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Abstract

Background: Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), has become a global pandemic following its initial emergence in China. SARS-CoV-2 has a positive-sense
single-stranded RNA virus genome of around 30Kb. Using next-generation sequencing technologies, a large number of
SARS-CoV-2 genomes are being sequenced at an unprecedented rate and being deposited in public repositories. For the de
novo assembly of the SARS-CoV-2 genomes, a myriad of assemblers is being used, although their impact on the assembly
quality has not been characterized for this virus. In this study, we aim to understand the variabilities on assembly qualities
due to the choice of the assemblers.

Results: We performed 6648 de novo assemblies of 416 SARS-CoV-2 samples using eight different assemblers with different
k-mer lengths. We used Illumina paired-end sequencing reads and compared the assembly quality of those assemblers. We
showed that the choice of assembler plays a significant role in reconstructing the SARS-CoV-2 genome. Two metagenomic
assemblers, e.g. MEGAHIT and metaSPAdes, performed better compared with others in most of the assembly quality metrics
including, recovery of a larger fraction of the genome, constructing larger contigs and higher N50, NA50 values, etc. We
showed that at least 09% (259/2873) of the variants present in the assemblies between MEGAHIT and metaSPAdes are
unique to one of the assembly methods.

Conclusion: Our analyses indicate the critical role of assembly methods for assembling SARS-CoV-2 genome using short
reads and their impact on variant characterization. This study could help guide future studies to determine the best-suited
assembler for the de novo assembly of virus genomes.

https://academic.oup.com/
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Highlights
• Assemblers showed marked differences in de novo assembly of SARS-CoV-2 genome.
• Two metagenomic assemblers, e.g. MEGAHIT and metaSPAdes, constructed a larger fraction of the genome compared with other

assemblers.
• At least 09% (259/2873) of the variants present in the assemblies between MEGAHIT and metaSPAdes are unique to one of the

assemblers.
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INTRODUCTION
SARS-CoV-2 is the seventh member of the Coronaviridae family
to infect humans, which is responsible for the current COVID-
19 pandemic [1]. This virus is ravaging the world with more
than 1.8 million deaths in the year 2020 [2]. To understand its
pathophysiological mechanism, mutation pattern, epidemiolog-
ical tracing and transmission pathways, the single-stranded RNA
genome of SARS-CoV-2 has been sequenced in different coun-
tries. Around 50 000 SARS-CoV-2 genomic sequences have been
submitted to NCBI Nucleotide records and Nextstrain database
since the first whole-genome was sequenced in January 2020
[3, 4]. This unprecedented speed of genome sequencing was
possible due to the advancement in sequencing technologies
and the availability of open-source bioinformatics tools.

By the end of 2020, 84% (140,837/168,547) of SARS-CoV-2
sequencing runs deposited on NCBI’s Sequence Read Archive
(SRA) were generated using Illumina short-read sequencing
technology [5]. Along with short-read sequencing technologies,
long-read sequencing technologies were also used in combina-
tion with short reads or alone to decipher SARS-CoV-2 genome
[6]. Many assembly tools (assemblers) are publicly available to
assemble the genome from short reads. These assemblers use
a combination of, or solely, these methods: De Bruijn graph,
Overlay Layout Consensus and greedy graph method. The
quality of the virus genome assembly varies depending on the
assembler of choice, genome composition, depth of sequencing,
sample preparation, etc. [7]. Due to the rapid pace of SARS-
CoV-2 genome sequencing, use of different sequencing assays
and availability of multiple assemblers, the assemblers need to
be benchmarked and updated for the de novo assembly of the
SARS-CoV-2 genome.

RNA viruses naturally accumulate random genetic variations
during the course of infection [8]. Mutations in the genomes are
used to track the transmission of SARS-CoV-2 virus in which
closely related genomes are anticipated to be closely related
infections [3]. Phylogeny of genomes is used to cluster similar
clades where the genetic diversity solely depends on the vari-
ants present on the genomes [9]. However, assemblers could
introduce erroneous base(s) in the sequence due to their error
correction method, quality filtering or parameter selections [10–
12]. Assemblers have their unique error profiles, and therefore,
genomic variants also vary by assemblers [13]. Here, we sought
to find out the instances of genomic variants that were solely
driven by the choice of assemblers.

