
Clonal Hematopoiesis Before, During, and After Human 
Spaceflight

Nuria Mencia-Trinchant1, Matthew J. MacKay2,3,4, Christopher Chin2,3, Ebrahim 
Afshinnekoo2,3,4, Jonathan Foox2,3, Cem Meydan2,3,4, Daniel Butler2,3, Christopher 
Mozsary2,3, Nicholas A. Vernice2,3, Charlotte Darby5, Michael C. Schatz5, Susan M. 
Bailey6, Ari M. Melnick1, Monica L. Guzman1, Kelly Bolton7, Lior Z. Braunstein7, Francine 
Garrett-Bakelman8,9,10,11, Ross L. Levine5, Duane C. Hassane1,2,12,*, Christopher E. 
Mason2,3,4,13,14,*

1Weill Cornell Medicine, New York, NY, USA

2Department of Physiology and Biophysics, Weill Cornell Medicine, New York, 10065, USA

3The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY, USA

4The WorldQuant Initiative for Quantitative Prediction, New York, NY, USA

5Johns Hopkins University, Baltimore, MD, USA

6University of Colorado, Boulder, CO, USA

7Memorial Sloan Kettering Cancer Center, New York, NY, USA

8Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA

9Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 
Charlottesville, VA, USA

10University of Virginia Cancer Center, Charlottesville, VA, USA

11Department of Medicine, Weill Cornell Medicine, New York, NY, USA

12Tempus Labs Inc. Chicago, IL, USA

13The Feil Family Brain and Mind Research Institute, New York, NY, USA

14Lead Contact

SUMMARY

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
*Correspondence: duane.hassane@gmail.com (D.C.H.), chm2042@med.cornell.edu (C.E.M.).
AUTHOR CONTRIBUTIONS
C.E.M. and D.C.H. conceived of the study and funded the work. N.M.-T. performed the capture and helped with analysis, along with 
D.B., S.M.B., C.C., J.F, F.G.-B., E.A., M.J.M., M.L.G., and C. Meydan and C. Mozsary. M.C.S., J.F., and C.D. helped with variant 
analysis. All authors read and approved the manuscript.

DECLARATION OF INTERESTS
No relevant conflicts apply to this work, but C.E.M. is a cofounder of Onegevity and Biotia. D.C.H. and C.E.M. also have positions at 
Tempus Labs.

SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.1016/j.celrep.2020.108458.

HHS Public Access
Author manuscript
Cell Rep. Author manuscript; available in PMC 2022 August 23.

Published in final edited form as:
Cell Rep. 2020 December 08; 33(10): 108458. doi:10.1016/j.celrep.2020.108458.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/4.0/


Clonal hematopoiesis (CH) occurs when blood cells harboring an advantageous mutation 

propagate faster than others. These mutations confer a risk for hematological cancers and 

cardiovascular disease. Here, we analyze CH in blood samples from a pair of twin astronauts 

over 4 years in bulk and fractionated cell populations using a targeted CH panel, linked-read 

whole-genome sequencing, and deep RNA sequencing. We show CH with distinct mutational 

profiles and increasing allelic fraction that includes a high-risk, TET2 clone in one subject and two 

DNMT3A mutations on distinct alleles in the other twin. These astronauts exhibit CH almost two 

decades prior to the mean age at which it is typically detected and show larger shifts in clone size 

than age-matched controls or radiotherapy patients, based on a longitudinal cohort of 157 cancer 

patients. As such, longitudinal monitoring of CH may serve as an important metric for overall 

cancer and cardiovascular risk in astronauts.

In Brief

Trinchant et al. examined twin astronauts for clonal hematopoiesis (CH). Some high-risk CH 

clones (TET2 and DNMT3A) were observed two decades before expected, with TET2 decreasing 

in spaceflight and elevating later post flight. Thus, CH is an important metric for overall cancer 

and cardiovascular risk in astronauts.

