time P [0.55, 0.95] [7]

P A time period during which the drug remains efficacious in reducing the fecundity
of the surviving adult worms

[1,6] [7]

C Percentage of the populations of the study villages administered the drug [43.69, 77.98] data

Description of the functions used in the model

Function Definition5 Parameters Source

p(a) Probability that an individual is of age a Human age a in month [12,36]

Q(W,k) Adult worm mating probability k – negative binomial aggregation
parameter

[11,12,48]

g1(I) Immunity to larval establishment c – strength of immunity to larval
establishment

[12]

g2(W) Host immunosuppression IC – strength of
immunosuppression; SC – slope of
immunosuppression

[12]

f(M) Population-averaged vector uptake function k – maximum level of L3 given mf
intensity; r – gradient of mf uptake

[11,12]

1The proportion of L3-stage larvae infecting human hosts that survive to develop into adult worms [12].
2The gradient of mf uptake r is a measure of the initial increase in the infective L3 larvae uptake by vector as M increases from 0 [12,36].
3The facilitated establishment rate of adult worms due to parasite-induced immunosuppression in a heavily infected human host.
4The initial rate of increase by which the strength of immunosuppression is achieved as W increases from 0 [8].
5Mathematical expressions of the 5 functions:

p(a)~0:0361 exp½{0:0304a�; w(W ,k)~1{ 1z
W

2k

� �{(1zk)
; g1(I)~

1

1zcI
; g2(W )~

1zIC SC W

1zSC W
;

f (M)~
2

1z
M

k
(1{ exp½{r=k�)

� �k
{

1

1z
M

k
(1{ exp½{2r=k�)

� �k

2
6664

3
7775:

All the intrinsic and extrinsic biological parameters, except V/H, described in this table are estimated. The V/H is adjusted in way that lV=H returns the value of monthly
biting rate (MBR). The four drug-related parameters are also estimated. The annually observed population-level MDA coverage C, on which information is available, is
used as an input during the model runs for the mass drug intervention. The functions, except p(a), described above contain one or two model parameters as well as one
of the state variables (W, M, I) describing infection in humans. The L* represents the average number of infective L3 larval stages per mosquito at the endemic situation.
doi:10.1371/journal.pone.0067004.t002
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start and during the implementation of a mass drug treatment

program. The other output prior is the model generated values of

the state variables, such as W or M. Thus, the BM procedure is a

method for reconciling several sources of prior information (on

both input parameters and on model outcomes relative to data) to

constrain the acceptable solution space of the input parameters. In

the form of the method we implemented here, we initially assigned

vague or uniform prior distributions for each of the model input

parameters (except for the mosquito biting rate, which was fixed to

the values of the monthly biting rate (MBR; see Table 2) measured

at baseline in the study data) to reflect our initial incomplete

knowledge regarding their values, while for assessing reasonable-

ness of model outputs to data, a binomial likelihood function was

constructed to capture the distribution of the observed age-mf

prevalence data:

L(h)~ P
age

S!

S! S{Mð Þ! Page
M 1{Page

� � S{Mð Þ
,

where M is the total microfilaraemic (i.e. mf positives) samples out

of the total S blood samples collected from people in the ageth age-

group, and the term Page is the modelled mf prevalence in the

same age-group. The h represents a set of the model parameters,

termed as parameter vector.

Following the methodological protocol presented in our earlier

work [11,12], we then realized the multidimensional space defined

by the set of prior distributions by randomly sampling N parameter

vectors from their defined ranges. This procedure is summarized

as follows. There are 18 parameters in the model (Table 2), which

together form a parameter vector, hi. Let the i-th element of a

single parameter vector hi be defined by hii, ie, hii*U ½h�m�i�n
�i�i , h�m�a�x

ii �,
where hmin

ii and hmax
ii are, respectively, the minimum and maximum

values of that element parameter hii. With each of these parameter

vectors, , the model is simulated and the posterior distribution of

model parameters p(h) obtained by fitting the model to observed

data. We then used the sampling-importance-resampling (SIR)

algorithm to resample, with replacement, from the above model

parameter sets with the probability of acceptance of each resample

hj~1,2,...,l probable to its weight Vj , which is proportional to the

corresponding likelihood L(wj) for the data, i.e. Vj~L(wj)=
P

L(wi).

A typical value of l for the results presented in this paper was around

500, and these parameter sets are then used to generate distributions

of variables of interest from the model (e.g. age-prevalence curves,

worm breakpoints, drug-related parameter values and post-treatment

infection trajectories), including measures of their uncertainties [12].

Sequential BM Model Fitting to LF Infection Data
Following Drug Interventions

The sequential BM updating approach involves three steps.

First, we fitted the model using BM to the age-mf prevalence

baseline data from each community to obtain the first pre-control

posterior distributions of the input parameters for each locality, say

p1(P), from the SIR, as discussed above. Second, we use the model

thus parameterized together with a set of drug-related model

parameter vectors (see below) to predict the state of age-mf

infection one year after the first post annual treatment. Third, we

then update the biological model parameters by applying the SIR

procedure to the first post annual treatment field age-infection

data to get a new postmodel distribution, p2(P), using as prior

inputs the posterior distributions obtained from the baseline fit.

