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Abstract

Genetic signal detection in genome-wide association studies (GWAS) is enhanced by

pooling small signals from multiple Single Nucleotide Polymorphism (SNP), for exam-

ple, across genes and pathways. Because genes are believed to influence traits via

gene expression, it is of interest to combine information from expression Quantita-

tive Trait Loci (eQTLs) in a gene or genes in the same pathway. Such methods, widely

referred to as transcriptomic wide association studies (TWAS), already exist for gene

analysis. Due to the possibility of eliminating most of the confounding effects of link-

age disequilibrium (LD) from TWAS gene statistics, pathway TWAS methods would

be very useful in uncovering the true molecular basis of psychiatric disorders. How-

ever, such methods are not yet available for arbitrarily large pathways/gene sets. This

is possibly due to the quadratic (as a function of the number of SNPs) computational

burden for computing LD across large chromosomal regions. To overcome this obsta-

cle, we propose JEPEGMIX2-P, a novel TWAS pathway method that (a) has a linear

computational burden, (b) uses a large and diverse reference panel (33 K subjects),

(c) is competitive (adjusts for background enrichment in gene TWAS statistics), and

(d) is applicable as-is to ethnically mixed-cohorts. To underline its potential for

increasing the power to uncover genetic signals over the commonly used non-

transcriptomics methods, for example, MAGMA, we applied JEPEGMIX2-P to sum-

mary statistics of most large meta-analyses from Psychiatric Genetics Consortium

(PGC). While our work is just the very first step toward clinical translation of psychi-

atric disorders, PGC anorexia results suggest a possible avenue for treatment.
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1 | INTRODUCTION

Genome-wide association studies (GWAS) have been very successful

in identifying disease loci using single-marker-based association tests

(Bush & Moore, 2012). Unfortunately, such methods have had limited

power to identify causal genes or pathways (Wang, Li, &

Hakonarson, 2010). For most complex traits, genetic risks are likely

the result of the joint effect of multiple genes located in causal path-

ways (Ramanan, Shen, Moore, & Saykin, 2012). Consequently, pooling

information across genes in a pathway is likely to greatly improve sig-

nal detection.

Given that gene expression (GE) is widely posited to be the criti-

cal causal mechanism linking variant to phenotype (Emilsson

et al., 2008), the pooling of information across multiple variants should

be mediated by GE. Gene expression informed methods, known as

transcriptome wide association studies (TWAS), exist for gene-level

inference (Chatzinakos et al., 2018; Gamazon et al., 2015; Gusev

et al., 2016). They combine summary statistics of those expression

Quantitative Traits Loci (eQTL) known to best predict the expression

of each gene to infer the association between trait and GE for the

gene under investigation. While TWAS pathway methods do not cur-

rently exist, such methods would help tremendously the translation of

psychiatric disorders by (a) eliminating the confounding effect of link-

age disequilibrium (LD) on TWAS gene statistics and (b) increasing the

power by directly modeling the LD between TWAS summary statis-

tics. The dearth of such methods is likely due to the large storage/

computational burden associated with computing the LD between the

numerous SNPs, possibly, involved in computing TWAS statistics for

numerous genes in a large region, for example, Major Histocompatibil-

ity (MHC) region from chromosome 6p (�25–35 Mbp) or even entire

chromosome arms. The large computational burden is the result of

using the estimated pairwise LD for all eQTL SNPs in order to assess

the variance of the linear combinations for TWAS statistics (Jin

et al., 2014), which, for m variants, imposes a heavy O(m2) computa-

tional burden. Currently, pathway analysis methods are

nontranscriptomic, that is, they disregard the effect of SNPs as eQTLs

of GE and in addition they disregard the LD among TWAS gene statis-

tics, which inflates the type I error. Instead, current pathway methods

search for “agnostic” (i.e., not GE mediated) signal enrichment in a

pathway/gene set. Among existing pathway methods we mention

ALIGATOR (Holmans et al., 2009), GSEA (Subramanian et al., 2005),

DAPPPLE (Rossin et al., 2011), as MAGENTA (Segre et al., 2010),

INRICH (Lee, O'Dushlaine, Thomas, & Purcell, 2012) and MAGMA

(de Leeuw, Mooij, Heskes, & Posthuma, 2015), as well as online tools:

GeneGo/MetaCore (www.genego.com), Ingenuity Pathway Analysis

(www.ingenuity.com), PANTHER (www.pantherdb.org), WebGestalt

(bioinfo.vanderbilt.edu/webgestalt), DAVID (david.abcc.ncifcrf.gov),

and Pathway Painter (pathway.painter.gsa-online.de). While not

designed for pathway analyses, LDpred (Bulik-Sullivan et al., 2015;

Finucane et al., 2015) can also be adapted to test whether pathways

are enriched above the polygenic background while adjusting for

genomic covariates. Given that even such GE-“naïve” pathway ana-

lyses methodologies have shown promise, we believe that

quantitative GE-informed pathway analyses can greatly complement

the “agnostic” findings of all these tools, mirroring the contribution of

modern gene-level TWAS analyses to the prior agnostic gene annota-

tion studies.

