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ABSTRACT Chicken coccidiosis is a disease caused by
Eimeria spp. and costs the broiler industry more than 14
billion dollars per year globally. Different chicken Eime-
ria species vary significantly in pathogenicity and viru-
lence, so the classification of different chicken Eimeria
species is of great significance for the epidemiological sur-
vey and related prevention and control. The microscopic
morphological examination for their classification was
widely used in clinical applications, but it is a time-con-
suming task and needs expertise. To increase the classifi-
cation efficiency and accuracy, a novel model integrating
transformer and convolutional neural network (CNN),
named Residual-Transformer-Fine-Grained (ResTFG),
was proposed and evaluated for fine-grained classification
of microscopic images of seven chicken Eimeria species.
The results showed that ResTFG achieved the best per-
formance with high accuracy and low cost compared
with traditional models. Specifically, the parameters,
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inference speed and overall accuracy of ResTFG are
1.95M, 256 FPS and 96.9%, respectively, which are
10.9 times lighter, 1.5 times faster and 2.7% higher in
accuracy than the benchmark model. In addition,
ResTFG showed better performance on the classification
of the more virulent species. The results of ablation
experiments showed that CNN or Transformer alone had
model accuracies of only 89.8% and 87.0%, which proved
that the improved performance of ResTFG was benefit
from the complementary effect of CNN’s local feature
extraction and transformer’s global receptive field. This
study invented a reliable, low-cost, and promising deep
learning model for the automatic fine-grain classification
of chicken Eimeria species, which could potentially be
embedded in microscopic devices to improve the work
efficiency of researchers and extended to other parasite
ova, and applied to other agricultural tasks as a
backbone.
Key words: chicken Eimeria classification, deep learning, convolutional and transformer structure, complementary
effect
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INTRODUCTION

The global demand for protein products has been
steadily increasing (Cao and Li, 2013). The poultry
industry provides a large amount of meat and egg prod-
ucts for human consumption and its production scale is
expected to further increase in the next decade
(Mottet and Tempio, 2017; Blake et al., 2020). Chicken
coccidiosis is a widespread and economically significant
disease caused by protozoan parasite of the genus Eime-
ria (Chapman et al., 2013; Mesa et al., 2021), costing
the global broiler industry more than 14 billion dollars
per year (Adams et al., 2022). There are 7 recognized
Eimeria species, including E. Tenella, E. Acervulina, E.
Maxima, E. Brunetti, E. Mitis, E. Necatrix, and E.
Praecox. Chickens infected with different Eimeria spe-
cies may occur clinical or subclinical symptoms because
of significant differences in pathogenicity and virulence
among different species (Shirley, 1997). Clinical coccidi-
osis is more harmful, which not only affects the yield and
quality of meat and eggs, but also can cause chicken
death with a high probability, while subclinical coccidio-
sis generally does not cause death (Engidaw and
Getachew, 2018). In addition, different Eimeria species
may have different drug resistance (Fatoba and
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Adeleke, 2018). Therefore, the successful identification
of Eimeria species can provide guidance for treatment
measures. And understanding the prevalence of coccidio-
sis can help the government to formulate macro-control
policies, and rapid and accurate identification of Eime-
ria species can provide convenience for relevant
researchers. Overall, it is of practical significance to dis-
tinguish Eimeria species for epidemiological survey and
related prevention and control.

The molecular biological methods and microscopic
morphological examination were widely adopted to iden-
tify parasites (Huang et al., 2017; Mattiello et al., 2000;
Fotouhi-Ardakani et al., 2021; Hendershot et al., 2021).
The former are accurate and sensitive but require sophis-
ticated protocols, and the latter is a very challenging
task for naked eyes due to the small morphological dif-
ferences among chicken Eimeria species. Therefore,
there is an urgent need to develop an automatic identifi-
cation process for chicken Eimeria species. In some stud-
ies, The morphological characteristics of Eimeria
oocysts were extracted and semi-automatic recognition
was carried out by machine learning algirithms
(Kucera and Reznicky, 1991; Casta~n�on et al., 2007;
Abdalla and Seker, 2017). Casta~n�on et al. (2007)
achieved the best overall accuracy of 85.75%. However,
the semi-automatic methods requires manually designed
features, which is cumbersome and the model accuracy
is insufficient. The rapid development of convolutional
neural network (CNN) has provided a powerful tool for
the image recognition task (Esteva et al., 2017). Due to
the superiority of CNN, it has been used for species iden-
tification of various parasites with good results and has
been embedded in automated devices (Yang et al., 2020;
Butploy et al., 2021; Lee et al., 2021; Thevenoux et al.,
2021; Abade et al., 2022). However, there are few studies
focusing on the classification of chicken Eimeria species
using deep learning methods. Monge and Beltr�an (2019)
proposed a CNN model to classify chicken Eimeria spe-
cies and the accuracy was improved to 90.42%, which
still has room for improvement.