This conditional approach thus sequentially filters the parameter

values over time with new data thereby reducing parameter

uncertainty [57]. This procedure was then applied iteratively,

adding further new post-intervention field data over time, in order

to progressively filter and thus update the initially obtained

parameter estimates [52,57].

Modelling the Effects of Annual Mass Drug
Administration

The impact of annual mass drug treatment was modelled by

assuming that anti-filarial treatment with the currently used drug

regimens acts by killing certain fractions of the populations of adult

worms and mf instantly after drug administration [7]. Assume

these fractions to be v for adult worms, and e for mf. These killing

effects are easily incorporated into the basic model and the

population sizes of worms and microfilariae are calculated after

drug treatment by modifying the populations of each parasite stage

obtained immediately prior to the treatment by:

W (a,tzdt)~(1{vC)W (a,t)

M(a,tzdt)~(1{eC)M(a,t)

)
at time t~TMDAi

where dt is a short time-period since the time-point TMDAi
when

the i-th MDA was administered. During this short time-interval, a

given proportion of adult worms and mf (as specified by values of

the drug efficacy rates for these life stages, v and e, respectively)

are instantaneously killed. The parameter C is the population-level

drug coverage.

Apart from instantaneous killing of adult worms and mf,

filariasis drug regimens are also thought to reduce the production

of mf by worms surviving each MDA. Here we modeled this effect

by introducing a new parameter (denoted by dreduc) as follows:

LM(a,t)

Lt
z

LM(a,t)

La
~a’q(W (a,t),k)W (a,t){cM(a,t) ,

for TMDAi
vtƒTMDAi

zP

where a’~a(1{dreducC) reflects the suppressed fecundity (over a

period of P months since the i-th MDA) of adult worms that survive

the administration of drugs at each MDA.

The four drug-related parameters (v, e, dreduc, and P) together

with their range of non-informative prior distributions are listed in

Table 2. The first MDA round is implemented in the model

immediately after the baseline survey data is fitted, with the

remaining four MDA effects implemented annually thereafter.

Note that site-specific annual drug coverages are known for each

locality/field data set and are therefore not treated as a variable/

estimable element of the drug-related parameter vector.

Stability of Transmission Parameters and Backwards
Extrapolation of Baseline Community Infection Age-
patterns

This was carried out by fitting the dynamic model using the

sequential BM approach described above to the annual field age-

mf infection data obtained from each community following the 1st

through to the 5th year of mass drug treatments, and then running

the model for each of the l best non-drug related parameter vectors

in order to derive the mf age-prevalence equilibrium/endemic

states to be expected at baseline. The temporal stability of the

distributions of transmission parameters obtained at each time

period was determined using the univariate Kolmogorov-Smirnov

(KS) test [58], whereas we evaluated the goodness of fit of each

back calculated model prediction to observed baseline age-

infection data from each community, by calculating the so-called

Monte Carlo p-value using a modified version of the Pearson’s x2

Modelling the Effects of Mass Drug Treatments
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goodness-of-fit test described in [59]. Both age-stratified as well as

age-aggregated Monte Carlo p-values were determined in order to

evaluate the quality of model fits.

Calculation of Worm Breakpoints
We applied a numerical stability analysis approach based on

varying initial values of L* (see details of the procedure provided in

[11]), to each of the SIR selected model vectors in order to

calculate the distribution of mf prevalence breakpoints and

threshold biting rates (TBR) expected in each study community.

There are two essential steps in this approach. In the first step, we

progressively decrease V/H from its original value to a threshold

value below which the model always converges to zero mf

prevalence, regardless of the values of the endemic infective larval

density L*. The product of l and this newly found V/H value is

termed as the threshold biting rate (TBR). Once the threshold

biting rate is discovered, the model at TBR can settle to either a

zero (trivial attractor) or non-zero mf prevalence depending on the

starting value of L*. Therefore, in the next step, while keeping all

the model parameters unchanged, including the new V/H, and by

starting with a very low value of L* and progressively increasing it

in very small step-sizes we estimate the minimum L* below which

the model predicts zero mf prevalence and above which the system

progresses to a positive endemic infection state. The corresponding

mf prevalence at this new L* value is termed as the worm

breakpoint [11]. We compared the worm breakpoint values

obtained from sequential BM fits of the model to longitudinal

infection data during each year of MDA with those estimated via

direct fits to baseline age-mf infection data both formally and also

using quadratic discriminant analysis (the klaR package in R), to

determine if the sequential estimates are consistent with those

quantified directly from baseline data in each study village. As

above, the univariate KS test was used to formally test for

differences between the baseline and sequential estimates in each

case.

Results

Model Fits to Annual Intervention Data
The age-profiles of mf-prevalence generated by the Anopheline

LF model fits (grey curves) to the baseline and five annual post-

intervention data from two of the high transmission study villages

given either the DEC+IVR regimen (Peneng) or DEC alone

(Yauatong) are shown in Figure 1. The corresponding model fits

to the baseline and intervention data from the remaining three

PNG villages are shown in Figure S1 in Supporting Information

S1. Figure 2 shows the overall mf prevalences predicted by the

model in comparison with the longitudinally observed baseline

and post-intervention overall community mf prevalences recorded

for each of the five study villages. Together, these results show

clearly that the BM-based model-data assimilation method

developed in this study is capable of reproducing the temporal

changes in overall, and age-stratified, prevalences in mf, arising

from the implemented mass drug treatments consistent with

observed data in each of the study communities (Monte Carlo p-

values .0.05 in each case (Table S1 in Supporting Information

S1)), although as expected the fits to mf-age-prevalences are

comparatively better for the study villages with the lowest

variability in this infection measure, viz. Nanaha and Ngahmbule

(Figure S1 in Supporting Information S1) owing primarily to

their bigger sample sizes (Table 1).

