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ABSTRACT

Most mutations in cancer genomes occur in the non-
coding regions with unknown impact on tumor de-
velopment. Although the increase in the number of
cancer whole-genome sequences has revealed nu-
merous putative non-coding cancer drivers, their
information is dispersed across multiple studies
making it difficult to understand their roles in tu-
morigenesis of different cancer types. We have de-
veloped CNCDatabase, Cornell Non-coding Cancer
driver Database (https://cncdatabase.med.cornell.
edu/) that contains detailed information about pre-
dicted non-coding drivers at gene promoters, 5′ and
3′ UTRs (untranslated regions), enhancers, CTCF in-
sulators and non-coding RNAs. CNCDatabase docu-
ments 1111 protein-coding genes and 90 non-coding
RNAs with reported drivers in their non-coding re-
gions from 32 cancer types by computational pre-
dictions of positive selection using whole-genome
sequences; differential gene expression in samples
with and without mutations; or another set of ex-
perimental validations including luciferase reporter
assays and genome editing. The database can be
easily modified and scaled as lists of non-coding
drivers are revised in the community with larger
whole-genome sequencing studies, CRISPR screens
and further experimental validations. Overall, CNC-
Database provides a helpful resource for researchers
to explore the pathological role of non-coding alter-
ations in human cancers.

INTRODUCTION

Mutations in the cancer genome can be divided into drivers
and passengers. Driver mutations are the ones that confer

a selective advantage for the cancer cells to grow. Multiple
databases of protein-coding drivers in cancer, such as COS-
MIC, Intogen, OncoKB and CIViC, have helped further
follow-up investigations and enabled the utility of the driver
catalog in numerous basic and translational research stud-
ies (1–4). Recent studies have shown that besides mutations
in protein-coding regions, mutations in non-coding regions,
such as promoters, enhancers, insulators and non-coding
RNAs, can also act as cancer drivers (5–12). Although mu-
tations at the TERT promoter are the most prominent ex-
ample of non-coding drivers, evidence supporting the func-
tional role of other non-coding mutations as cancer drivers
is dispersed in several independent publications. Different
computational approaches and experimental methods have
used different signals to identify non-coding cancer drivers
and it is hard to assess their consensus in the absence of
a unified database. The lack of a database dedicated to
non-coding cancer drivers hinders their further downstream
computational analysis, functional characterization, and
their utility for translational research. Here, we built CNC-
Database (Cornell Non-coding Cancer driver database), a
manually curated database that contains detailed informa-
tion about non-coding cancer drivers from published stud-
ies. The CNCDatabase contains 1201 genes with significant
alterations in their non-coding regions in 31 cancer types
from 25 published articles.

MATERIALS AND METHODS

Data model

The CNCDatabase has been designed as a relational
database to store the collected non-coding cancer drivers
from multiple sources. The detailed Entity-Relationship
(ER) diagram and description of all tables are provided
on the ‘Download’ page of the CNCDatabase website. The
database schema follows a snowflake structure where the
multidimensional data is connected to the centralized fact
table. The design follows the database normalization rules
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for keeping the data integrity of multiple related entities,
such as, non-coding driver evidence, functional element and
gene associations, cancer type and reported study (Fig-
ure 1A and Supplementary Figure S1). The data struc-
ture employed in the CNCDatabase allows it to be ex-
tended to accommodate new data types without significant
changes in the existing model. As a result, the database is
highly scalable, an essential feature of a data integration
project.

Data collection and processing

We collected the data from studies related to non-coding
cancer drivers in PubMed by text mining within the title or
abstract of the articles for the existence of combinations of
keywords such as noncoding, driver, cancer, and their alter-
native terms, for example: noncoding[Title/Abstract]) OR
non-coding[Title/Abstract]) AND driver[Title/Abstract]).
After a manual review of the returned abstracts from the
PubMed search, we extracted the non-coding driver ev-
idence from the text and supplementary files of the 25
selected articles. We focused on the publications report-
ing non-coding alterations at the promoters, 5′ UTRs,
3′ UTRs, enhancers, splice sites, non-coding RNAs, and
CTCF-cohesin insulators.