It is observed that the CNN-based models could
achieve better results than traditional models that
requires manual feature extraction. But these studies
did not realize that the species recognition of some para-
sites, for example, chicken Eimeria, is a fine-grained
classification task, which focusing on the classifying
objects of similar but different subtypes (Zhao et al.,
2020). The Transformer structure, originally proposed
for Natural Language Processing (NLP) tasks (Vaswani
et al., 2017; Jacob et al., 2019), which has been success-
fully applied in major computer vision tasks including
fine-grained classification (Carion et al., 2020; Chen
et al., 2021; Dosovitskiy et al., 2021; Zheng et al., 2021).
And Transformer-Fine-Grained model (TransFG)
achieved State-of-The-Art (SOTA) performance on five
popular fine-grained classification benchmarks (He
et al., 2021). The feature of local region connection
makes CNN good at capturing local features, but lacks
the ability to capture global features. Transformer can
capture global features well, but is less capable of
capturing local features. Therefore, integrating CNN
and Transformer structure could improve the model per-
formance (Dai et al., 2021; Lu et al., 2022).
In this study, a novel model, named Residual-Trans-

former-Fine-Grained (ResTFG), was proposed for the
classification of chicken Eimeria species based on the
residual block (He et al., 2016) and TransFG (He et al.,
2021). The main objectives of the present study were to
1) investigate the complementary effects of integrating
the Transformer and CNN on the model performance;
2) optimize the number of layers and hyperparameters
of the new model for better performance. The study
eventually designed and validated a high performance
and lightweight model suitable for automatic and real-
time micrograph classification of seven chicken Eimeria
oocysts.
MATERIALS AND METHODS

Dataset

Dataset description The dataset used in this study
was from a publicly available website (http://www.coc
cidia.icb.usp.br/), created by the Laboratory of Molecu-
lar Biology of Coccidia at the Department of
Parasitology of the Institute of Biomedical Sciences and
the Cybernetic Vision Research Group at the Institute
of Physics, the University of Sao Paulo, firstly published
in 2007 (Casta~n�on et al., 2007). The generality of data
sources was considered. Several samples of each species
were used, which were collected from different geo-
graphic sources, in order to dilute possible intra-specific
variations and maximize inter-specific discrimination
(Casta~n�on et al., 2007). The dataset provides RGB digi-
tal micrographs of oocysts of seven Eimeria species of
domestic fowl. Each micrograph contains multiple
oocysts which are of the same species. To construct the
classification image dataset, single oocyst was isolated
from micrographs manually. In total, there were 7 cate-
gories, 4,243 labeled microscopic images of isolated
oocysts. Since the morphological differences of seven
oocysts, these images were of different sizes, and the
maximum size was up to 447 £ 642 pixels (width by
height) and the minimum size was 177 £ 225 pixels
(width by height). Figure 1 shows the characteristic
morphology of the 7 chicken Eimeria species.
Dataset augmentation and splitting There is an origi-
nally large difference in the number of different oocyst
categories with uneven distribution, which would tend
to result in a model with false classification of some
uncertain samples into the category with more samples.
Appropriate data augmentation was conducted for cate-
gories of images with fewer samples. Specifically, all E.
Maxima images were flipped horizontally, and 300 E.
Brunetti images and 200 E. Necatrix images were ran-
domly selected for horizontal flipping, which is a com-
monly used method for dataset augmentation
(Wang et al., 2019; Ye et al., 2020; Lu et al., 2022). Con-
sidering that the imaging environment of micrographs is
controllable and consistent, and the original
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Figure 1. Typical micrographs of oocysts of the seven chicken Eimeria species. Samples: (a) E. Maxima, (b) E. Brunetti, (c) E. Tenella,
(d) E. Necatrix, (e) E. Praecox, (f) E. Acervulina, and (g) E. Mitis.
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micrographs are sufficiently representative, it is not nec-
essary to augment the original dataset by utilizing some
morphological or color adjustment methods. After bal-
ancing the dataset, the total number of images increased
from 4,243 to 5,103. Seventy percent of the samples of
each category were randomly selected as the training set
and the rest thirty percent as the test set. To ensure
reproducible evaluation results, a constant random seed
“2022” was set. The details of the dataset are shown in
Table 1.
Methods

Proposed model The framework of the proposed
ResTFG model is shown in Figure 2. The left and the
right parts are the CNN and Transformer branches,
respectively.

The CNN branch consists of an input layer, a maxi-
mum pooling layer, an average pooling layer, a flatten
layer, 5 CBR modules (acronym for Convolution Batch-
Normalization ReLU (rectified linear unit)), and one or
two residual blocks. The k, s, and p in Figure 2 represent
the kernel size, stride, and padding of the convolution
layer, respectively. As shown in Figure 3(a), the CBR
module consists of three layers, a convolution layer with
Table 1. The number of images of the chicken Eimeria oocyst dataset