To advance the translation of psychiatric disorders, we propose

JEPEGMIX2 Pathway (JEPEGMIX2-P) that extends the reach of

TWAS methods to pathway-level. It promises to increase power by

directly modeling the LD between TWAS gene statistics.

JEPEGMIX2-P (a) uses a very large and diverse reference panel con-

sisting of 33 K subjects (including >10 K Han Chinese), (b) automati-

cally estimates ethnic composition of cohort, (c) uses these weights to

compute LD for gene statistics via a linear running time procedure,

(d) uses LD and GWAS summary statistics to rapidly test for the asso-

ciation between trait and expression of genes even in the largest

pathways, (e) is competitive, that is, adjusts for the background

enrichment of TWAS gene statistics, and (f) provides the option of a

conditional analysis which can effectively moderate the effect of the

SNPs in LD with significant SNP signals to avoid a “carrying” effect,

that is, a large signal in a SNP inducing significant signals in all small

pathways that include it and the SNPs in LD with it. Compared to

MAGMA, our analyses of PGC GWAS data with JEPEGMIX2-P yield a

markedly increased number of significant signals.

2 | METHODS

2.1 | TWAS pathway analysis

Naïve application of many analysis methods comparing the statistic

with the default null hypothesis (H0), when applied for genes/path-

ways with numerous SNPs/genes might yield large signals merely by

accumulating “average” polygenic signals from well-powered studies.

This comparison to the default null is also known as uncompetitive

statistic, as it does not take into account the average enrichment of

the genome. To avoid such an accumulation of average polygenic

information in the uncompetitive statistic, we use competitive tests

that adjust the SNP and gene level χ2 statistics for the background

enrichment of genome wide SNPs and TWAS gene statistics, respec-

tively. We achieve this simply by adjusting gene statistics for average

noncentrality (Text S1 and S2 of Supporting Information). Subse-

quently, as detailed in Text S3 and S4, we use the GWAS summary

statistics (a) to estimate the ethnic composition of the study cohort

and (b) use the estimated ethnic weights to build a pathway statistic

that has a manageable O(m) computational burden.

2.2 | Computation of pathway statistic

Generic TWAS methods, including our JEPEGMIX2, output Z-score

statistics by gene. Thus, if the correlation between gene statistics is

available, for example, by using the O(m) method described above,

these statistics can be combined using a Mahalanobis χ2 statistics with

the number of degrees of freedom (df) equal to the number of genes.
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Unfortunately, this can quickly become very involved if we need to

compute the LD between statistics of all �20,000 genes. However,

due to the (a) to the random orientation of homologous chromosome

pairs during meiosis and (b) large number of recombination in the cen-

tromere, the genotypes of variants in different chromosomes and

chromosome arms are practically independent. Consequently, as

Z-scores are functions of genotypes, it follows that, near the null

hypothesis we use to build tests, Z-scores for genes on different chro-

mosome arms are independent (Lee, Bigdeli, Riley, Fanous, &

Bacanu, 2013). Thus, the Mahalanobis type statistic can be computed

more easily by (a) computing chromosome arm χ2 statistics and, sub-

sequently, and (b) combining the resulting chromosome arm statistic

in a χ2 pathway statistic (Figure 1). Similarly, the df for the χ2 pathway

statistic equals the sum of the dfs for chromosome arm statistics.

2.3 | Conditional analysis

For a pathway signal to be credible, it is useful to be based on having

suggestive signals in multiple genes, not a significant signal in a single

one. Intuitively, if only one gene in a pathway yields a signal this might

be due to the passenger effect—that is, SNPs used to predict the

respective gene expression might be just in LD with a large SNP signal

from another gene. Thus, to avoid the passenger gene effects on

pathway statistics, we also offer the option to eliminate the effect of

SNPs with statistically significant signals, by applying a novel condi-

tional analysis procedure (Text S5 in Supporting Information) to sum-

mary statistics before their use in our TWAS pathway tool.