Because the CNCDatabase aims to catalog the compre-
hensive list of non-coding cancer drivers, we include the
ones with at least one type of evidence: computational pre-
diction, differential gene expression association from RNA-
seq, and other experimental validation. The evidence term
‘computational prediction’ means the non-coding regions
exhibit statistically significant signals of positive selection
from whole-genome sequencing data. The term ‘differential
gene expression association from RNA-seq’ means the mu-
tations in the non-coding region are associated with differ-
ential gene expression between wild type and mutated sam-
ples from RNA-seq data. Finally, ‘other experimental vali-
dation’ means the mutations in the non-coding region have
been validated for a molecular or cancer-related phenotype
by either luciferase assay, CRISPR–Cas9 or some other ex-
perimental assays.

Architecture of CNCDatabase

CNCDatabase consists of a relational database server using
PostgreSQL (version 9.6.6). It provides an application pro-
gram interface (API) to access all stored data. The back-
end server is complemented with a frontend web-based
user interface (UI) (Figure 1B). We use Node.js (version
10.15.3) and Express.js framework (version 4.16.4) to build
the backend server. We use React.js (version 16.8.5) and
Bootstrap4 (version 4.0.0) as the frontend web develop-
ment framework for a responsive UI, which means the web-
site is suitable for both desktop and mobile data viewing.
The chart visualizations use the plotly.js (version 1.46.1)
package.

The CNCDatabase is freely available (https:
//cncdatabase.med.cornell.edu/) and the content of the
database is available for download. We provide the code
at GitHub (https://github.com/khuranalab/CNCDatabase)
for users to make use of all services locally.

DATABASE FEATURES AND USE

Summary of database content

A total of 1673 entries from 32 cancer types in CNC-
Database correspond to 90 non-coding RNAs and non-
coding regions of 1111 protein-coding genes that have been
identified as cancer drivers from computational predictions,
18 genes for which non-coding mutations are associated
with differential gene expression from RNA-seq, and 21
genes with non-coding cancer driver evidence from other
experimental validation (Figure 2). Out of the 1201 genes
with non-coding driver evidence from computational pre-
dictions, 355 were identified from individual cancer type
analysis and 684 from pan-cancer analysis only where sam-
ples from multiple cancer types are pooled together for sta-
tistical power. The number of genes for individual cancer
types varies from 1 in rhabdoid tumor to 270 in melanoma
(Figure 2A). The publication from Weinhold et al. con-
tributes the largest number of non-coding cancer driver can-
didates (453 genes) from computational predictions (Sup-
plementary Figure S2) (13).

Web user interface

CNCDatabase provides an intuitive web interface that fa-
cilitates browsing and searching through four main sections
including ‘Home’, ‘Search’, ‘Download’, ‘Submission’ and
‘Documentation’ (Figure 3). The landing page (‘Home’)
provides abstract graphics of the available information.
From there, a simple button (‘Get started’) immediately al-
lows the launch of the user’s custom query. All data in the
CNCDatabase can be downloaded from the ‘Download’
section as text format files or database contents for further
downstream analysis.

Searching for non-coding cancer drivers. In the ‘Search’
section, users can apply the fuzzy query to retrieve the non-
coding driver entries. The query fields also support the auto-
complete function so that users can quickly pick a valid
gene name or cancer type. The database can be searched us-
ing multiple query types, including gene name, element type
(e.g., promoter or enhancer), cancer type, evidence type, and
publication PMID. If users do not select a specific cancer
type, the system will return results from all cancer types by
default. After clicking the ‘Submit’ button, the query re-
sults are displayed in a report organized into several com-
ponents. The ‘Summary’ section provides pie chart repre-
sentations to display the numbers in each category, includ-
ing cancer type, element type, evidence type and evidence
method. The ‘Results’ section shows the retrieved entries in
a tabular format including publication id (PMID), cancer
type, gene name, whether the gene is annotated as a can-
cer gene based on Cancer Gene Census (CGC) from COS-
MIC (catalog of somatic mutations in cancer), non-coding
element type, element and element-to-gene association de-
scription, cohort size, fraction of mutated samples, evidence
type, evidence method and evidence description. Users can
also further refine the search results by entering the targeted
value in the search field of the returned result table (Figure
3). The search results can also be downloaded in the CSV
format.
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Figure 1. Data model and architecture of CNCDatabase. (A) Simplified database entity-relationship diagram (ERD). (B) The schematic data flow in the
CNCDatabase between web interface in the frontend and PostgreSQL database in the backend. Manually curated cancer driver lists from PubMed or from
users can be loaded into the database.