Class label Species name Original After d

ACE E. Acervulina 742
BRU E. Brunetti 442
MAX E. Maxima 360
MIT E. Mitis 825
NEC E. Necatrix 502
PRA E. Praecox 676
TEN E. Tenella 696
Total number 4,243
a kernel size of 3 £ 3, a stride of 1 £ 1 and a padding of
1, followed by a batch normalization (BN) layer and a
ReLU layer. The BN layer can speed up the training and
convergence of the network, alleviate the gradient dis-
persion and mitigate the overfitting problem. In order to
make the network capable of characterizing nonlinear
mappings and further addressing the gradient disap-
pearance problem, the ReLU activation function was
added after each BN layer. The residual block is chosen
as it can improve the trainability of the deep network
with less computation cost. The structure of the residual
block is shown in Figure 3(b), composed of an input
layer, four CBR modules, a downsampling operation
and an output layer. The downsampling operation is
implemented by a convolution layer with a kernel size of
1 £ 1, a stride of 2 £ 2 and no padding, and is connected
to a BN layer afterward. The number of the residual
block is uncertain (shown in the dashed box in Figure 2)
since the structure in the model is subject to optimiza-
tion. When there is only one residual block, it is then
connected to the average pooling layer and the flatten-
ing layer. The second residual block is directly connected
to the flattened layer when there are two residual blocks.
This design aims to match the feature dimensions after
the flattened layer with the input dimensions of the
Transformer branch.
.

ata augmentation

Partitioning of the dataset (7:3)

Training Test

742 520 222
742 520 222
720 504 216
825 578 247
702 492 210
676 474 202
696 488 208
5,103 3,576 1,527



Figure 2. The overview of the proposed Residual-Transformer-Fine-Grained (ResTFG) model. The left and right parts are the convolutional
neural network (CNN) and Transformer branch, respectively. The k, s, and p represent the kernel size, stride, and padding of the convolution layer,
respectively. When there is only one residual block, it is then connected to the average pooling layer and the flatten layer; when there are two residual
blocks, the second one is directly connected to the flatten layer.

Figure 3. The structure of the Convolution Batch-Normalization
ReLU (rectified linear unit) module (CBR) (a), and the residual block
(b). The k, s, and p represent the kernel size, stride, and padding of the
convolution layer, respectively.
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The Transformer branch was designed based on a pre-
vious study (He et al., 2021). The benefit of this inten-
tionally simplified setting is to reduce the impact of other
techniques on model performance (Dai et al., 2021). The
final output vector dimension was set to seven to match
the number of the chicken Eimeria species in this study.
The Transformer branch is described in detail, including
token and embedding operations, Transformer encoder
block, and the optimization of loss function.

(1) Tokens and Embeddings: For the Transformer in
NLP, each word in the input sentence is divided into
tokens, and a token representing semantic informa-
tion is a class token. But for the Transformer in com-
puter vision, it is not realistic to regard each pixel as
a token due to the limitation of computation, so the
image is cut into multiple patches, and each patch is
regarded as a token for subsequent processing. In
ResTFG models, the patch embedding operation is
implemented by the CNN branch. The class token,
that is, a learnable vector, is embedded in patch
embedding to enable the model for categorization.
Different from CNN, the Transformer structure
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requires position embeddings to encode the location
information of patch tokens, so a learnable vector,
that is, position token, is added to the patch embed-
ding. Assuming the input image is represented as xNp
after being mapped to patch embedding space by
the CNN branch, the output after position embed-
ding is:

x0 ¼ ½Ec; x1p ; x
2
p ; :::; x

N
p � þ Epos ð1Þ
where x0 with category and spatial information is the input of the Trans-
former branch, N is the number of image patches, Ec is the class embed-
ding operation, and Epos is the position embedding operation.

(2) Transformer Encoder: Transformer Encoder is com-

posed of L encoder block layers in total and one Part
Select Module (PSM), where L is 12 by default.

a) Encoder block: As shown in Figure 4, the encoder
block is composed of the alternating Layer Normali-
zation (LN) layer, Multi-Head Self-Attention
(MSA) layer, and Multi-layer Perceptron (MLP)
block. The MLP block contains two linear layers,
two dropout layers with a dropout rate of 0.1, and
one Gaussian Error Linear Unit (GeLU) activation
function layer. For each encoder block, the LN layer
is applied before MSA and MLP layer, and the
residual connection is applied after each LN layer.
Therefore, the output of layer L can be expressed as:

x̂ l ¼ MSA
�
LNðxl�1Þ

�
þ xl�1 ð2Þ
xl ¼ MLP
�
LN ðx̂ lÞ

�
þ x̂ l ð3Þ
where xl�1 is the output of layer L� 1, x̂ l is the output of MSA layer.
MSA is developed from Self-Attention (SA) mecha-

nism. The image classification task is abstracted into a
query task through SA. Every patch token can be linked
to the class token through SA. Patches mapped to the
Figure 4. The structure of the transformer encoder block.
embedding space are calculated by matrix Q (query)
and matrix K (key) to obtain the attention weight. The
weight is then fed into the Softmax function to calculate
the dot product of it with matrix V (value) for the final
output, i.e., the dot-product attention (Vaswani et al.,
2017), expressed as follows:

AttentionðQ;K ;V Þ ¼ Softmax
QKTffiffiffiffiffi

dk
p

� �
V ð4Þ

where dk is the dimension of matrix Q and K . The scal-
ing of dot-product is necessary because the large dk will
result in a large value after QKT , leading to a minimal
gradient after the Softmax function, which is not condu-
cive to the network training.
Rich characteristic information can generally be

obtained by deepening the number of CNN channels,
and each channel can be used to identify a different pat-
tern. Similarly, K attention heads are set in the MSA for
better feature capture capability. In this study, the num-
ber of attention heads were 12 by default. The output of
MSA could be expressed as (Vaswani et al., 2017):