Graphical Abstract
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INTRODUCTION

The accumulation of DNA mutations in the cells of healthy tissues occurs during normal 

aging and begins before birth (Blokzijl et al., 2016; De, 2011; Vattathil and Scheet, 2016; 

Vilkki et al., 2001). While the majority of these mutations are neutral and do not favor 

cell expansion (Busque et al., 1996; Genovese et al., 2014; Jaiswal et al., 2014; Jan et 

al., 2012; Martincorena et al., 2015), certain mutations can cause cells to gain a growth 

advantage. When such a mutation occurs in the hematopoietic system and provides some 

growth advantage to blood cells, it causes clonal hematopoiesis (CH). The blood cells 

harboring this mutation are thought to arise from a single mutated “clone.” While advanced 

age is associated with higher rates of CH acquisition, certain environmental exposures such 

as cigarette smoke and radiation have been associated with increased CH as well (Coombs et 

al., 2017). CH has been shown to be associated with all-cause mortality (Jaiswal et al., 2014; 

Zink et al., 2017).

A proposed functional definition of CH includes the presence of a dominant somatic 

mutation at >2% variant allele frequency (VAF), although a scientifically or clinically 

relevant lower threshold remains to be determined (Steensma, 2018). CH can be pro-

inflammatory and, through this mechanism, is thought to impact cardiovascular health based 

on data from model systems and humans (Calvillo-Argüelles et al., 2019; Fuster et al., 2017; 

Jaiswal et al., 2017; Sano et al., 2018; Wang et al., 2020). Research has found that the 

most common mutations driving CH are in epigenetic modifier genes such as DNMT3A, 

TET2, and ASXL1 (Gertz et al., 2020). The known risks of CH include elevated rates 

of cardiovascular disease (CVD) and hematologic cancer (Calvillo-Argüelles et al., 2019). 

Notably, CH is associated with a 1.9-fold increase in coronary heart disease and a 4-fold 

increase in early-onset myocardial infarction (Jaiswal et al., 2017) as well as an 11-fold 

increase in hematologic cancer. Case-control studies have shown that CH with increased 

mutational complexity (i.e., >1 mutation and/or >1 mutation in the same gene) can increase 

the risk for acute myeloid leukemia (AML) (Desai et al., 2018), and this finding has been 

independently confirmed in men and women (Abelson et al., 2018).

CH has been studied in elderly twins (>70 years old), revealing that twin pairs were 

discordant for CH mutations but with no obvious genetic predisposition to CH (Hansen 

et al., 2020). However, CH has not yet been studied in younger twins or in subjects who 

have been exposed to the milieu of space radiation, such as astronauts. While the presence 

of CH, by itself, does not constitute a recognized disease condition, it can inform long-term 

CVD and cancer risk and thus can serve as a potential useful metric for astronauts preparing 

for long-term missions as well as a defined metric of acquired somatic mutations. Here, we 

describe the such data from astronauts (twin subjects TW and HR, spaceflight and ground 

control, respectively), including metrics during a year-long spaceflight mission for the flight 

subject (Garrett-Bakelman et al., 2019) and results of a 3-year follow-up study.

RESULTS

Individual TW presented at baseline evaluation with a single non-truncating mutation in 

TET2 (Cys1273Tyr) at 3.8% VAF, which corresponds to approximately 1 in 12 affected 
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mononuclear cells (Figure 1A). The mutation is predicted to be pathogenic according to 

FATHMM and M-CAP mutation scoring, and it was present in all bulk mononuclear cell 

collections (Figure 1B) but absent from T cell populations (CD4, CD8). This lesion was 

observed twice in the Catalog of Somatic Mutations in Cancer (COSMIC) in association 

with AML, and a TET2 mutation at the same amino acid (Cys1273Ser) was discovered at 

25% VAF in an 86-year-old female who participated in a recent study of CH in solid-tumor 

patients (Coombs et al., 2017). These data suggest a capacity for progression to high-risk 

CH, and the mutant clone showed an overall rising VAF trajectory. While in flight, the 

mutation clone size remained relatively stable but then increased to 7.4% after the end of 

his last year-long International Space Station (ISS) mission (Garrett-Bakelman et al., 2019). 

The variation on VAF over time was more pronounced in the 3 months immediately after 

returning to Earth than during the last 6 months of the space flight (percent deltaVAF 

[(VAF2−VAF1)/month] was 0.119% versus 0.036%, respectively) (Figure 1A).