Data submission and curation. Through the ‘Submission’
page of the web interface, users can submit new non-coding
cancer drivers to the CNCDatabase. A valid data sub-
mission contains a text file with columns for the publica-
tion id (PMID), cancer type, gene name, non-coding el-
ement type, element-to-gene association description, co-
hort size, fraction of mutated samples, evidence type, ev-
idence method and evidence description. Following file
upload, users will receive email notifications to track

data submission progress. The curators of CNCDatabase
will manually check the submitted files to ensure the
data is consistent with the database annotation format.
When submitted data passes the curator check, the CNC-
Database data pipeline (https://github.com/khuranalab/
CNCDatabase/tree/master/data pipeline) will be used to
split and store submitted data into the PostgreSQL database
and the new data will be included in the next release of
CNCDatabase. Thus, the CNCDatabase can serve as a cen-

https://github.com/khuranalab/CNCDatabase/tree/master/data_pipeline
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Figure 2. Summary of number of non-coding drivers. (A) Number of non-coding drivers in each cancer type by computational prediction. Cancer types in-
clude pan-cancer (PanCancer), skin cutaneous melanoma (SKCM), liver hepatocellular carcinoma (LIHC), breast invasive carcinoma (BRCA), esophageal
carcinoma (ESAD), lung adenocarcinoma (LUAD), uterine corpus endometrial carcinoma (UCEC), bladder urothelial carcinoma (BLCA), pancreatic duc-
tal adenocarcinoma (PACA), lung squamous cell carcinoma (LUSC), ovarian serous cystadenocarcinoma (OV), head and neck squamous cell carcinoma
(HNSC), kidney renal papillary cell carcinoma (RECA), prostate adenocarcinoma (PRAD), colon adenocarcinoma (COAD), lymphoid neoplasm diffuse
large B-cell lymphoma (DLBC), low grade glioma (LGG), stomach adenocarcinoma (STAD), chronic lymphoctytic leukemia (CLL), kidney renal clear
cell carcinoma (KIRC), papillary thyroid carcinoma (THCA), glioblastoma multiforme (GBM), medulloblastoma (MB), kidney chromophobe (KICH),
b-cell non-hodgkin lymphoma (Lymph-BNHL), malignant lymphoma (MALY), B-cell acute lymphoblastic leukemia (B-ALL), embryonal tumor with
multilayered rosettes (ETMR), high-grade glioma (HGG), acute myeloid leukemia (LAML), pilocytic astrocytoma (PA) and rhabdoid tumor (RHAB).
(B) Number of non-coding drivers in each cancer type that show differential gene expression in samples with mutations vs. without from RNA-seq data.
(C) Number of non-coding drivers in each cancer type with support from other functional validation, such as CRISPR/Cas9 or luciferase reporter assay.

tral hub of information about non-coding cancer drivers for
the cancer research community regardless of users’ bioin-
formatics expertise level.

Overview of data in CNCDatabase

One of the many uses of CNCDatabase is that it will
help researchers prioritize the non-coding candidates for
functional validation follow-up and look up which non-
coding mutations have already had functional validation
evidence (Supplementary Tables S1 and S2). Analysis of
data in CNCDatabase reveals that the promoters of TERT,
WDR74, PLEKHS1 and CCDC107 have support as non-
coding drivers by computational predictions from more
than four publications (Figure 4A). TERT, WDR74 and
PLEKHS1 promoter mutations also have evidence support-
ing their role as non-coding drivers from RNA-seq data
or other experimental assays. It will be interesting to in-
terrogate the function of CCDC107 promoter mutations
in breast, lung and rectal cancers in future studies (Fig-
ure 4B). In the 3′UTR regions, only NOTCH1 in CLL