2.4 | Annotation panel for gene and pathway
statistics

The annotation file for JEPEGMIX2-P now includes an R-like formula

for the expression of each gene as a function of its eQTL genotypes

and of the content for each pathway as a function of the names its

constituting genes. More specifically, this updated annotation gene

file includes cis-eQTL for all tissues available in the v0.7 version of

PredictDB (http://predictdb.hakyimlab.org/). These tissue specific-

models currently contain only cis-eQTL and, currently, do not include

trans-eQTL effects, gene–gene or protein–protein interaction across

the genome. To avoid making inference about genes poorly predicted

by SNPs, for the 48 available tissues (Text S6 and Table S1 of

Supporting Information), we retain only genes for which the expres-

sion is predicted from its eQTLs with reasonable accuracy (i.e., when

the multiple testing adjustment of gene expression predictions using

False Discovery Rate [FDR] yield q-value <.05). Finally, for pathway

database we used MSigDB (Liberzon, 2014; Liberzon et al., 2011;

Liberzon et al., 2015), which is well maintained and widely used by

researchers.

2.5 | Reference panel for LD calculations

The current version uses the 32,953 subjects (�33 K) as a reference

panel. It consists of 20,281 Europeans, 10,800 East Asians (from

CONVERGE study, Text S5 of Supporting Information), 522 South

Asians, 817 Africans and 533 Natives of Americas (Text S6 and

Table S2 of Supporting Information).

2.6 | Traits of interest

We applied JEPEGMIX2-P to summary statistics coming from Psychi-

atric Genetics Consortium (PGC- http://www.med.unc.edu/pgc/)

datasets, that is, Schizophrenia (SCZ), Attention Deficit Hyperactivity

Disorder (ADHD), Autism (AUT), Bipolar (BIP), Eating Disorders

(Anorexia) (ED), Major depression disorder (MDD), and Post traumatic

stress disorder (PTSD) (Table 1). To limit the increase in Type I error

rates of JEPEGMIX2-P, we deem as significantly associated only those

pathways that yield an FDR-adjusted p-value (q-value)<.05q) < .05.

Due to C4 explaining most of Major Histocompatibility (MHC)

(chr6:25–33 Mb; McCarthy et al., 2016), gene/signals for SCZ, for this

trait, we omit non-C4 genes in this region. Moreover, due to the high

correlation between SNPs in MHC (chr6:25–33 Mb), we also omit

genes in this region for MDD, which also showed MHC signals (Wray

et al., 2018).

2.7 | MAGMA

MAGMA is one of the most used pathway analysis methods. Conse-

quently, we compare the results obtained from our method with those
F IGURE 1 Computation of pathway statistics [Color figure can be
viewed at wileyonlinelibrary.com]
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obtained by this state-of-the-art method. The original MAGMA soft-

ware however cannot estimate tissue-gene statistics, therefore to

compare JEPEGMIX2-P with MAGMA, we provided as input to

MAGMA our JEPEGMIX2-P TWAS results.

2.8 | Across tissue analysis

To summarize the top signal across tissues (i.e., regardless of the tis-

sue in which they had signal), we (a) FDR adjusted by-tissue p-values

for each gene/pathway and (b) FDR adjusted the overall gene/path-

way p-values for multiple testing of genes/pathways. Moreover, to

compare across signals across tissue types, we divided the 48 available

tissue into 4 major categories: brain (13 tissues), peripheral (27 tissues),

sex (7 tissues), and blood (1 tissue). In order to control the results for

the widely variable number of tissues across tissue types, we first

summarize their findings according to the above FDR procedure for

each category.

2.9 | Simulations

To estimate the false positive rates of JEPEGMIX2-P, for five different

cosmopolitan studies scenarios, we simulated (under H0) 100 cosmo-

politan cohorts of 10,000 subjects for Ilumina 1 M autosomal SNPs

using 1KG haplotype patterns (Lee et al., 2015) (Text S9 and Table S3

of Supporting Information). The subject phenotypes were simulated

independent of genotypes as a random Gaussian sample. SNP

phenotype–genotype association summary statistics were computed

from a correlation test. For each cohort, we obtained JEPEGMIX2-P

statistics, for the two “null” enrichment scenarios (a) under null (H0), of

no enrichment, and (b) polygenic null (Hp), that is, when enrichment is

uniform over the entire genome regardless of functionality of individ-

ual genomic regions. For the JEPEGMIX2-P analyses of the resulting

data we used (a) prespecified (PRE) and (b) automatically estimated

ethnic weights (EST). Given that (a) subjects were re-assigned to sub-

populations in the new panel and (b) the populations labels in the new

panel do not correspond to the ones from 100 Genomes, this induced

possible mismatches that might result in increased false positive rates.

To avoid this, a second version of the PRE-approach provides the

published weights to continental superpopulations, that is, EUR, ASN,

SAS, AFR, and AMR.