Stability of Model Parameters
As in our previous work [12], the results show that the Bayesian

updating procedure used here when applied to baseline age-mf

prevalence data can effectively refine initially assigned model

parameter values. As indicated in Table S2 in Supporting

Information S1, almost all the values initially assigned to the

present model parameters were updated by the procedure,

although as also noted previously [12], an important finding is

that this was dependent on study sample size, with increasing

changes in the posterior distributions occurring for those study

communities (e.g. Nanaha, Ngahmbule) with the larger sample

sizes. Across all study sites, however, only six parameters, namely,

a, kLin, y2s2, c, IC and SC, which represent the fecundity rate per

worm, the linear rate of increase in the aggregation parameter, the

parasite establishment rate, the strength of acquired immunity to

L3 larvae, the strength of immunosuppression and the slope of

immunosuppression function, respectively, were consistently found

to have their posterior distributions significantly altered from their

assigned non-informative uniform prior distributions when the

model was fitted to the baseline data (Figure 3). We next

simulated the effects of each MDA regime using actually observed

community drug coverage rates, and used the fits of these

simulations to data from each study village to assess if the values of

any of these biological/ecological parameters remained temporally

invariant. The results demonstrated that these six parameters

remained remarkably fixed throughout the intervention period in

all study sites (Figure 4), with their posterior distributions

retaining the same individual baseline distributional shapes in

each case. A more formal test of how stable or robust to

perturbations all the model parameters, including these six model

parameters, were during the 5-year post-treatment period was

carried out using the univariate KS test [58]. This indicated that

almost all the biological parameters of the model remained at their

initial baseline posterior distributions during the entire 5-year

study period when infection in each of the five LF communities

were going through their annual intervention-induced perturba-

tions (Table S2 in Supporting Information S1).

Estimation of the Drug Efficacy Related Parameters
As noted above, the LF drug efficacy related parameters are (1)

instantaneous worm killing efficacy: this is major parameter with

values assigned previously based on either on expert advice [7], or

limitedly estimated from the field data using a mechanistic

transmission model (see [26]); (2) microfilariae killing efficacy:

better information available from published community trials

where values from 69.8% to 91.1% have been demonstrated

previously [30,60]; (3) suppressed production of mf by worms

surviving MDA, and (4) the waning period: this is the short time-

period that follows the commencement of mass drug administra-

tion during which the drug is assumed to remain effective, which is

expected to range from between 3 to 9 months [7]. The summary

statistics of their estimated posterior parameter distributions in this

study indicate gains in knowledge for these parameters from the

sequential updating of the LF model, with all parameters in

general showing shifts from their assigned prior distributions as

interventions progressed (Figure 5, Figures S2, S3, S4 and

Table S3 in Supporting Information S1). The biggest and most

informative posterior distribution shift, however, occurred for the

worm killing efficacy parameter, with efficacy rates increasing to

apparently settle around a peak mean rate of 74 to 77%

(Figure 5). Mean efficacy rates also increased with sequential

model updates for the microfilariae killing and waning period

parameters to approximately 80% and 4 months respectively by

year 5 post-intervention, although these increases were not found
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to be statistically significant. The least change occurred for the

worm fecundity reduction parameter. Interestingly, the addition of

IVR to DEC did not appear to significantly change the model

estimated drug efficacy parameter distributions indicating that the

major impact on reducing LF infection using the combination

therapy is due to the effects of DEC. By contrast, an intriguing

finding was that the mean worm killing rate became marginally

higher with increasing cycles of intervention in the villages exposed

to the low (Nanaha, Ngahmbule) compared to the high (Peneng,

Albulum, Yauatong) transmission intensity (Figure 5).

Backfitting to Reconstruct LF Baseline Data
We carried out this analysis to test the hypothesis that if the

biological parameters of the model (i.e. not drug efficacy

parameters) remained stable or are invariant during the interven-

tion period for a site, then it will be possible to use the sequential

fits to reconstruct that site’s baseline age-infection profile. The mf-

prevalence curves generated by sequential model fitting/updates

to the age-infection data following each of the five annual drug

interventions from year 1 post-intervention (left panel), and their

usefulness for reconstructing baseline infection (right panel) are

shown in Figure 6 for the village of Peneng (similar findings were

obtained for all the rest of the study villages and are shown in

Figures S5, S6, S7, S8 in Supporting Information S1). All of the

individual sets of l ( = 500) parameter vectors were used to simulate

the baseline age-profiles of mf-prevalence, and the posterior

individual curves, medians, and their 95% credible intervals from

these simulations are plotted in the figure. The results depict that,

although there are year-to-year variations in the backfitted age-mf

profiles, the sequentially fitted parameter vectors from each

individual year are able to recover the baseline situation

remarkably well. Table 3 provides the age-stratified and overall

Monte Carlo p-values for the fits of each the backward

extrapolations to the example Peneng baseline infection data.