has functional assay evidence (Figure 5A). API5, DRD5,
FAM230A and PCMTD1 could be good candidates for
follow-up functional validations at 3′UTR regions. While
many studies have identified candidate drivers at enhancers,
TP53TG1 is the only gene that has support from multi-
ple publications (Figure 5B). For lncRNAs, MALAT1 and
NEAT1 are the genes with support both from computa-
tional predictions and from functional assays (Figure 5C).
Although mutations at the 5′UTRs and splice sites do not
have any support as cancer drivers from functional as-
says in any published study yet, there are multiple genes
(WDR74, C16orf59, MED31, MTG2, PTDSS1, TBC1D12
and UMPS) with support from computational predictions
from multiple publications (Figure 5D). The splice site mu-
tations of TP53 and STK11 are the most promising candi-
dates to conduct follow-up validations (Figure 5E).

DISCUSSION AND FUTURE PERSPECTIVES

We report the CNCDatabase that integrates the functional
evidence reported for non-coding cancer drivers in many in-



D1098 Nucleic Acids Research, 2021, Vol. 49, Database issue

Figure 3. Web user interface and supported functionality in the CNCDatabase. User can use the combination of gene name, element type, cancer type,
evidence type or publication id (PMID) to query the non-coding cancer driver list from the backend database. The returned result shows graphical summary
and list in tabular format.
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Figure 4. Non-coding cancer driver candidates at promoter regions. (A) based on computational predictions (B) based on association of mutations with
differential gene expression or other experimental validation. In the results from computational predictions, for cancer driver candidates reported in only
one publication, we only show candidates with support from experimental validation or those associated with cancer genes in COSMIC census list. The
cancer genes are highlighted in bold.

dependent publications. To create this comprehensive cata-
log, we used combinations of keywords to select relevant
articles from PubMed and manually extracted the evidence
from each article. At the time of writing this publication,
most comprehensive studies of non-coding drivers have fo-
cused on single nucleotide variants and small insertions and
deletions in cancer genomes. In the future, as more com-
prehensive studies focusing on large structural variants at
non-coding regions that act as drivers are reported, we will
incorporate them in the database (11). CNCDatabase con-
tains 1300 non-coding cancer drivers with support from ei-
ther computational prediction of positive selection, muta-
tional association with gene expression or other experimen-
tal validation. It aims to advance the understanding of non-
coding alterations in cancer for both basic and translational
scientists and users with all levels of bioinformatics skills.
Interactive queries can be used to browse the evidence sup-
porting non-coding cancer drivers and search results can be
exported for further custom analysis.

To regularly update CNCDatabase with the studies of
non-coding cancer drivers, we will use a combination of au-
tomated text mining (Kindred relation classifier) and man-
ual curation (14,15). The first version of the database has
allowed us to annotate a set of sentences/words associated
with the reports of noncoding drivers (Supplementary Ta-
ble S3), which will be improved in every subsequent ver-
sion. The automated text-mining tools can extract the non-
coding cancer driver evidence from title, abstracts and full-
text articles from PubMed and PubMed Central (PMC).
With the advances in CRISPR screening technology, we ex-
pect more functionally validated non-coding cancer drivers
will be reported in the future. In fact, CNCDatabase can
help scientists pick the relevant lists of non-coding alter-
ations for CRISPR validations whose results can be then
added to the database to augment the functional evidence
supporting or rejecting those drivers. In conclusion, CNC-
Database will serve as a valuable resource for the cancer
community to complement the studies of oncogenic mecha-
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Figure 5. Non-coding cancer driver candidates from computational predictions and candidates with functional validations. (A) 3′ UTR, (B) enhancer,
(C) lncRNA, (D) 5′UTR and (E) splice site. In the results from computational predictions, for cancer driver candidates reported in only one publication,
we only show candidates with support from experimental validation or those associated with cancer genes in COSMIC census list. The cancer genes are
highlighted in bold.
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nisms that are currently mostly centered on protein-coding
mutations.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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