To date, the degree of variation in assembly qualities among
different assemblers has not been reported for SARS-CoV-2. In
this study, we present a comprehensive investigation on the
performance of assemblers for SARS-CoV-2 genome assembly

Table 1. Summary of the viral RNA dataset of SARS-CoV-2 available
by 14th June 2020

Assay type Library source Library
layout

# Libraries # Selected

AMPLICON VIRAL RNA PAIRED 5254 82
OTHER VIRAL RNA PAIRED 68 66
RNA-Seq VIRAL RNA PAIRED 682 75
Targeted-
Capture

VIRAL RNA PAIRED 194 93

WGA VIRAL RNA PAIRED 1061 100

with publicly available Illumina paired-end datasets. To compare
assemblers, we used different assembly quality matrices, e.g.
percentage of genome recovery, largest contig, total assembly
length, N50, NA50, L50, LA50, etc. We further called the variants
from the assembled contigs. We showed that the number of
variants occurring in the contigs varies significantly among
different assemblers and there are discordances in variants
between assemblers for the same sample.

RESULTS
De novo assemblers showed marked differences in
assembly quality

Illumina paired-end data for the SARS-CoV-2 genomes have
been collected from different assay types, e.g. amplicon,
whole genome amplification (WGA), RNA-Seq, targeted-capture
and other (Figure 1A). We randomly selected 100 libraries
for each assay type and then removed the libraries that did
not pass the sanity check (Figure 1B, Table 1). To evaluate
assembly quality among different assemblers, we selected
four de novo metagenome assemblers (e.g. metaSPAdes,
MetaVelvet, MEGAHIT and Ray Meta) and four de novo
genome/transcriptome assemblers (e.g. ABySS, Velvet, SPAdes
and Trinity) (Supplementary Table S1, see Supplementary Data
available online at http://bib.oxfordjournals.org/). To rule out the
influence of the choice of k-mer lengths on assembly quality,
we used three k-mer lengths (21, 63 and 99) for the assemblers
requiring a fixed k-mer length.

Genome fraction recovery was highly variable across the
different assemblers (assembly quality terminologies [14];
Supplementary Table S2, see Supplementary Data available
online at http://bib.oxfordjournals.org/). Most of the assemblers
(e.g. ABySS-K21,63,99, Ray Meta-K21,63,99, SPAdes, Trinity)
recovered a larger fraction (median > 90%) of the genome,
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Figure 1. Comparison of assemblers for different sequencing assays. (A) Experimental strategies to assemble SARS-CoV-2 genomes using different assemblers and

calling variants from the assembled contigs. From different sequencing assay types, samples were randomly selected for assembly and subsequent analysis. (B) Total

number of reads for each sample across different assay types. (C) Fraction of SARS-CoV-2 genome assembled by different assemblers. (D) The largest continuous

alignment of the assemblies produced by different assemblers.

although there was high variability in recovering the genome
across the samples (Figure 1C). In contrast, MEGAHIT and
metaSPAdes recovered almost the entire genome (median of
≥99.7%) with low variabilities. Velvet and Metavelvet recovered
a lower fraction (median < 30%) of the genome compared
with other assemblers invariably across assay types, despite

an increase in genome fraction recovery with increasing k-
mer length (Figure 1C). We confirmed that the recovery of the
fraction of the genome by different assemblers was not affected
by the sequencing depth of the libraries in different assay
types (Figure 2A). For all assemblers, genome fractions were
invariably recovered across the span of the sequencing depth
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except for Targeted-Capture assay which showed a negative
correlation (Spearman: −0.24). Consistent with the recovery of
the genome, the larger uninterrupted alignment of assemblies
to the reference genome were obtained by MEGAHIT (median
of >29 000 bp) and metaSPAdes (median of >27 000 bp) across
all assay types (Figure 1D). In contrast, Velvet and MetaVelvet
showed relatively lower contiguous alignments (median of
<1100 bp). MEGAHIT and metaSPAdes also generated the highest
number of assemblies (∼40% of the samples) with 90% of the
genome covered by a single contig, whereas ABySS was unable to
generate longer contiguous sequences at different k-mer lengths
(Figure 2B).