The results indicate that model performance for recovering the

baseline LF infection for this study site was excellent, when

evaluated using age-aggregated data whereas when assessed

against age-stratified baseline data discrepant results were

obtained for only the youngest 0–10 age group. Similar results

Figure 1. Predicted age-profiles of mf-prevalence from model fits to observed baseline and longitudinal post-intervention
infection data. Model outputs and observed data are shown for two of the PNG study villages exposed to high LF transmission intensity, and for
both drug regimens used: Peneng (DEC+IVR) and Yauatong (DEC alone). Individual 500 best-fit model simulations are shown in grey while the thick
blue line represents the median value of these curves. The observed data points (crosses) with 95% binomial credible intervals are shown at the mid-
points of each 10-yearly age-group. The results for the remaining three study villages are exactly similar (Figure S1 in Supporting Information).
doi:10.1371/journal.pone.0067004.g001
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were obtained for the rest of the study villages (Table S4 in

Supporting Information S1).

Worm Breakpoint Comparisons
Figure 7 depicts and compares the mf breakpoint values

obtained from the stability analyses of the directly (i.e. fitted only to

baseline data) versus 1) sequentially fitted LF models to the year 1,

3 and 5 post-MDA data, and 2) a situation reflecting either a 25%

or a 50% overall reduction in initial annual biting rate over the

entire 5-year MDA period, both for the study village of Peneng.

The results from the plotted quadratic discriminant analyses show

clear separation between breakpoint values estimated retrospec-

tively using backfitted models compared to those calculated from

the direct fits to baseline data only in the case when the initial

biting rate is reduced by 50% over the entire MDA period.

Reduction of annual biting rate by 50% also raised worm

breakpoint values and generated lower threshold biting rates

(Figure 7F). The formal KS test underscored these results

indicating a significant difference (p = 0.0042) only for the direct

versus backfitted estimates in the case of the 50% reduction in the

biting rate scenario. Similar findings were also obtained for the rest

of the study villages (data not shown).

Discussion

In our previous work, we had highlighted the importance of

assimilating locality-specific LF infection data into process-based

mathematical models as a strategic framework for determining LF

elimination endpoints that best reflect the realities of transmission

in local environments [12]. Here, we extend that work by

investigating if the biological parameters underlying LF transmis-

sion estimated by calibrating mathematical models using baseline

pre-intervention data in a field site are robust to infection

perturbations induced by drug regimens applied sequentially at

that site. This is an important question of practical significance to

the current drug-based LF elimination program, because if these

model parameters are found to be dynamically variable then

parasite infection dynamics, including endpoint values, are likely

to also vary as interventions proceed. This would make predictions

of when elimination may be achieved commensurately more

difficult, besides indicating a need for adaptively revising

intervention schedules (e.g. duration, frequency of MDAs) period-

ically as programs progress. On the other hand, if the parameters

in a site undergoing interventions are found to be stable in the face

of perturbations, then this robustness would likely enhance

achievement of LF elimination since it would imply that endpoints

estimated from either baseline or monitoring data during

interventions are exchangeable, and therefore either could serve

as reliable targets for determining parasite extinction.

The major result of this study viz. that the biological parameters

underpinning LF transmission may indeed remain dynamically

stable at least over a moderately long MDA program (5 years) in

individual endemic localities, may therefore represent an outcome

of import to the current LF elimination initiative. This result

suggests: 1) that LF extinction dynamics and hence elimination

endpoints in different sites are unlikely to vary over the durations

of MDA expected to bring about parasite elimination in most

endemic communities [7,12], 2) that endpoint values may be

estimated equally reliably from either baseline pre-MDA or from

intervention monitoring data depending on data availability in a

site, and finally, 3) that monitoring data during a MDA may be

used to reliably back calculate or hindcast initial baseline age-

infection patterns, thereby allowing generation of the expected

system trajectories required for evaluating the progress made

towards LF extinction for all those sites without such data [27,29].

Taken together, these new findings enhance the prospects of LF

elimination as they signify that once endpoints and original

infection are known/estimated for a site, initially specified optimal

intervention schedules and parameters (e.g. coverage/duration of

MDA) for crossing such endpoint targets may be followed without

alteration until the end of the program, thereby significantly

simplifying the management of parasite control [27,29].

The finding of temporal invariance or dynamic stability in key

biological parameters in this study has also shed intriguing new

insight into the nature of LF transmission in endemic communi-

ties. In particular, it supports recent work exploring the design of

biological systems, which suggests that such invariance in

biological parameters could be a direct function of the structural

adaptation of a complex biological system, such as LF, to initial

ecological conditions of a locality so that maintenance of system

function (parasite transmission in the present case) against

Figure 2. Comparison of the trends in overall community-level
mf prevalence predicted by the model with the observed
baseline and post-intervention infection data collected longi-
tudinally during the mass treatment programme. Model outputs
and observed infection data are shown for all the five PNG study
villages. The observed overall community prevalence collected at a
yearly interval from each study site are depicted by empty red squares
together with their corresponding 95% binomial credible intervals
(bars). The baseline data (at the 0th year in 1993–94) were collected
soon before the start of the first mass drug administration round, and
the five post-intervention mf prevalence data were collected annually a
year after each mass drug treatment from the first through the 5th MDA
round (see Table 1). Note that there are 500 modelled data points
(shown by empty cyan circles) from the 500 best fits.
doi:10.1371/journal.pone.0067004.g002