During our initial simulations, we observed that pathways with

name lengths ≤8, for example, pathways denoting chromosome bands

like chr3p21, ch6p21, and so on, have increased false positive rates

due to having numerous genes in high LD because of their proximity.

For that reason, we also estimated the size of the test for all cohort

scenarios just for these high LD pathways.

Finally, given that the simulated cohorts might not reflect “real

data,” we create “nullified” data sets from GWAS data sets. These nul-

lified data sets are based on 20-real GWAS (of mostly Caucasian

cohorts) as: Schizophrenia (SCZ), attention deficit hyperactive disorder

(ADHD), autism (AUT), major depressive disorder MDD (see Table 1),

and a further (mainly European) 16 data sets that are not yet publicly

available. This approximation for null data is obtained by substituting

the expected quantile of the Gaussian distribution for the (ordered)

Z-score (see also Text S1, nonparametric robust estimation of weights

section, of the Supporting Information) after eliminating SNPs with

significant association p-values in the original GWAS. However, one

side effect of this approach consists of statistics within/near the peak

signals in original GWAS, which might be still slightly more concen-

trated into the tails of the distribution compared to perfect “null data.”

This can result in a slight increase in false positive rate, especially

when applied to the nullified version of a GWAS with a lot of signals

(e.g., PGC2 SCZ; Table 1). However, most of the data sets used in

“nullification” were not highly enriched in association signals.

3 | RESULTS

3.1 | JEPEGMIX2-P false positives rates results

JEPEGMIX2-P using our proposed automatic weight detection proce-

dure (see Methods), controlled the false positive rates at or below the

nominal threshold, even when this threshold was 10−6, under both

null (H0) and “polygenic null” scenario (Hp—enrichment in association

signals is uniform over the entire genome, in keeping with the poly-

genicity of most traits). When the method used narrowly prespecified

TABLE 1 Description of GWAS
studies and traits that were analyses

Trait Trait abbreviation Dataset description

Schizophrenia SCZ PGC2 SCZ (Schizophrenia Working Group

of the Psychiatric Genomics, 2014)

Attention deficit

hyperactivity disorder

ADHD PGC ADHD (Demontis et al., 2019)

Autism AUT PGC AUT (Autism Spectrum Disorders

Working Group of The Psychiatric

Genomics, 2017)

Bipolar BIP PGC BIP (Stahl et al., 2019)

Eating disorders (anorexia) ED PGC EAT (Duncan et al., 2017)

Major depression disorder MDD PGC MDD (Wray et al., 2018)

Post-traumatic stress disorder PTSD PGC PTSD (Nievergelt et al., 2019)
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subpopulation weights (e.g., using the closest subpopulations from the

reference sample, that is, as derived from the study description), the

false positives rates were increased, especially for lower nominal

rates, by up to �220–450 (Text S9 and Figures S1–S5 in Supporting

Information). However, JEPEGMIX2-P with pre-estimated weights

based on super populations (i.e., European, East Asian, African, etc.)

had a much lower inflation of false positive rates; only for 10−6

threshold the false positive rate was increased by �2–4 times, under

both H0 and Hp scenarios (Text S9 and Figure S6 in Supporting

Information).

For high-LD pathways, for example, those defined by single chro-

mosome bands in MSigDB (Liberzon, 2014; Liberzon et al., 2011;

Liberzon et al., 2015), the behavior of JEPEGMIX2-P with automati-

cally estimated weights is similar to the one for the whole set of

MSigDB pathways. However, false positive rates increase by

�300–1,200 for the narrowly prespecified subpopulation weights

(Text S9 and Figures S7–S11 in Supporting Information), while when

using super population-based weights, it remained practically

unchanged from the 2–4X increase derived for all pathways (Text S9

and Figure S12 in Supporting Information).

3.2 | JEPEGMIX2-P gene statistics results

We applied JEPEGMIX2-P to the PGC traits (Table 1). As conditional

analyses (Section 2.3) are relevant mostly for the pathway analyses, all

gene-level results are based on the unconditional analysis.

JEPEGMIX2-P successfully identified several significant genes after

adjusting for multiple testing using FDR (Table 2, Supplementary Excel

file 1 and PDF S1–S4 with the Manhattan plots, https://cutt.ly/

ypFpWdh). The results showed signals for multiple gene-tissue pairs

(Text S10 and Figures S13–S17 in Supporting Information). The top

FDR-significant signal for BIP was YJEFN3 in the Breast Mammary tis-

sue (p = 7.3e-09), for ED SUOX in Pituitary tissue (p = 4.5e-09), for

MDD NKAPL in the Esophagus Mucosa tissue (p = 9.6e-10) and for

SCZ RP5-874C20.3 in the Breast Mammary tissue (p = 9.5e-23), while

ADHD, AUT and PTSD analyses did not yield any FDR-significant

gene signals. For BIP most of the signals were found in the sex spe-

cific tissues for ED at brain, for MDD in peripheral and sex and for

SCZ in peripheral and sex (Text S10 and Figures S13–S16 in

Supporting Information).