It is noteworthy that subject TW was previously diagnosed with and treated for prostate 

cancer and that this risk was also present in his germline DNA as a stop-gain mutation in 

the RNA-SEL gene (p.Glu265Ter). Thus, it is likely relevant to compare his CH data with 

studies of CH in blood drawn from patients who were also diagnosed with solid tumors 

(Coombs et al., 2017). From this CH cohort (Coombs et al., 2017), the mean age at which 

TET2 CH mutations are found in the blood of solid-tumor patients is 68 years of age (n = 

8,810 individuals; Coombs et al., 2017). Subject TW is therefore exhibiting this mutation 

nearly two decades prior to the mean age at which it is typically detected (50 versus 68). By 

comparison, TET2 mutations in blood were detected in only 1% of persons under 55 years 

of age in the solid-tumor patient cohort (Coombs et al., 2017), never observed in a separate 

control, AML-free population in a previous study (n = 212) of pre-AML in persons under 

65 (Desai et al., 2018), and also found to be rare (<1%) in another control (n = 678) cohort 

(Abelson et al., 2018).

Conversely, the HR subject presented at baseline evaluation with two mutations in the 

DNMT3A gene (Figure 1A), which also were present in B cell (CD19) and T cell (CD4, 

CD8) populations (Figure 1B). CH mutations in DNMT3A tend to be loss of function, 

arising either from a truncating event such as a frameshift or from introduction of a stop 

codon or a dominant-negative mutation (Desai et al., 2018). The major DNMT3A mutation 

observed in subject HR (Trp698Ter) is a truncating mutation arising from introduction of 

a stop codon in DNMT3A, causing premature termination of the protein at amino acid 

position 698. This mutation presented at 6.8% VAF, corresponding to an estimated 1 in 7 

affected mononuclear cells. This clone presented a significant increase during and for the 

first year after the end of the flight. After that point, the clone remained stable. The percent 

variation in VAF per month for this clone is greater after the end of the mission (0.304%) 

compared to in-flight time points (0.19%).

The second mutation in DNMT3A (Phe732Ser) converts phenylalanine-732 to serine and 

initially presented at 2.1% VAF. The mutation occurs in a mutation cluster of the DNA 

methylase domain, thus likely impacting enzymatic function. This mutation was previously 

observed three times in COSMIC and was confirmed somatic in both myeloid and lymphoid 

cancers (Desai et al., 2018). This mutation was also discovered in one study of pre-AML 
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in a healthy woman who later progressed to AML (Desai et al., 2018). Furthermore, this 

mutation is predicted to be pathogenic according to FATHMM and M-CAP scores. Variation 

in VAF during flight was also significant for this mutation, and the change in dVAF/month 

was 0.114% during flight versus 0.243% after flight. Finally, a novel somatic mutation 

in the LPL gene, which encodes lipoprotein lipase, presented at 1.5% VAF at baseline 

evaluation and remained stable to 2020. This mutation affects the PLAT domain of the 

protein but is predicted benign according to variant classification criteria (PolyPhen and 

SIFT). Loss-of-function mutations in LPL have been shown to increase macrophage foam 

cell formation and promote atherosclerosis (Babaev et al., 1999). However, the functional 

impact of this particular LPL mutation is unknown.

Like his brother, HR was diagnosed and treated for prostate cancer (tumors were resected 

for both twins, with no radiation or chemotherapy) and carried the same risk allele. Thus, it 

is also relevant to compare his CH mutations in the context of the same solid-tumor study 

of CH (Coombs et al., 2017). Overall, 5% of people under 55 years of age exhibit a single 

DNMT3A mutation, and no one in the recent study exhibited two DNMT3A mutations 

(Coombs et al., 2017). The mean age of people with one DNMT3A mutation was 65.8 years. 

Thus, the fact that subject HR exhibits two DNMT3A mutations nearly 15 years before 

the mean age of onset for a single DNMT3A mutation is potentially significant, and the 

combined VAF is now above 10%. In a mutational analysis of a pre-AML cohort (Desai 

et al., 2018), two or more DNMT3A mutations were associated with a 12.6-fold increase 

in the odds of eventual AML (OR: 12.6, 95% CI 3.0–59.2; p < 0.001) compared to a 

2.1-fold increase for people with a single DNMT3A mutation (OR: 2.1, 95% CI 1.2–3.8; p 

= 0.01). Of note, the RNA sequencing data showed that these two variants are not expressed 

on the same allele (Figure S1), and the linked-read whole-genome sequencing data also 

showed no evidence to the two mutations on the same linked-molecule across four time 

points (pre-flight 90×, mid-flight 94× and 88×, and post-flight 77× coverage); thus, these 

two mutations are likely from two distinct CH events.