MultiHeadðQ;K ;V Þ

¼ Concatðhead1; :::; headiÞWO ð5Þ

headi ¼ AttentionðQWQ
i ;KWK

i ;VWV
i Þ ð6Þ
b) PSMmodule: The input of the last encoder block is
modified with the PSM layer to take full advan-
tage of the attention information. Previous studies
have pointed out that raw attention weights do
not necessarily correspond to the relative impor-
tance of input tokens, so it is necessary to integrate
the attention weights of all previous layers
(Abnar and Zuidema, 2020). Specifically, PSM
recursively applies matrix multiplication to the
raw attention weights in all encoder block layers to
get afinal . The tokens corresponding to the index A1
;A2; :::;AK of the maximum K attention heads of
each attention weight in afinal are selected and
spliced with the class token as the input to the last
encoder block (He et al., 2021), which can be
expressed as:

xselect ¼ ½x0l�1; x
A1
l�1; x

A2
l�1; :::; x

AK
l�1� ð7Þ
afinal ¼
YL�1

l¼0

al ð8Þ
al ¼ ½a0l ; a1l ; :::; aKl � ð9Þ
ail ¼ ½ai0l ; ai1l ; :::; aiKl � ð10Þ
(3) Loss Function: The contrastive loss is introduced
into the model to minimize the similarity of the class
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tokens of different categories and maximize the simi-
larity of the class tokens of the same category. The
total loss Ltotal is the sum of contrastive loss Lcon and
cross-entropy loss Lcross, which can be expressed as
(He et al., 2021):

Ltotal ¼ LconðxÞ þ Lcrossðy; y0Þ ð11Þ
Lcon ¼ 1
N 2

XN
i

½
XN
j:yi¼y

�
1� simðxi; xjÞ

þ
XN
j:yi 6¼y

max
�
simðxi; xjÞ � a

�
; 0
�
� ð12Þ
Lcross ¼ �
Xn
i¼1

y0ilogðyiÞ ð13Þ
where N is the batch size, xiand xjare pre-processed with L2 normaliza-
tion, sim is cosine similarity, a is an artificially constant to avoid the loss
affected by simple negative samples, y is the ground-truth label, and y0 is
the predicted label.
Equipment and Environment To facilitate intensive
computation in model training, a professional deep learn-
ing platform, SYS-4029GP-TRT was used, equipped
with 2 £ Intel� Xeon(R) Gold 6147M CPU @ 2.50GHz,
a total of 260 GBmemory, and 8 graphics cards including
4 £ Nvidia TITAN RTX and 4 £ Nvidia GeForce RTX
2080 Ti, a total of 140 GB video memory. The testing
and inference speed measurement of models were run on
a desktop computer with GeForce RTX 3080 GPU
and Inter(R) Core (TM) i9-10900KF CPU @3.70GHz.
In terms of the software environment, Python-3.8,
PyCharm-Professional-2021.2.3, and Pytorch-GPU-
1.8.1 framework were used.
Experimental setting First, 7 existing SOTA models
were compared, including VGG11 (Simonyan, 2014),
MobilenetNet_V3_Small, MobilenetNet_V3_Large
(Howard et al., 2019), ResNet34 (He et al., 2016), Dense-
Net121 (Huang et al., 2016), Shufflenet_V2_x1_0
(Ma et al., 2018), and TransFG_B16 (He et al., 2021).
VGGNet11, ResNet34, and DenseNet121 with their good
feature extraction capability and generalization perfor-
mance have become the preferred backbone of many
downstream tasks, and have achieved competitive accu-
racy in many image recognition applications. Mobilenet-
Net_V3_Small, MobilenetNet_V3_Large, and
Shufflenet_V2_x1_0 models are a class of lightweight
models with relatively low accuracy but fast inference
speed. The TransFG_B16 with a batch size of 16 is one of
the TransFGmodels, which is a Transformer based model
specifically designed for fine-grained image classification
task. After the comprehensive evaluation of the above 7
SOTA models, a benchmark model was obtained for the
subsequent comparison with ResTFGmodels.