Modelling the Effects of Mass Drug Treatments

PLOS ONE | www.plosone.org 8 June 2013 | Volume 8 | Issue 6 | e67004



perturbations are preserved locally [19–23,61]. This perspective

suggests that the remarkable observed persistence of LF transmis-

sion in the face of the drug perturbations carried out in the PNG

study sites could be a direct outcome of the complex biological

architecture which underpins the transmission of vector-borne

diseases - viz. diverse regulatory feedback loops that are able to

compensate for changes in ecological conditions, diversity and

modularity in overall transmission function by involving two hosts

and heterogeneous mosquito larval habitats, which can help

contain perturbations locally to minimize effects on the whole

system, and different parasite stages exhibiting markedly different

life spans to buffer interactions against perturbations [21,23] -

adapted to be robust to normal variations in the values of key

transmission-related ecological factors prevailing in a given

locality. This implies that if LF transmission parameters are

stable, then initial conditions will set the boundaries of local

transmission dynamics [21,23,61]. Recent studies in schistosomi-

asis modelling have also highlighted the impact and need for

estimating site-specific internal determinants of parasite transmis-

sion for gaining a better understanding of the population dynamics

and control of Shistosoma japonicum in endemic communities

[52,56,62]. This finding, together with the present results, indicate

firstly that robustness to initial conditions in a site may be a

fundamental structural feature of vector-borne, and possibly other,

parasitic transmission systems, and secondly that gaining a better

understanding of the mechanisms underlying such dynamics will

be fundamental to identifying the faults and hence the effective

countermeasures required to disrupt parasite transmission reliably.

However, it is clear that a trade-off arising from such dynamics

is that locally robustly adapted systems may also face devastating

fragilities in the face of novel environmental conditions or

perturbations leading to catastrophic system failure [21,23,61].

Here, we have demonstrated that one major initial external factor

that may confine LF dynamics over time in an endemic locality is

vector abundance (Figure 7). The available data on changes in

entomological variables over the 5 year MDA period in each

village showed yearly fluctuations that were most prominent for

the high transmission villages studied here [30]. Our analysis of the

impact of these fluctuations depicted in Figure 7 shows that LF

transmission robustness could be sensitive to such vector abun-

dance changes, but only when .50% change occurred in this key

variable over an intervention period. By contrast, when fluctua-

tions in vector biting rates came close to but not .50% (as actually

recorded for the high transmission study villages examined here

[30]), LF transmission robustness was maintained. This finding

indicates that model calibration to key local variables, such as

vector biting rates, may allow detection of the boundaries or

thresholds of the specific initial constraining conditions that

confine dynamics to a site. A major question in this regard is

then whether once the values of this confining variable traverse

such thresholds, this change might shift the transmission dynamics

(and associated attractors, basins of attraction and stability) of the

historically adapted LF system into a new and possibly more

fragile transmission state and push the system into extinction [20].

Our investigation of this question with regard to changes in vector

biting rate has indicated that this outcome might be a distinct

possibility in the case of LF. This is illustrated in Figure 7F, which

shows that if the initial bounding vector abundance variable in a

site is reduced over time by a large degree (.50%), fragile LF

transmission regimes may indeed emerge as demonstrated by the

shifts to higher worm endpoints and lower TBR values in the

figure. This finding presents a new mechanism in support of our

previous conclusion from modelling intervention dynamics

regarding the role of vector control in LF elimination, viz. that

Figure 3. Posterior distributions of model parameters. The results are shown for 6 model parameters, a, kLin, y2s2, c, IC and SC, whose
posteriors changed significantly and consistently from their initially assigned uniform priors when the LF model was fitted to the baseline data in
each study village. The results in the figure illustrate the estimated posterior parameter shifts for the village of Peneng. Dashed lines show the flat
non-informative priors, while the bars denote the frequency distributions of the posterior values for each parameter. The parameter values along the
x-axis are normalized for comparative purposes. The figures in square brackets at the top of each plot depict the actual range of the posterior values
estimated for each parameter.
doi:10.1371/journal.pone.0067004.g003
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including vector control into MDA programs can significantly

accelerate the achievement of parasite elimination by altering both

vector transmission and worm breakpoint thresholds negatively

[7,9,13].

The sequential BM fitting of the anopheline-mediated LF model

to longitudinal mf data from each of the study villages has also

shown that the temporal invariance observed for the biological

parameters of this model was compensated for by the occurrence

of significant changes in all of the corresponding drug-related

parameters relevant to modelling the impact of the drug regimens

used in each site, viz. DEC alone or combined DEC/IVR. The

estimated posterior distributions for each of four drug parameters

–1) worm killing efficacy, 2) mf killing efficacy, 3) reduced

fecundity of surviving worms and 4) the waning period – showed

variable shifts from their initially assigned prior distributions in

each site, with the most informative change observed for the worm

killing efficacy parameter, the mean rates of which appearing to

settle around values of between 74 to 77% for the two drug

regimens by the end of 5 MDA cycles in these study villages

(Figure 5). Similarly, mean efficacy rates for mf killing and the

waning period parameter increased to peak values of around 80%

and 4 months respectively over the same intervention period.