To place these variants into a broader context, the astronaut CH VAFs were compared to 

data from a longitudinal CH study by Bolton and colleagues (Bolton et al., 2019b). This 

study compared the effect of oncologic treatment (X-ray radiation treatment [XRT]) on CH 

in 49 patients relative to a longitudinal CH study of 108 controls (n = 157 total). In this 

cohort, the median age of patients with CH was 68 years old overall and 70 years old for 

prostate cancer patients with detected CH (including TET2 or DNMT3A mutations). Also, 

the median age for prostate cancer patients with no detected CH was 65 years old (Bolton et 

al., 2019b), and CH was associated with cytotoxic drugs, external XRT beam radiation, and 

radionuclide-based therapy. The most strongly associated genes with oncologic treatment 

were those involved in DNA-damage repair (PPM1D, TP53, and CHEK2). Conversely, 

DNMT3A or TET2 mutations were not strongly associated with any tumor type or therapy. 

Also, prostate cancer was not particularly associated with CH, and no significant enrichment 

of any particular CH gene was observed in these patients.

However, serial sampling revealed a range of VAF changes in patients over time, which 

were often smaller than the astronaut CH dynamics (Figure 2). Specifically, a subgroup 

of patients showed that growth rate of mutations in DTA genes (DNMT3A, TET2, and 
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ASXL1) was lower than that of DNA damage response (DDR)-related genes and that the 

odds of a mutation expanding after treatment were higher for DDR genes as opposed to 

DTA genes. The mean percent variation in VAF per month was highest in DDR genes after 

treatment with external beam radiation (0.16%) and cytotoxic drugs (0.19%). DNMT3A/

TET2 mutations after radiation treatment presented a mean percent VAF variation per month 

higher (0.1%) than any other treatment (range 0.02%–0.08%). While variation in VAF over 

time for the samples in this study may suffer from unique challenges in collection (e.g., 

storage on the ISS and return-to-Earth protocols), it was possible to estimate such VAF 

changes within the bulk cell fractions. Interestingly, the variation observed in the astronauts 

(1%–2%) was higher than the one observed for DNMT3A/TET2 mutations after oncologic 

treatment with external beam radiation, while other variants showed a consistent VAF across 

all time points (Figure S2). Ascertaining the significance of such CH VAF dynamics in 

astronauts and cancer patients requires larger cohorts.

DISCUSSION

Currently, there are no evidence-based guidelines for the management of CH. However, a set 

of management strategies for incidental findings of CH in solid-tumor patients has recently 

been suggested (Bolton et al., 2019a). Here, the two astronauts were found to have mutations 

in DNMT3A and TET2 consistent with the presence of CH. People with CH progress to 

hematologic malignancies at a rate of 0.5%–1% per year, similar to the rate of progression 

of frank neoplasia observed in monoclonal gammopathy of uncertain significance (MGUS) 

or monoclonal B cell lymphocytosis (MBL) (Gertz et al., 2020). However, CH has the 

potential to give rise to a broader range of blood cancers than either MGUS or MBL because 

it usually arises in earlier, less committed hematopoietic stem or progenitor cells. While 

having CH or increased exposure to radiation are both implicated in higher-risk profiles for 

AML, it should be stressed that the absolute risk of the disease is still low in people in the 

absence of pre-disposing factors (6 per 100,000 white males per year between ages 50 and 

64, SEER statistics, https://seer.cancer.gov/statistics/).

The factors contributing to these CH variations are unknown but may include the known 

conditions of the ISS and spaceflight, including: reduced gravity, weight loss, baseline 

genetic risk (e.g., RNASEL), and increased radiation exposure (including the 146 mSv for 

the year-long mission) (Garrett-Bakelman et al., 2019). While these results are preliminary 

and require much larger cohorts for proper interpretation, they nonetheless have implications 

for long-term health management. There is suggestive evidence that people with TET2 
mutations exhibit a 1.9-fold risk (95% CI 1.0–3.7; p = 0.06) of coronary heart disease and 