Then a series of experiments were conducted to
optimize ResTFG models. First, the effect of 3 hyper-
parameters and the number of encoder block layers in
the Transformer branch on model performance were
evaluated. After determining the optimal setting of the
Transformer branch, the structure of the CNN branch
was further optimized. Furthermore, the effectiveness of
the integration of CNN and Transformer structure was
proved through ablation experiments.
Image Preprocessing and Hyperparameters setting
The computational cost of the CNN is significantly related
to the input image size, which should be sufficiently
reduced but without affecting the model performance. In
this study, to modify images as little as possible, only two
preprocessing steps were adopted before inputting the
images into the CNN structure. First, each image was
adjusted to a commonly used format for the image classifi-
cation task with a resolution of 224 £ 224 using the resize
method in PyTorch deep learning framework. Second,
each pixel value was normalized from to [0, 1] to speed up
the convergence of the model.
All models used were trained from scratch. The initial

learning rate is 0.001, and the decay rate is 0.5 for every
20 epochs. In addition, the number of epochs is 100, the
batch size is 64, and the optimizer is Stochastic Gradient
Descent (SGD) with a 0.9 momentum and a 1e�4
weight decay. The models proposed in this paper use the
sum of cross-entropy loss and contrastive loss as the
total loss, while other models only use cross-entropy to
calculate the loss.
Evaluation Metrics In practical application scenarios,
the deployment of models will be limited by computa-
tional resources. In this study, three metrics, that is,
accuracy, the number of parameters, and inference speed
(FPS, frames per second), are used for a comprehensive
evaluation of model performance to obtain high perfor-
mance and lightweight model. The receiver operating
characteristic (ROC) curve, area under the ROC curve
(AUC) and the loss curve of the training stage were also
used to compare the performance. In addition, to evalu-
ate the recognition performance of the model for each
category of chicken Eimeria species, confusion matrix,
precision, recall, and F1 score were adopted. All results
are the average value of 3 tests. The calculation formulas
of metrics are as follows:

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð14Þ

F1score ¼ 2� Precision � Recall
Precision þ Recall

ð15Þ

Precision ¼ TP
TP þ FP

ð16Þ

Recall ¼ TP
TP þ FN

ð17Þ

WherePrecision is the proportion of the correct sam-
ple to the total sample,Accuracy is the proportion of all
samples correctly predicted by the model, Recall is the
proportion of all real samples that the model predicts to
be correct, F1score is the harmonic mean of Precision
and Recall, True Positive (TP) is the number of samples
correctly predicted to be positive, True Negative (TN)
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is the number of samples correctly predicted to be nega-
tive, False Positive (FP) is the number of samples falsely
predicted to be positive, and False Negative (FN ) is the
number of samples falsely predicted to be negative.
RESULTS

Performance of Existing Models

The test results of the seven existing SOTA models
are shown in Table 2. As expected, the accuracy of
MobilenetNet_V3_Small, MobilenetNet_V3_Large
and Shufflenet_V2_x1_0 was relatively low. Shuffle-
net_V2_x1_0 has the lowest number of parameters
and accuracy (80.4%), which could not meet the recogni-
tion requirement. It was surprising VGG11, with the
maximum number of parameters, achieved the fastest
inference speed of 409 FPS, but its memory consumption
is high. DenseNet121 had a good accuracy, but very slow
inference speed. TransFG_B16 also had good accuracy
but high memory consumption. ResNet34 was identified
as a balanced model with 21.29M parameters, 166FPS
and 94.2% accuracy, and therefore, was selected as the
benchmark model.
Optimization of Transformer Branch

Two residual blocks with 13 convolution layers were
adopted in ResTFG models by default. The initial value
of three hyperparameters in the Transformer branch,
that is, hidden size, MLP dimension and the number of
multi-attention heads was 768, 3,072, and 12 respectively,
which were set according to TransFG_B16. MLP
Table 2. The performance of State-of-The-Art (SOTA) models in th
batch size of 16 is one of the Transformer-Fine-Grained (TransFG) mo

Model Name Parameters (M)

VGG11 128.80
MobilenetNet_V3_Small 1.53
MobilenetNet_V3_Large 4.21
ResNet34 21.29
DenseNet121 6.96
Shufflenet_V2_x1_0 1.26
TransFG_B16 85.80

Table 3. The performance comparison of the Residual-Transformer-F
hyperparameters and the number of the encoder block layer. TransF
Grained (TransFG) models.

Model Name Hidden size MLP dimension Nu

TransFG_B16 768 3,072
ResTFG (C13, H12, L8) (a) 768 3,072
ResTFG (C13, H12, L8) (b) 384 1,536
ResTFG (C13, H12, L8) (c) 288 1,024
ResTFG (C13, H12, L8) (d) 192 768
ResTFG (C13, H8, L8) 384 1,536
ResTFG (C13, H4, L8) 384 1,536
ResTFG (C13, H2, L8) 384 1,536
ResTFG (C13, H12, L6) 384 1,536
ResTFG (C13, H12, L4) 384 1,536
ResTFG (C13, H12, L3) 384 1,536
ResTFG (C13, H12, L2) 384 1,536
dimension was set to four times of hidden size, so it was
not considered a separate hyperparameter. The more
multi-attention heads mean the more patterns of correla-
tion between different patches can be learned. The num-
ber of the encoder block layer was adjusted at 8 to limit
the size of ResTFG models. The initial model was named
ResTFG (C13, H12, L8) (a), where [C] represents the
number of convolution layers, [H] represents the number
of multi attention head, [L] represents the number of the
encoder block layer, and the letter suffixes correspond to
the different hidden size and MLP dimension.
The hidden size and MLP dimension were first opti-