These sequential model estimates indicate that while previous

estimates of the mf killing and waning rates for the present drug

regimens appear to have been generally well defined [7,26], the

worm killing rate, by contrast, has been grossly underestimated,

suggesting that previous modelling results of the impact of MDA

may have been overly pessimistic. Furthermore, the results also

show that the addition of IVR to DEC does not appear to

markedly change the estimate for this parameter in comparison to

the effects of the DEC only regimen. Thus, our results indicate

that the major impact of the combination therapy in reducing LF

infection in field settings is attributable mostly to the effects of

DEC. This finding implies that regimens with IVR but without

DEC, such as the ivermectin/albendazole (IVR/ALB) combina-

tion regimen advocated for use in many parts of Africa with co-

occurring onchocerciasis [1], will have a comparatively lower

impact - indeed there is some evidence that ALB would also

further lower the efficacy of this combination by an inhibitory

effect on worm killing [63] - in reducing LF transmission, thus

Figure 4. Stability in model parameters during intervention period. Comparison of changes in the posteriors of the parameters a, kLin, y2s2,
c, IC and SC obtained via sequential model fitting to annual infection data recorded over the 5-year intervention period in the high transmission
villages of Peneng and Yauatong. Solid coloured lines denote of the relative frequencies of the posterior distributions of each of the six model
parameters. The x-axis shows the scaled values of the posterior distributions for each parameter. The dashed line shows the initially assigned flat non-
informative priors.
doi:10.1371/journal.pone.0067004.g004
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making parasite elimination more difficult to achieve in such areas.

Note that such an inhibitory effect may also reduce the worm

killing efficacy of DEC in the DEC/ALB combination, which

would clearly have implications for LF elimination in other areas;

more biological details of this effect or data from sites using the

DEC/ALB combination regimen will need to be modeled if we are

to better estimate such inhibitory effects. A further complication

highlighted by our results regarding the effectiveness of MDA is

that there may also be a density-dependent effects on worm killing

by both the applied DEC and DEC/IVR regimens, with the mean

worm killing rate estimated for each regimen being marginally

lower at each cycles of intervention in the villages exposed to the

high compared to the lower transmission intensity (Figure 5). The

import of this result is clear: worm killing efficacy of anti-filarial

drug regimens will vary with the intensity of infection in a

community. These findings further emphasize the crucial require-

ment for estimating transmission and intervention parameters that

reflect local realities of transmission if LF is to be reliably

eliminated from endemic communities. They also underscore the

importance of including supplementary measures, such as vector

control, to MDA, this time both to overcome the effects of using a

less efficacious macrofilaricidal regimen in DEC contra-indicated

regions and to overcome the possibility of density-dependent

worm killing effects, if we are to achieve LF elimination globally.

Our use of the BM methodology to integrate sequential

intervention-related infection data with the LF model to predict

the effects of MDA on infection dynamics show that this Monte-

Carlo based Bayesian calibration method can yield results that

efficiently approximate reality as close as possible. As highlighted

previously [51,54], the innovative benefit using this approach

rather than simple Monte Carlo simulations lies in the ability to

attach prior distributions and calculate likelihoods for both model

input and the output, which improves the use of data to inform

initial conditions, update model parameters, and constrain a

model during simulation so to match observed data closely.

However, one drawback of using sampling filters such as the SIR

algorithm used in this study to generate the posterior probability

distributions of model parameters and predicted state variables (e.g.

endpoints) is that it may lead to sample impoverishment, wherein

the posterior sample may have a large number of repeated copies

due to the weighted resampling carried out based on likelihoods of

parameter vectors [64–66]. Although this did not represent a

major problem in the present study, future applications of this

approach to extended datasets and perhaps fitting of models to

data from longer MDA cycles than studied here will need to take

this technical issue into consideration. Parasite system dynamics,

particularly in the case of vector-borne diseases, are also likely to

be strongly influenced by weather and climate changes via effects

on vector population dynamics. As shown in this study, such vector

abundance changes can critically impact parasite transmission

dynamics in a locality, meaning that future studies may require

considering statistical frameworks, such as Markov Chain Monte

Carlo (MCMC) methods or hybrid sequential Monte Carlo

sampling/MCMC approaches, for joint estimation of time varying

parasite system states and parameters [57,64,66,67]. We are

currently extending our LF model to explicitly include mosquito

Figure 5. Peak shift in the estimated worm killing efficacy rate of the two drug regimens. Horizontal lines depict the prior parameter
distribution, which was assigned to vary from 10% to 85%. Bars represent the estimated relative frequencies of the parameter obtained by annual
sequential model fits to data through the 5-year intervention period in each of the 5 PNG study villages. The vertical lines represent measures of the
central tendency of the estimated posterior distributions: mean (broken line) and median (solid line).
doi:10.1371/journal.pone.0067004.g005
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population dynamics (rather than using a fixed ABR value to

represent such dynamics as performed here) as a first step to

developing such statistical methods. Note also that if it is

confirmed that local LF transmission dynamics can be largely

constrained by the prevailing vector abundance in a site, another

outcome of such a finding is that it may also allow the application

of our model, and hence transferability of results, across different

settings based on calibration to available joint spatial data on

vector biting rates and mf prevalences.