8.3-fold increased odds of myocardial infarction (95% CI 1.2–357.5; p = 0.02). Single TET2 
mutations also exhibit increased odds of AML compared to matched controls (odds ratio: 

3.29, 95% CI 1.38–7.83; p = 0.005) (Desai et al., 2018). The presence of two mutations in 

DNMT3A in subject HR is suggestive of high-risk CH. The risk of coronary heart disease in 

patients exhibiting DNMT3A-mutation-driven CH is 1.7 (95% CI 1.1–2.6; p = 0.01), and the 

pathophysiology of CH in CVD is thought to be inflammation driven (Calvillo-Argüelles et 

al., 2019). Assuming the two DNMT3A mutations occur in separate cells, then the combined 

VAF of both DNMT3A mutations is ~10%. A value that approaches high-risk CH for CVD 

(≥10% VAF), additionally, people with a VAF ≥ 10% exhibit a 12-fold increase in the odds 
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of a coronary artery calcification score ≥ 615 Agatson units (OR: 12.1, 95% CI 2.4–64.0; p 

< 0.001) (Bolton et al., 2019a; Cimmino et al., 2017). It is unknown how the presence of two 

DNMT3A mutations affects the risk of other cancers besides AML.

Prior work on these subjects (Garrett-Bakelman et al., 2019) noted a range of molecular 

and physiological changes using a multimodal and integrated approach, all of which may 

impact the overall VAF trajectories. Changes during flight or due to the stress of returning 

to Earth were observed for parameters that could have an impact on CH dynamics, such 

as spikes in inflammation markers (e.g., IL-6, IL-1ra) (Gertz et al., 2020), T cell function 

expression changes (Garrett-Bakelman et al., 2019), and cytokine shifts (Gertz et al., 2020). 

Because CH clones both are pro-inflammatory and expand under inflammatory conditions, 

it is possible that the fluctuation detected in the levels of specific cytokines has an effect in 

the expansion/reduction of the mutated clones upon returning to Earth. Previous studies have 

reported changes in cardiovascular structure and function, as well as exercise and nutritional 

differences, which can also be a factor (Cimmino et al., 2017). Also, of note, TW presented 

with signs of vascular remodeling of his carotid artery for the duration of the flight; this 

subject presented a mutation in TET2, a gene that (when mutated) imposes a significant risk 

to develop CVD. Therefore, given the changes in the vasculature structure, inflammatory 

cytokines, and gene expression pathways observed for these individuals, and the association 

between these parameters and CH, it is reasonable to suggest that monitoring of CH clones, 

alongside all of these health parameters, should be included as part of the overall health 

assessment for astronauts.

Finally, while subject HR exhibits overall higher-risk CH, the mutation patterns observed 

in both astronauts are nonetheless unusual when considering the relatively young age at 

which the mutations are observed (Steensma et al., 2015). The mutations in both twins 

had an overall increasing trajectory; however, the dynamics of the clones was different 

across time points during the mission and differed between the two twins. The genesis of 

these mutations is unknown, but occupational exposures received during spaceflight from 

ages 35–52 and 32–45 for TW and HR, respectively, are potential factors. Moreover, the 

differential rates of these mutations in B cells (CD19) versus T cells (CD4, CD8) appear to 

be rare from these data, but it is not known how this would appear in other cell types and 

may relate to distinct risk profiles. Additional data (e.g., red cell distribution width) would 

enable improved cancer risk stratification, and continued evaluation and a longitudinal 

monitoring plan for both astronauts could be used to track any change in VAF. These 

changes can then be examined relative to published CH guidelines (Bolton et al., 2019a; 

Jaiswal and Ebert, 2019), other CH data from emerging clinical and control cohorts (Busque 

et al., 2012), and medical guidance from NASA flight surgeons. Indeed, when integrated 

with other health data such as folic acid levels (Garrett-Bakelman et al., 2019), telomere 

length (Luxton et al., 2020a, 2020b), heart morphology (Garrett-Bakelman et al., 2019), and 

long-term stress markers for farther missions (Iosim et al., 2019; Nangle et al., 2020), these 

measures of CH, including other changes in physiology (Gertz et al., 2020), could serve as 

an additional, quantitative measure of long-term risk of cardiovascular and hematological 

diseases for astronauts before, during, and after spaceflight.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to the Lead Contact Christopher E. Mason (chm2042@med.cornell.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—The NASA Life Sciences Data Archive (LSDA) is the 