mized. As shown in Table 3, ResTFG (C13, H12, L8) (a)
achieved the highest accuracy of 97.2%, but it had too
many parameters. When the hidden size was set to 384,
the ResTFG (C13, H12, L8) (b) obtained a tradeoff
among parameters, inference speed and accuracy. Then,
the hyperparameter H was optimized. It was found that
the number of parameters was almost unaffected by H,
but the model accuracy was negatively affected by a
decreasing H, so H was always set to 12 in subsequent
models. Furthermore, the evaluation of hyperparameter
L showed the accuracy and inference speed increased
with the decrease of L, which might imply a saturation
of the model. A similar result occurred in Lu et al.’s
study (Lu et al., 2022). Therefore, ResTFG (C13, H12,
L2) achieved the best results with 10.86M number of
parameters, 216FPS, and 97.1% accuracy. Compared
with ResTFG (C13, H12, L8) (a), the number of param-
eters in ResTFG (C13, H12, L2) was reduced by 86%,
and the inference speed was doubled, but the accuracy
was only decreased by 0.1%, which is significantly supe-
rior to the performance of ResNet34.
e classification of chicken Eimeria species. TransFG_B16 with a
dels.

Speed (FPS) Accuracy (%)

409 86.9
157 86.3
107 90.7
166 94.2
56 92.7
146 80.4
104 93.5

ine-Grained (ResTFG) for the Transformer branch with different
G_B16 with a batch size of 16 is one of the Transformer-Fine-

mber heads
Number
Layers

Parameters
(M)

Speed
(FPS)

Accuracy
(%)

12 12 85.80 104 93.5
12 8 82.14 105 97.2
12 8 21.50 112 97.0
12 8 11.90 113 95.7
12 8 6.12 116 95.7
8 8 21.50 114 96.7
4 8 21.50 114 96.6
2 8 21.50 114 96.0
12 6 17.96 134 96.5
12 4 14.41 165 96.9
12 3 12.63 183 97.0
12 2 10.86 216 97.1



Table 4. The performance comparison of the Residual-Transformer-Fine-Grained (ResTFG) for the convolutional neural network
(CNN) branch with different kernel parameters and the number of the convolution layer.

Model Name Hidden size MLP dimension Parameters (M) Speed (FPS) Accuracy (%)

ResTFG (C13, H12, L2) 384 1,536 10.86 216 97.1
ResTFG (C9, H12, L2) (a) 384 1,536 10.09 254 96.5
ResTFG (C9, H12, L2) (b) 180 720 2.50 256 96.7
ResTFG (C9, H12, L2) (c) 156 624 1.95 256 96.9
ResTFG (C5, H12, L2) 156 624 1.80 299 96.2

Table 5. The parameters setting and corresponding output
shape of each layer of Residual-Transformer-Fine-Grained
(ResTFG) (C9, H12, L2) (c).

Layer name Kernel size Stride Padding Output shape

Input 224 £ 224 £ 3
CBR_1 7 £ 7 2 3 112 £ 112 £ 64
Max-pooling 3 £ 3 2 1 56 £ 56 £ 64
CBR_2 3 £ 3 1 1 56 £ 56 £ 64
CBR_3 3 £ 3 1 1 56 £ 56 £ 64
CBR_4 3 £ 3 1 1 56 £ 56 £ 64
CBR_5 3 £ 3 1 1 56 £ 56 £ 64
Residual Block 28 £ 28 £ 156
Avg-pooling 3 £ 3 2 1 14 £ 14 £ 156
Flatten 196 £ 156
Embedding 197 £ 156
Encoder blocks 197 £ 156
Linear 7

Table 6. The performance of the Residual-Transformer-Fine-
Grained (ResTFG) with only convolutional neural network
(CNN) branch or Transformer branch.

Model Name Parameters (M) Speed (FPS) Accuracy (%)

CNN Only 0.92 549 89.8
Transformer Only 1.03 403 87.0
ResTFG (C9,
H12, L2) (c)

1.95 256 96.9
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Optimization of CNN Branch

The convolution layers of the CNN branch were
pruned and the parameters of the convolution kernel
were adjusted in order to make the model more light-
weight. As shown in Table 4, after pruning one residual
block, i.e., four convolution layers, the accuracy of
ResTFG (C9, H12, L2) (a) only decreased by 0.6%, but
there was a 17% improvement in inference speed. It is a
good result, but the model is not light enough and there
is a possibility to further reduce its memory consump-
tion. Therefore, the kernel size (same value with hidden
size) of convolution layers in the residual block was opti-
mized. The results showed that the kernel size strongly
influences the number of parameters of the model. When
it was reduced from 384 to 156, the number of parame-
ters was reduced from 10.09M to 1.95M which the accu-
racy was improved by 0.2%. When the number of
convolution layers was further reduced, the bonus in the
number of model parameters was negligible, but the
decrease in accuracy was significant. Therefore, ResTFG
(C9, H12, L2) (c) (referred to as optimized ResTFG)
obtained the advantages of both high performance and
lightweight, with the number of parameters of 1.95M,
an inference speed of 256FPS, and an accuracy of 96.9%,
which is 10.9 times lighter, 1.5 times faster, and 2.7%
higher in accuracy than ResNet34. Table 5 shows the
related parameters setting and output shape of each
layer of ResTFG (C9, H12, L2) (c).
Ablation Studies on ResTFG