A further improvement to our modelling approach is to directly

include infection diagnostic uncertainties into the model calibra-

tion approach so that true prevalences can be quantified from joint

estimates of test specificities and sensitivities [68,69]. This will

clearly be important in correcting for endpoint values estimated

using different types of infection indicators as well as for correctly

predicting the corresponding system trajectories due to the

application of MDA in different localities [27]. Such work will

improve understanding of how indicator dynamics are linked to

the underlying parasite transmission dynamics, and in turn guide

the choice of the best indicators that closely match worm dynamics

for monitoring the impact of interventions on LF infection/

transmission in communities [27,29].

Figure 6. Sequential model backfitting to baseline infection data. Comparisons of sequential model fits to observed annual declines in mf
age-prevalence (left panel), and of back predictions of each yearly fit to observed baseline infection data for the village of Peneng (right panel).
Sequential parameter updating was accomplished by using posteriors from the model fit to a previous year as priors for each successive subsequent
year, starting with the posteriors obtained by model fitting to year 1 intervention data (see text). The thick (blue) line represents the median value of
the SIR selected 500 prevalence curves. The observed annual declines in mf age-prevalence (left panel) and baseline mf age-prevalence (right panel)
respectively are shown by crosses with 95% CIs. The dashed lines in the right-panel plots represent the 95% bounds (the 2.5th and 97.5th percentile
values) of the simulated mf-prevalence curves shown in grey. Similar results were obtained for the remaining 4 study villages (Figures S5, S6, S7,
S8 in Supporting Information).
doi:10.1371/journal.pone.0067004.g006

Table 3. Monte Carlo p-values for the backfitted models to
the Peneng baseline data.

Age-stratified and overall Monte Carlo p-values

Year 0–10 10–20 20–30 30–40 40–50 50–60 Overall

* 0.735 0.841 0.998 0.112 0.998 0.213 0.988

1 0.055 0.842 0.996 0.118 0.996 0.199 0.984

2 0.034 0.84 0.998 0.13 0.998 0.166 0.978

3 0.082 0.812 0.998 0.056 0.986 0.277 0.98

4 0.018 0.854 0.999 0.186 0.999 0.164 0.98

5 0.046 0.841 0.998 0.112 0.998 0.213 0.988

(*) The p-values are calculated for the model fits directly fitted to the baseline
data. The numbers in the first column represent the intervention years. In this
case, the posteriors of the non-drug parameters, obtained from the sequential
model fits to those years’ post-intervention infection data, were used to
reconstruct the baseline.
doi:10.1371/journal.pone.0067004.t003
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Despite these limitations related to our current model and its

calibration, the present study has nonetheless advanced new

understanding regarding LF transmission and the prospects for its

control using currently available MDA methods. Firstly, our

findings underscore the need to understand the biological

robustness of parasite transmission, and the factors that underlie

such robustness, in local settings if we are to develop reliable

countermeasures to achieve parasite extinction. Our preliminary

analysis of LF transmission robustness to initial conditions has

highlighted the impact that fluctuations in vector abundance can

play in pushing a locally robustly adapted vector-borne parasite

system to a different state with its own dynamics, and hence

endpoints. This result corroborates previous theoretical and

experimental work in demonstrating that adaptability or robust-

ness of biological systems, including complex parasitic systems, to

one set of conditions can enhance their fragility to abrupt changes

in such conditions [19–23,61]. We suggest that learning about

these trade-offs between transmission robustness and fragility has

now become central if we are to successfully accomplish the

elimination of LF, and indeed other parasitic infections, both

locally and globally. Secondly, results presented here also suggest

that progress in this next generation of work will not only require

the development of modelling methods to analyse and evaluate

biocomplexity and robustness of parasitic systems, but also the

development of data-driven inferential techniques that can reliably

allow the joint determination of model states, structure and

calibration using local data. A key need here is the development of

modelling frameworks that can assimilate spatially distributed data

on key ecological conditions relevant to parasite transmission from

a variety of sources, couple with climate and weather dynamics,

and integrate with the available spatio-temporal datasets on

human infection prior, during and following interventions [57,67].

Constructing such models of everywhere is no doubt a daunting

challenge, but we suggest that with the rapid improvement in

computing power, advent of new intelligent eco measurement

devices and observation networks, and development of new

flexible state space data modelling and assimilation approaches,

these challenges can be met [57,67], and the notion of using

models as an effective management tool for achieving parasite

control or eradication becomes an attractive, acceptable option.

Lastly, a theme that can be identified running throughout this

work is a need for control programs to focus on obtaining good

quality infection monitoring data. Data will be required to

characterize local dynamics, to evaluate and update model

predictions, extrapolate predictions to sites without or poor quality

data, and monitor changes in coverage and system response as

interventions progress. We end by indicating that a closer

alignment of modelling work with well-collected field data

constitutes an urgent operational requirement if the current global

program to eradicate LF is to successfully achieve its laudable goal.