About 87% (4291/4912) of the assemblies did not produce
any misassembled events. The duplication ratio was higher
in Trinity (median of 1.1005) compared with other assem-
blers (Supplementary Figure S1A and B, see Supplementary
Data available online at http://bib.oxfordjournals.org/). The
median duplication ratio for all assemblies is 1.005 where 25%
(1247/4912) of the assemblies had duplication ratio equal to 1.

MEGAHIT and metaSPAdes performed better in most of
the assembly quality matrices

N50 is the minimum contig length needed to construct 50% of
the genome, where contigs are sorted by their lengths. There
were large variations among the assemblers for N50. All assem-
blers performed poorly on the RNA-seq assay type (Figure 3A).
MEGAHIT and metaSPAdes had the highest N50 values (median
of >21 000 bp) compared with other assemblers (median of
≤10 000 bp) across all samples. NA50 is an improved matrix of
the N50 contig length which breaks contigs into aligned blocks at
misassembly events and removes all unaligned bases. MEGAHIT
and metaSPAdes were able to generate larger NA50 values in
all assay types compared with other assemblers (Figure 3B).
Metavelvet and Velvet were unable to produce large N50 as
well as NA50 values across different assay types. MEGAHIT
and metaSPAdes produced lower L50 (median = 1) and LA50
(median = 1) values compared with other assemblers across dif-
ferent assay types (Figure 3C and D). We observed MEGAHIT and
metaSPAdes outperformed other assemblers in several other
quality matrices, e.g. contig lengths, number of Ns, percent over-
lap with genes and N75, NA75, L75, LA75 values (Supplemen-
tary file 1 and 2, see Supplementary Data available online at
http://bib.oxfordjournals.org/).

SARS-CoV-2 genome assembly contiguity breaks at the
repeat region

We investigated the simple tandem repeat of 585 bp in the
SARS-CoV-2 genome located at the 3′-end (MN908947.3:29 870–
29 903). Most of the assemblers failed to assemble the repeat
region and more than 100 bp gap was created at the 3′-end in
different assemblies. To identify the presence of similar assem-
bly gaps in the assemblies, we binned the genome into 50 bp
non-overlapping windows and counted the number of bases
assembled in each bin throughout the genome (Figure 4A). We
compared the assemblies of top-performing four assemblers, e.g.
MEGAHIT, metaSPAdes, Trinity and ABySS-K63 for 392 samples
across assay types. Gaps in the assemblies are shown in red
color and assembled regions are in gray in the heatmap. We
found that in addition to gaps in the 3′-end, there were assembly
gaps (around 50 bp size) at the 5′-end of the genome across the
assemblies. Besides gaps in the 5′ and 3′-ends, we did not observe
other consistent gaps in those assemblies.

Some samples showed higher or lower recovery of the
genome fraction independent of the assemblers we used.
To investigate this, we analyzed four samples consisting of
two better and two worse quality assemblies in terms of
the fraction of genome recovered across four assemblers. We
visualized the read densities on the genome along with gaps
(red) and assembled regions (grey) (Figure 4B). The samples
(SRR11903415 and SRR12182155) with better quality assembly
had uniform read coverage throughout the genome, whereas
other two samples (SRR11783612 and SRR11954291) showed
gapped assembly independent of assemblers due to lack of read
coverage at the gapped regions.