repository for all human and animal research data, including that associated with this 

study. LSDA has a public facing portal where data requests can be initiated (https://

lsda.jsc.nasa.gov/Request/dataRequestFAQ). The LSDA team provides the appropriate 

processes, tools, and secure infrastructure for archival of experimental data and 

dissemination while complying with applicable rules, regulations, policies, and procedures 

governing the management and archival of sensitive data and information. The LSDA team 

enables data and information dissemination to the public or to authorized personnel either by 

providing public access to information or via an approved request process for information 

and data from the LSDA in accordance with NASA Human Research Program and Johnson 

Space Center (JSC) Institutional Review Board direction.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human samples—All samples were collected after obtaining written informed consent. 

Protocols were approved by all participating institutions. Blood samples from were collected 

from space and ground subjects into 4 mL CPT vacutainers (BD Biosciences Cat # 362760) 

as per the manufacturer’s recommendations. Fresh or frozen samples were processed as 

described in the NASA Twins Study. Cell population separation based on CD4, CD8 

or CD19 markers was performed using column-based method as described in Garrett-

Bakelmann et al. (2019). Astronaut subjects (both male) began the study at age 50.

All subjects were collected under the Weill Cornell Medicine and NASA Institutional 

Review Board (IRB) protocols, including those for the NASA Twins Study 

(IRB#1309014347). For the MSKCC cohort, dosimetric parameters for each course of 

external beam radiation (i.e., dose, fractionation, 905 technique/modality, target) were 

extracted from the treatment planning system (ARIA; Varian Medical Systems, Palo 

Alto, CA), from radiotherapeutic prescriptions and from clinical treatment summaries. For 

patients treated prior to the implementation of contemporary treatment planning (prior to 

2003), receipt and timing of radiation therapy was abstracted from medical billing records, 

although dose and fractionation were not available for these patients and were set 910 as 

missing. Other clinical details are online from the Bolton et al. (2019b) paper.

METHOD DETAILS

CH panel, WGS, and RNA-sequencing—Genomic DNA from bulk mononuclear 

cells (bulk), column-based, purified lymphocytes (CD4, CD8, and CD19) or buffy coat 

was extracted, purified, and mechanically sheared using the same protocol as the NASA 

Twins Study (Garrett-Bakelman et al., 2019). Illumina sequencing adapters containing 
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unique dual sample indices (UDIs) were ligated onto fragments according to the Kapa 

Biosystems HyperPrep protocol. Targeted enrichment using a custom pool of biotinylated 

baits directed to 93 genes involved in clonal hematopoiesis, cancer, and CVD was performed 

according to the standard Twist Biosciences capture protocol. Sequencing was performed 

to > 2000x median unique depth of coverage using NovaSeq6000 using 150×150 S4 

chemistry. CH detection follows the strategy employed in our previous study Desai et al. 

(2018) for quality and filtration of artifacts. Gencore v0.13.0 (Chen et al., 2019) and fastp 

v0.20.1 (Chen et al., 2018) were used to trim adaptor sequences and remove duplicates. 

After alignment with BWA MEM v0.7.17 (Li, 2013), VarDict-Java v1.7.0 (Lai et al., 

2016) was used to call variants on reads. Bcftools v1.10.2 (Li, 2011), SnpEff v4.3 (6), 

and Vcflib v1.0.1 (Garrison, 2016) were used to filter out reads for mapping quality, 

depth, and strand bias. Variant-Effect-Predictor (VEP) v100.3 (McLaren et al., 2016) was 

used to annotate variants. NA12878 reference DNA was included to detect and remove 

background. SNP were stringently filtered out when reported as > 0.25% in population 

allele frequency databases. Variants with VAF ≥ 1% are being reported. The sensitivity of 

the test is estimated at > 95% for mutations present at VAF > 1% (corresponding to 1/50 

mutated cells). Whole genome sequencing (WGS) libraries were prepared with the 10x 

genomics Chromium Genome kit (2016) and aligned to the GRCv38 human genome with 

LongRanger (1.0.0) and supporting files (http://support.10xgenomics.com/genome-exome/

downloads/latest) RNA-sequencing (RNA-seq) were performed with New England Biolabs 

(NEB) ribo-depletion RNA-seq and polyA-enrichment kits, as previously described (Garrett-

Bakelman et al., 2019), and sequenced Illumina NovaSeq6000 S4 flowcells with 150×150 

nt sequencing. Variant calling was completed with the Sentieon instantiation of the Genome 

Analysis ToolKit (GATK) WGS and RNA-seq variant pipeline (4.1.9.0).