Supporting Information

Supporting Information S1 File contains eight figures and four

tables: Figure S1 - Predicted age-profiles of mf-prevalence
(curves) from model fits to observed baseline and
longitudinal post-intervention infection data for the high
transmission village of Albulum (DEC+IVR), and the low
transmission villages of Nanaha (DEC+IVR) and
Ngahmbule (DEC alone). The observed data points (crosses)

with 95% binomial credible intervals are shown at the mid-points

of each population age-group. Individual 500 best-fit model

simulations are shown in grey while the thick blue line represents

the median value of these curves. Figure S2 - No significant
changes in the estimated mf killing efficacy rate over
time. Horizontal lines denote the frequency distribution of the

parameter prior, which was assigned to vary from 55% to 95% in

each village. Bars represent the relative frequencies of the

parameter posteriors obtained from the model fits to the infection

over the intervention period. The vertical lines depict measures of

the central tendency of the estimated posterior distributions: mean

(broken line) and median. Figure S3 - No significant changes
in the estimated worm fecundity reduction rate. Hori-

zontal lines and bars are as described in the previous figure. The

prior distribution was set to vary from 55% to 95% in each village.

The vertical lines are the estimated means and medians of the

posteriors. Figure S4 - No significant changes in the
waning period. Horizontal lines and bars are as described

before. The prior distribution of the waning period was set to vary

from 1 to 6 months in each village. The vertical lines are the

estimated means and medians of the posteriors. Figure S5 -
Sequential backfitting to baseline data of the village
Albulum. As shown in Figure 6 in the main text, the thick (blue)

line represents the median value of the SIR selected 500

prevalence curves. The observed annual declines in mf age-

prevalence (left panel) and baseline mf age-prevalence (right panel)

respectively are shown by crosses with 95% CIs. The dashed lines

in the right-panel plots represent the 95% bounds (the 2.5th and

97.5th percentile values) of the simulated mf prevalence curves

shown in grey. Figure S6 - Sequential backfitting to
baseline data of the village Yauatong. Descriptions of the

data shown (denoted by symbols, bars and curves) as given in the

legend to Figure S5. Figure S7 - Sequential backfitting to
baseline data of the village Nanaha. Descriptions of the data

shown (denoted by symbols, bars and curves) as given in the legend

to Figure S5. Figure S8 - Sequential backfitting to baseline
data of the village Ngahmbule. Descriptions of the data

shown (denoted by symbols, bars and curves) as given in the legend

to Figure S5. Table S1 - Monte Carlo p-values for the
directly fitted models to the baseline and five post-
intervention infection data collected during mass

Figure 7. Comparison of results from carrying out a quadratic discriminant analysis on worm breakpoints and threshold biting
rates estimated from direct- and back-fitted LF models to baseline mf age-prevalence data for Peneng village. In (A) the endpoint data
(worm breakpoints and biting thresholds) estimated by direct model fits to the baseline mf age-prevalence data (shown by 0) are compared against
endpoint estimates derived from the reconstructed baseline mf age-prevalence obtained via model fitting to the first year intervention data (shown
by 1). Similarly, in (B) and (C) the directly fitted model estimates are compared against those obtained from backfitted mf age-prevalences using,
respectively, the third (denoted by 3) and fifth (denoted by 5) years’ intervention data. In the right panel, the endpoint estimates from the model
fitted directly to baseline infection data are compared against those estimated from the backfitted models using the fifth year intervention data, but
with the original annual biting rates increased by 25% (shown by 6) in (D), reduced by 25% (shown by 7) in (E), and by 50% (shown by 8) in (F). The
edges between the two coloured regions in each graph depict the separation boundaries for the direct and back-fitted endpoint estimates in each
case. The two solid dots in each plot depict the means of the distributions of the endpoint estimates obtained from the direct- and the back-fitted
models to the baseline data. Note that the two dots begin separating from each other but still remaining in the same coloured region in (E), with full
separation between the two estimated distributions (i.e. falling in a distinct coloured region) occurring only in (F).
doi:10.1371/journal.pone.0067004.g007
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treatment programme for the five PNG study sites.
Table S2 - Results of the univariate Kolmogorov-
Smirnov (KS) test of differences between the parameter
posterior distributions estimated from sequential mod-
el fits to baseline and infection data from five successive
years. The p-value shows the significance level of the KS test. A

p-value ,0.05 indicates that posterior distribution is significantly

different from its prior. Here the parameter posteriors from the

models fitted to the baseline were tested against the non-

informative priors. The parameter posteriors from the models

fitted to the infection data of the first intervention year were tested

against those from the model fitted to the baseline data of each

study site; the parameter posteriors of the second intervention year

against those of the first year; and so on. Table S3 - Results of
the univariate Kolmogorov-Smirnov (KS) test of differ-
ences between prior and posterior distributions of drug
related parameters. The p-value shows the significance level of

the KS test. A p-value ,0.05 indicates that posterior distribution is

significantly different from its prior, which is always the case for

the worm killing efficacy parameter.
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53. Sevcı́ková H, Raftery AE, Waddell PA (2007) Assessing uncertainty in urban

simulations using bayesian melding. Transportation Research Part B 41: 652.

54. Coelho FC, Codeco CT, Struchiner CJ (2008) Complete treatment of

uncertainties in a model for dengue R0 estimation. Cadernos de saúde pública
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