Influence of k-mer length on assembly quality

All eight assemblers we tested use graph-based methods
where the choice of k-mer length affects the contiguity of
an assembly [15, 16]. Four of the de novo assemblers (e.g.
ABySS, Velvet, MetaVelvet and Ray Meta) we used require a
single k-mer length. To analyze the variability in assembly
quality across 416 samples, we used three different k-mer
lengths (i.e. 21, 63 and 99). With different k-mer lengths
ABySS, Velvet and MetaVelvet showed variabilities in assem-
bly quality but Ray Meta did not show larger variabili-
ties on average (Supplementary Figure S2, see Supplemen-
tary Data available online at http://bib.oxfordjournals.org/).
ABySS performed relatively better with smaller k-mer lengths
in recovering fraction of genome, largest alignment, N50,
NA50, LA50 values with lower misassemblies and duplication
ratio. Velvet and MetaVelvet performed better with higher
k-mer lengths in recovering fraction of genome, largest
alignment, N50, NA50 values at the cost of higher misassem-
blies and duplication ratios. However, L50 values improved
overall with the increasing k-mer lengths for all four assem-
blers.

Variant calling from de novo assemblies varies between
assemblers

We aligned the assembled contigs to the reference genome
and called variants (see Methods). For 416 samples, the
assemblers produced different number of variants which are
expectedly correlated (Pearson = 0.73) to the fraction of genome
recovered (Supplementary Figure S3, see Supplementary Data
available online at http://bib.oxfordjournals.org/). To investi-
gate the occurrences of variants exclusively present in an
assembler, we compared the variants identified from the two
best-performing assemblers, e.g. MEGAHIT and metaSPAdes.
Among all the variants identified in the common genomic
regions assembled by both MEGAHIT and metaSPAdes, 92%
of the variants overlapped between two assemblers and 25%
(95/385) of the samples had at least one assembler specific
variant (Figure 5A). To further understand the consequence
of assembler specific variants in the biologically important
genomic features, we analyzed the Spike (S) gene locus and
found that 06% (23/385) of the samples contain variants that
are unique to MEGAHIT or metaSPAdes (Figure 5B). Here, we
showed the example of variants in the Spike locus which
are concordant (ERR4208998) or discordant (SRR11783589)
between MEGAHIT and metaSPAdes at the common assembly
regions. In addition, there are variant differences between
MEGAHIT and metaSPAdes due to assembly gaps in one of the
assemblies. For example, in SRR12182180, a variant occurs in
the metaSPAdes assembly but not in the MEGAHIT assembly
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Figure 2. Assessment of sequencing and assembly quality. (a) Pearson correlation coefficient between the number of reads and fraction of genome assembled in respect

to assay types. (b) Assemblies with 90% of the genome covered by a single contig.

because of the assembly gap at this location (Figure 5B). Variants
present in both raw reads and in assemblies (Figure 5C) but
in many instances raw reads do not contain those variants
and suggesting that spurious variants arise due to assembly
errors (Supplementary Figure S4A and B, see Supplementary
Data available online at http://bib.oxfordjournals.org/). This
highlights the importance of correcting assembler specific spu-
rious variants before functional characterization of the variants
and using de novo assemblies for phylogeny construction or
other pan-genome analyses.

Computational performance by different assemblers

Scarcity of computational resources also forces us to pay
special attention to space and time complexity during de novo
assembly of genomes. For calculating the Central Processing
Unit (CPU) time consumption and Random Access Memory
(RAM) usage, we randomly selected 17 amplicon libraries that
have around 1 million paired-end reads. We utilized 4 cores
and 8 threads on a dedicated computer for all the assemblers.
Assembly completion time has been adopted as time consumed

in wallclock CPU seconds (Figure 6A). Trinity and MetaVelvet-
K99 consumed the lowest time among all assemblers with the
median values of 0.73 and 4.1 s, respectively (Figure 6A). Ray
Meta and metaSPAdes took the longest time. With regards to
RAM usage, we observed that Trinity and MEGAHIT required
the least amount of RAM with the median values of 12.5 and
13.0%, respectively (Figure 6B). metaSPAdes required the highest
amount (31.9%) of RAM compared with other assemblers.
Notably, the choice of k-mer length for the same assembler
had little to no effect on the CPU time and RAM usage
measurements.