MSK-IMACT Study and Subjects Details—In order to study the growth rate of clonal 

hematopoiesis mutations over time we collected additional blood samples on patients 

sequenced using MSK-IMPACT for repeat CH mutation testing (Bolton et al., 2019b). 

We extracted data on race, smoking, date of birth and cancer history through the MSK 

cancer registry, chemotherapy and radiation therapy through our electronic health record. We 

manually reviewed their medical records to capture receipt of oncologic therapy received at 

outside institutions during the follow-up period. If subjects received therapy outside MSK 

during the follow-up period, we excluded them from analyses of dose-response relationships 

since cumulative dose of therapy could not be consistently collected from outside records. 

This study was approved by the MSKCC Institutional Review Board. Subjects had a 

tumor and blood sample (as a matched normal) sequenced using MSK-IMPACT, a FDA-

authorized hybridization capture-based next-generation sequencing assay encompassing all 

protein-coding exons of cancer-associated genes. MSK-IMPACT is validated and approved 

for clinical use by New York State Department of Health Clinical Laboratory Evaluation 

Program and is used to sequence cancer patients at Memorial Sloan Kettering. Genomic 

DNA is extracted from de-paraffinized formalin fixed paraffin embedded (FFPE) tumor 

tissue and patient matched blood sample, sheared and DNA fragments were captured using 

custom probes. The blood samples in the serial sampling cohort that were obtained for 

repeat CH testing were sequenced using a comparable capture-based custom panel using 

163 genes implicated in myeloid pathogenesis, which included the most commonly mutated 
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genes in our MSK-IMPACT study and this study here, with the exception of ATM. The 

median sequencing depth was 665X (range = 111–1987X) which was comparable to that 

obtained in the blood using MSK-IMPACT. We only considered mutations that were present 

in both the initial and follow-up panel and related to the CH panel for these astronaut 

samples.

Dosimetric parameters for each course of external beam radiation for each patient (i.e., 

dose, fractionation, technique/modality, target, n = 157 total, including 49 XRT samples) 

were extracted from the treatment planning system (ARIA; Varian Medical Systems, Palo 

Alto, CA), from radiotherapeutic prescriptions and from clinical treatment summaries. For 

patients treated prior to the implementation of contemporary treatment planning (prior to 

2003), receipt and timing of radiation therapy was abstracted from medical billing records, 

although dose and fractionation were not available for these patients and were set as missing. 

Given the variety of radiotherapy fractionation schemes and prescribed tumor doses, we 

calculated the cumulative radiation dose received by each patient prior to blood draw in 

2-Gy per fraction equivalents (EQD2) using an α/β of 3 Gy, considering CH to be a 

late-responding tissue effect. We calculated tertiles of dose based on the distribution of 

cumulative EQD2 received over the entire cohort and assigned each individual a score based 

on their tertile of exposure (e.g. a patient who did not receive external beam radiation 

received a score of zero for that particular agent. If the patient’s cumulative radiation dose, 

as expressed in EQD2, was within the first tertile, a score of one was assigned, and so forth). 

The twins were selected by NASA, since they were the only twin astronauts on Earth.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis was conducted in R environment (https://www.R-project.org; R: A language and 

environment for statistical computing. R Foundation for Statistical Computing, Vienna, 

Austria). Figures were produced using the package ggplot2 also in R (Wickham, 2016). 

Statistical significance was defined as p < 0.05. Statistical tests were performed using R 

software.

As per the procedure in Bolton et al., we used a linear model for VAF changes. For each 

mutation in each individual with sequential sequencing data available, we modeled the 

growth rate of the mutation between the two time points according to the following formula: 

α = log (V / V0) / (T − T0) Where T and T0 indicates the age of the individual (in days) 

at the two measurement time points and V and V0 correspond to the VAF at T and T0 

respectively. We also classified mutations as 600 having increased, decreased or remained 

constant during the follow-up period based on a binomial test comparing the two VAFs. 