To demonstrate that the integration of the CNN and
Transformer structure have a positive effect on model
performance improvement, the ablation experiments were
designed and implemented. Specifically, the Transformer
branch and the CNN branch in ResTFG (C9, H12, L2)
(c) were removed separately so that only one branch
could be used for testing. The test results are shown in
Table 6. There is no doubt that the number of parame-
ters would be reduced and the inference speed would
increase with only the CNN or Transformer branch. But
as Table 6 shows, the accuracy of these two models
decreased significantly by 7.1% and 9.9%, respectively.
The results showed sufficient evidence that the hybrid
model integrating the CNN branch and Transformer
branch can fully utilize the advantages of both, which is
highly superior to the model with a single branch.
DISCUSSION

Balance of Accuracy and Inference Speed

Due to the limited computing resources of embedded
and mobile devices, in addition to accuracy, memory
consumption and inference speed of the model are also
important. If a model has the advantages of high accu-
racy and low cost at the same time, it has more potential
to be applied to the actual scenarios to automatically
identify chicken Eimeria species.
Based on the collected microscopic image dataset of

chicken Eimeria oocysts, 7 existing SOTA models were
tested. Although VGG11 had the fastest inference speed
(409FPS), its parameters reached 128.80M, which could
not meet the requirements of lightweight model. Shuffle-
net_V2_x1_0 has an advantage in the number of
parameters (1.26M), but its accuracy is only 80.4%.
Compared with other models, ResNet34 achieved good
number of parameters (21.29M), inference speed
(166FPS) and accuracy (94.2%), but it was still inferior
to our proposed model. And there is only two ResTFG
models have an accuracy below 96%, with the highest



Figure 5. The bubble plots of accuracy (%), inference speed (frames per second) and the number of parameters of seven State-of-The-Art
(SOTA) models and the optimized Residual-Transformer-Fine-Grained (ResTFG) model (Ours).
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accuracy of 97.2%. Among all the ResTFG models,
ResTFG (C5, H12, L2) achieved the fewest number of
parameters (1.80M) and the fastest inference speed
(299FPS). But ResTFG (C9, H12, L2) (c) (referred to
as Ours) is regarded as a balanced model with the
advantages of both high performance and lightweight.
Figure 5 shows the bubble plots of accuracy, inference
speed and the number of parameters of 7 existing SOTA
models and Ours, with larger bubbles representing more
parameters and vice versa. Ours is in the upper right of
the figure, and the bubble size is significantly smaller
than ResNet34.

In addition to the overall accuracy, the ability of mod-
els to identify the more virulent Eimeria species is also
critical. Table 7 shows the recognition accuracy and
recall of each Eimeria species of the benchmark model
ResNet34, ResTFG (C13, H12, L8) (b), ResTFG (C13,
H12, L2) and ResTFG (C9, H12, L2) (c) (Ours). The
comprehensive recognition performance was evaluated
by F1 score values, which was calculated by Equation 15.
ResTFG (C13, H12, L8) (b) and ResTFG (C13, H12,
L2) were selected because of their superior performance
in the model optimization process. Among the seven
Eimeria species, E. Tenella showed the highest
Table 7. Precision, recall, and F1 score of the optimized Residual-Tr
class.

Models ResTFG (C9, H12, L2) (c) (Ours) ResNet34

Class label Precision Recall F1 score Precision Recall F1

ACE 0.97 0.95 0.96 0.95 0.91
BRU 0.96 0.98 0.97 0.90 0.98
MAX 0.98 0.99 0.99 0.98 0.95
MIT 0.98 0.98 0.98 0.96 0.97
NEC 0.97 0.96 0.97 0.95 0.91
PRA 0.93 0.95 0.94 0.88 0.94
TEN 0.99 0.97 0.98 0.98 0.93
virulence, followed by E. Necatrix (Shirley, 1997).
Therefore, the identification performance of models on
these two species has been focused on. As can be seen
from Table 7, compared with the ResNet34, the opti-
mized model (Ours) has larger F1 score values, that is,
the comprehensive recognition performance of E. Ten-
ella and E. Necatrix is better. In addition, compared
with ResTFG (C13, H12, L2) and ResTFG (C13, H12,
L8) (b), Ours improved the recognition performance of
E. Necatrix without affecting the recognition ability of
E. Tenella. These results showed that the model pro-
posed in this study is of practical significance, and the
optimization strategy is feasible.
ROC Curve

The performance of multiple methods on the same
task can be easily compared by the ROC curve, the area
enclosed by the curve and the coordinate axes is called
AUC, which is insensitive to the category distribution.
The vertical coordinate of the ROC curve is TPR (True
Positive Rate) and the horizontal coordinate is the FPR
(False Positive Rate), and the closer the curve is to the
ansformer-Fine-Grained (ResTFG) and ResNet34 model for each

ResTFG (C13, H12, L8) (b) ResTFG (C13, H12, L2)

score Precision Recall F1 score Precision Recall F1 score

0.93 0.97 0.95 0.96 0.97 0.99 0.98
0.94 0.96 0.99 0.98 0.96 0.97 0.97
0.96 0.99 0.99 0.99 0.98 0.99 0.98
0.96 0.97 0.97 0.97 0.98 0.98 0.98
0.93 0.98 0.95 0.96 0.97 0.94 0.96
0.91 0.93 0.97 0.95 0.93 0.97 0.95
0.96 0.98 0.97 0.98 0.99 0.97 0.98



Figure 6. The ROC curves of seven State-of-The-Art (SOTA)
models and the optimized Residual-Transformer-Fine-Grained
(ResTFG) model (Ours).