DISCUSSION
In this study, we compared 16 assembler variations using
eight de novo assemblers for the benchmarking of the genome
assembly quality of the SARS-CoV-2 virus. We observed two
metagenomic assemblers, e.g. MEGAHIT and metaSPAdes out-
performed other assemblers in regards to the genome fraction
recovery, largest contig length, N50 length, NA50 length, L50
and LA50 contig number. The fraction of genome recovery could
be 10-folds different between assemblers, e.g. MEGAHIT (99%)
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Figure 3. Comparison of contigs and aligned genomic blocks. (a, b) Length of the smallest contig (N50) and aligned block (NA50) at 50% of the total genome length.

(c, d) Minimum number of contigs (L50) and aligned blocks (LA50) at 50% of the total genome length.

versus MetaVelvet-K21 (10%). Although all eight assemblers used
the graph-based method for de novo assembly, the differences
we observed are due to the variations in their implementation,
error correction, quality thresholds and choice of other param-
eters. Despite better performances by the two metagenomic
assemblers, the entire viral genome was not assembled in
most cases, especially at the termini of the genome. Therefore,

there is a need to develop newer assembly methods specially
designed to assemble complete viral genomes. The SARS-
CoV-2 virus genome could also be assembled by aligning the
reads to the reference genome or using a reference guided
assembly.

Single nucleotide variants and short insertions and dele-
tions vary by the assemblers, possibly correlated to the



Assembler’s impact on SARS-CoV-2 genome assembly 7

Figure 4. Analysis of assembly contiguity and gap. (A) SARS-CoV-2 genome was binned into 50 bp non-overlapping windows. For each bin, a number of bases assembled

were plotted in the heatmap using a continuous color scale. For each bin, 50 bp assembly is shown in gray and an assembly gap in red. Samples with successful

assemblies for all four assemblers were included here. (B) Using a similar binning approach as in (A), the contiguity (gray) or gaps (red) of four assemblers are shown.

Two samples (SRR11903415 and SRR12182155) with most contiguous assembly and two samples (SRR11783612 and SRR11954291) with gapped assembly were plotted

with sequencing read coverage across the SARS-CoV-2 genome.

‘aggressiveness’ of the assembler [13]. Differences in variants
introduced by assemblers may have an impact on downstream
comparative genomic applications, such as pan-genome
comparison or constructing phylogenetic tree using de novo
genome assemblies. Often assembler specific variants are the
result of assembly errors. Such assembly errors could be resolved

by using post-assembly genome improvement pipelines that
use local assembly and/or raw read alignment to the erroneous
variants [11].

To discover novel viruses, the sequence of complete viral
genomes is inevitable rather than fragmented viral contigs.
Low read coverage and genomic repeats resulted in assemblies
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Figure 5. Differences in genomic variants between two assemblers. (A) Overlap of variants within the common genomic regions between MEGAHIT and metaSPAdes

assemblies for different assay types. Single nucleotide variants and short insertions/deletions are included here. (B) Examples of concordant (ERR4208998) and

discordant (SRR11783589, SRR12182180) variants between MEGAHIT and metaSPAdes are shown in genome browser. Contigs are represented in gray bars and variant

nucleotides are highlighted. (C) Example of variant presents in both assembly and raw reads.

with poor genome recovery independent of assemblers. Recent
benchmarking studies reported metagenomic assemblers
resulted in the relatively higher contiguous viral assemblies
using viral metagenomic data [7, 17]. Our analysis for SARS-
CoV-2 data, using different sequencing assay types, identified

two metagenome assemblers, e.g. MEGAHIT and MetaSPAdes
addressed the challenges of virome data better than other
assemblers. Our benchmarking data for SARS-CoV-2 genome
can be used to choose suitable de novo assemblers for similar
genomes.
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Figure 6. Computational resources required for different assemblers. (A) Time consumed by different assemblers in wallclock CPU seconds. (B) RAM percentage usage

by different assemblers.