Generalized estimating equations were used to test for an association between exposure 

to cytotoxic therapy and external beam radiation therapy and CH growth rate adjusting 

for age, gender and smoking status accounting for correlation between the growth rate of 

mutations in the same person. Among patients with at least one mutation in a 605 DDR 

CH gene and another non-DDR CH gene (N = 34), we calculated the difference in the 

growth rate between mutations. When patients had more than two mutations in the same 

gene category, we used the highest growth rate for that category. A paired t test was used to 

test for significance in the difference between growth rates of DDR mutations compared to 
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non-DDR mutations within individuals who received cytotoxic therapy and/or external beam 

radiation 610 therapy and within those who were untreated during the follow-up period.

ADDITIONAL RESOURCES

Additional details are on NASA’s sites including http://www.nasa.gov/twins-study/.

List of Genes in CH Panel (n = 93)—ACTA2, ACTC1, ANGPTL4, ANKRD26, APC, 

APOA5, APOB, APOC3, ASXL1, ATM, BAP1, BARD1, BMPR1A, BRAF, BRCA1, 

BRCA2, BRIP1, CBL, CDH1, CDK4, CDKN2A, CEBPA, CHEK2, COL3A1, DDX41, 

DNMT3A, DSC2, DSG2, DSP, EPCAM, ETV6, FBN1, FLT3, GATA1, GATA2, GLA, 

GREM1, IDH1, IDH2, JAK2, KCNH2, KCNQ1, KDM1A, KRAS, LDLR, LMNA, LPA, 

LPL, MITF, MLH1, MPL, MSH2, MSH6, MUTYH, MYBPC3, MYH11, MYH7, MYL2, 

MYL3, NBN, NPC1L1, NPM1, NRAS, PALB2, PCSK9, PKP2, PMS2, POLD1, POLE, 

PPM1D, PRKAG2, PTEN, RAD51C, RAD51D, RUNX1, RYR2, SCN5A, SF3B1, SMAD3, 

SMAD4, SRP72, SRSF2, STK11, TET2, TGFBR1, TGFBR2, TMEM43, TNNI3, TNNT2, 

TP53, TPM1, U2AF1, ZRSR2

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Blood samples from twin astronauts were studied for clonal hematopoiesis 

(CH)

• Distinct CH mutations and RNA variant trajectories were found across 4 years

• CH was found almost two decades prior to the mean age at which it is 

typically detected

• Longitudinal monitoring of CH is an important disease risk metric for 

astronauts.
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Figure 1. Clonal Hematopoiesis Profiling
(A) Longitudinal trajectories of CH mutations discovered in the astronaut subjects. Allele 

frequency (%) is the VAF of each clone (vertical axis) visualized across time (horizontal 

axis). Subject TW (spaceflight) is compared to subject HR (ground). Flight start and end for 

the NASA Twins Study are denoted by the gray shaded region (left). Baseline (2015) time 

point corresponds to lymphocyte-depleted MNC fraction. Inflight time points and after flight 

2016 time points were collected and processed by density gradient to obtain peripheral blood 

mononuclear cells, and the 2019 time point corresponds to buffy coat, spun-down blood 

cells.
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(B) VAF in distinct cell populations. The three significant mutations (rows) in DNMT3A 
and LPL for HR (top) and the two mutations found in subject TW (bottom). Shown 

mutations are present in bulk cell populations (bulk), as well as almost all subfractions 

of T cells (CD4, CD8) and B cells (CD19). VAF range is show in fraction of color (red to 

blue, up to 0.1), and asterisks (*) indicate detection of the variant but below 1%. Triangles 

indicate the beginning and end of the year-long mission.
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Figure 2. VAF over Time of CH in Astronauts and Cancer Patients
Change in VAF in DNMT3A (A), TET2 (B), CHEK2 (C), PPM1D (D), and TP53 (E) within 

astronauts (red), cancer patients treated with external beam radiation (blue), and untreated 

cancer patients (gray). Identified variants in samples are ordered along the x axis based on 

their VAF change over two time points (astronauts baseline versus 3.5 years after flight and 

cancer patients before and after treatment) with ones decreasing the most on the left (arrow 

down) and ones increasing the most on the right (arrow up). Density plots of the variants for 

each subject group are shown above the line plots
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