Figure 7. The loss curves of seven State-of-The-Art (SOTA) mod-
els and the optimized Residual-Transformer-Fine-Grained (ResTFG)
model (Ours).
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upper left as well as the larger the ACU value represents
the better model performance.

As shown in Figure 6, the ROC curve of the optimized
ResTFG (Ours) is closest to the upper left and the AUC
value reaches 0.998, which is better than all other mod-
els, where the AUC value of ResNet34 is 0.989. There-
fore, our model achieved the best performance.
Convergence Situation

Besides focusing on the performance of the model after
being well-trained, the convergence situation of the
model during the training stage is also one of the most
important concerns for researchers. Figure 7 shows the
convergence process of the average loss of seven SOTA
models and the optimized ResTFG model with the
increase of training iterations. As shown in Figure 7, the
average loss value of all the eight models decreased rap-
idly in the first 20 epochs and converged after about 80
epochs. As can be seen that the convergence of VGG11,
MobileNet_V3_Small, MobileNet_V3_Large, and
Shufflenet_V2_x1_0 in this task is relatively poor, and
of ResNet34 and TransFG_B16 is similar except that
the initial loss value of TransFG_B16 is lower. The solid
red line represents the optimized ResTFG. Its loss value
is always the lowest among all models no matter when
the training is stopped. It also has the fastest conver-
gence speed, and it reaches the best performance of
ResNet34 after training 50 epochs. In addition, the fluc-
tuation of its loss value is the smallest in the late training
period. The results proved that our model has a robust
and stable learning capability.
Confusion Matrix

The confusion matrix of the optimized ResTFG is
illustrated in Figure 8, which shows the classification
performance of the model for each class. According to
Equation 14, the overall accuracy is 96.9%.
The identification accuracy, recall and F1 score of

each class are calculated with Equations 15 to 17, and
the results are shown in Table 7. As the table shows, the
samples of E. Praecox species are more likely to be mis-
classified, which is the same as in C�esar et al.’s study
(2007). In their study, the morphological features and a
Bayesian classifier were used to identify seven Eimeria
species, and the results showed that E. Praecox species
had the worst classification accuracy (74.2%), followed
by E. Necatrix species (74.9%). And in this study, E.
Praecox species also had the worst classification accu-
racy of 93%, while E. Necatrix species achieved 97%. It
can be seen that the classification accuracy has been
greatly improved. The poor performance of different
models for the classification of E. Praecox species sug-
gests that E. Praecox is the most difficult to be differen-
tiated correctly among the 7 Eimeria species, which is
due to the objective fact of morphological similarities
between E. Praecox and the other species (Kucera and
Reznicky, 1991)
In this study, the reason preventing the further

improvement of the model accuracy is the mutual
misclassification between E. Acervulina and E. Prae-
cox species. Eight E. Acervulina samples were mis-
classified as E. Acervulina and five E. Praecox
samples were misclassified as E. Acervulina. The
result provides a direction for the further optimiza-
tion of the mode. On the one hand, the penalty on E.
praecox misclassification can be increased during
model training to force the model to learn more fea-
tures of E. praecox species. On the other hand, for
data-driven deep learning methods, increasing the
number of samples can be tried, especially E. Praecox
species which is hard to distinguish, to make the
model have better recognition ability and enhance its
generalization performance.



Figure 8. Confusion matrix of the optimized Residual-Transformer-Fine-Grained (ResTFG) model (Ours).
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CONCLUSIONS

To achieve the automatic fine-grained classification of
chicken Eimeria species, a novel deep-learning model,
named ResTFG, which integrates the advantages of the
CNN and Transformer structure, was proposed in this
study. The CNN structure containing residual blocks
was used as the backbone, which has a powerful feature
extraction ability, and compensated for the defect of
CNN lacking a global receptive field through the deploy-
ment of the multihead attention mechanism in Trans-
former. The ablation experiments proved the synergistic
effect of integrating the CNN and Transformer struc-
ture. Overall, the proposed ResTFG model performs
well, achieving an accuracy of 96.9%, an inference speed
of 256 FPS, and a memory consumption of 1.95M, which
has the advantages of both high accuracy and low cost.
This model can improve the work efficiency of research-
ers. More importantly, for people who do not have the
ability to identify Eimeria species with the naked eye,
they can obtain species distribution information to infer
the severity of the disease with the help of this automatic
identification system, which can provide guidance for
subsequent medication and the basis for effective control
measures. In future work, the ResTFG model would be
further optimized and applied to other computer
vision and pattern recognition tasks in agricultural
engineering.
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