METHODS
Data source and annotation

Publicly available raw sequencing data of SARS-CoV-2 genome
were acquired from SRA. In this study, we used paired-end
Illumina sequencing libraries of viral RNA. We randomly
selected 100 paired-end Illumina libraries from six different
assay types, e.g. amplicon, RNA-seq, targeted-capture, WGA
and other categories (Table 1, Figure 1B). The samples that did
not pass the quality check were removed from subsequent
analysis. As a reference of SARS-CoV-2, ‘MN908947.3’ genome
version was used. For the annotation of genomics features,
‘Sars_cov_2.ASM985889v3.100.gff3’ was downloaded from the
Ensembl database.

Read pre-processing
Adapter and low-quality bases were trimmed using Trimmo-
matic [18] with default parameters. Raw reads were quality
checked using FastQC and multiQC [19, 20] (Figure 1A).

Assemblers tested
In this study, de novo assembly of paired-end reads was
performed using the current versions of eight different short-
read assemblers. We used ABySS assembler which is optimized
for short reads. The parallel version of ABySS is capable
of assembling large genomes [21]. MEGAHIT is an ultra-fast
and memory-efficient short-read assembler, optimized for
metagenomes, also works well on generic single genome
assembly of small or mammalian size [22]. Ray Meta is used for
metagenome assembly and profiling [23]. SPAdes can assemble
sequences from single-cell and multi-cell data types [24]. The
Velvet assembler was designed for short-read sequencing data
[25]; metaSPAdes is a metagenomic assembler and MetaVelvet
is an extension of Velvet for metagenome assembly from short
reads [26, 27]. Trinity performs de novo transcriptome assembly
[28]. For every assembler mentioned above, we have used default

parameters unless otherwise mentioned. K-mer lengths 21, 63,
99 were used for ABySS, Velvet, MetaVelvet and Ray Meta. For
the rest of the assemblers, default k-mer length was applied
(Figure 1A, Supplementary Table S1, see Supplementary Data
available online at http://bib.oxfordjournals.org/).

Generation of assembly quality matrix
To generate an assembly quality matrix using metaQUAST [29],
we removed the contigs with <500 bp and compared all the
assemblies to SARS-CoV-2 ‘MN908947.3’ reference genome.

Alignment
We aligned the assembled contigs to the SARS-CoV-2 ‘MN908947.3’
reference genome using Minimap2 (version 2.17 r941) [30].
In Minimap2, we used 5% divergence between reference and
assembly sequences to ensure inclusion. To align Illumina
paired-end reads, we used BWA tools (version 0.7.17 r1188) [31]
with its mem feature enabled and default parameters.

Variant calling from assembled contigs
After aligning the assembled contigs to the reference genome
using Minimap2, we sorted the contigs by coordinates and
indexed using SAMtools (version 1.11) [32]. BCFtools (version
1.1) mpileup utility was used to generate genotype likelihoods
at each genomic position with coverage, from the sorted BAM
files to raw VCF formats. To extract the variant calls from the
VCF file, we used BCFtools’ ‘call’ command, with the default
definition of the ‘ploidy’ parameter. Other parameters were also
unchanged, as suggested.

CPU and RAM usage
To check the computational performance of the assemblers, we
randomly took 17 samples from our dataset and used 4 cores (8
threads) to perform assembly. Time to accomplish the assembly
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by an assembler has been adopted as CPU time for the particular
assembler. Mathematically,

Wallclock CPU time = End timestamp of an assembly

−Start timestamp of an assembly.

For finding RAM usage, we tracked the percentage usage of
RAM every 0.5 s during assembly. We used a dedicated computer
with 8 GB of RAM and accepted the maximum RAM usage among
all values as final RAM usage. Mathematically,

MAX
(
RAM usaget=start timestamp to end timestamp

)
.
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