Moreover, the overlap of the gene-tissue signals was higher for

SCZ and BIP (238) compared to SCZ and MDD (168) while the ED sig-

nals (78) had no overlap with the other traits (Text S10 and

Figure S17 in Supporting Information). Finally, two genes were com-

mon between SCZ, MDD and BIP (PRSS16 in the tissue Muscle Skele-

tal and in the tissue Skin Sun Exposed Lower Leg.

3.3 | JEPEGMIX2-P pathway statistics results

Using the gene statistics of both unconditional and the conservative

conditional JEPEGMIX2-P analyses, we uncovered numerous signifi-

cant pathway signals. The most significant signals for each trait and

their respective effect sizes are presented in PDF S5–S14 (https://

cutt.ly/ypFpWdh). We summarized (see Section 2.8) top across-

tissues pathway signals (Table 3) and we hierarchically clustered the

top 50 signals across all the traits (Figure 2). Additionally, we con-

structed an overall heatmap that includes the top 10 hits for each trait

(Figure 3) and more detailed heatmaps (Text S10 and Figures S32–

S40 in Supporting Information). We also include all signals in extended

tables (Supplementary Excel file 2, https://cutt.ly/ypFpWdh).

JEPEGMIX2-P pathway signals were computed for all pathway-

tissue pairs. As expected, due to eliminating large signals, the FDR sig-

nals in the conditional analysis were significantly less numerous than

those in the unconditional analysis and, for this reason, we will focus

TABLE 2 Numbers of genes signals found by JEPEGMIX2-P

Trait

JEPEGMIX2-P analysis

FDR Holm

ADHD — —

AUT — —

BIP 452 21

ED 78 33

MDD 221 33

SCZ 4,207 936

PTSD — —

TABLE 3 Numbers of across-tissues
pathway signals found by JEPEGMIX2-P

Trait

JEPEGMIX2-P without conditional analysis JEPEGMIX2-P conditional analysis

FDR Holm FDR Holm

ADHD — — — —

AUT 2 2 2 2

BIP 92 6 35 2

ED 186 6 1 1

MDD 300 10 3 2

SCZ 886 117 15 —

PTSD — — — —
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F IGURE 2 Top 50 pathway signals heatmap (unconditional analysis) across all traits. At the x-axis are the hierarchical clustered Traits and at
the y-axis are the hierarchical clustered pathways according to the ‑log10FDR values [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 3 Pathway signals heatmap (unconditional analysis) for the 10 top pathways from each trait. At the x-axis are the hierarchical
clustered Traits and at the y-axis are the hierarchical clustered pathways according to the ‑log10FDR values [Color figure can be viewed at
wileyonlinelibrary.com]

CHATZINAKOS ET AL. 459

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


mostly on the unconditional findings. Pathway chr3p21 was the top

FDR for signal for both AUT (p = 2.3e-08) and BIP (p = 1.4e-10), in Skin

Not Sun Exposed Suprapubic and Artery Tibial tissues. Pathway GEISS_

RESPONSE_TO_DSRNA_UP in Pituitary tissue was the top FDR signal

for ED (p = 3.5e-09), and pathway chr6p21 in the Adrenal Gland tissue

(p = 3.4e-09) was the top FDR signal for MDD. Lastly, for SCZ the top

pathway signal was found in REACTOME_INITIAL_TRIGGERING_

OF_COMPLEMENT in Skeletal Muscle tissue (p = 4.4e-44).

For all the traits (AUT, BIP, ED, MDD, and SCZ), most of the sig-

nals were found in the sex specific tissues (Text S10 and Figures S18–

S28 in Supporting Information). While initially surprising, this finding

is concordant with gender differences in the prevalence of psychiatric

disorders, this finding might be driven mostly by the large number of

genes having good gene expression prediction in testis (9,061) despite

the relatively low number of subjects (157).

Common pathway-tissue signals were higher for SCZ and MDD

(41) compared to SCZ and BIP (31) while the ED signals (589) were

unique except for one common with SCZ (GSE37532_VISCERAL_

ADIPOSE_TISSUE_VS_LN_DERIVED_TREG_CD4_TCELL_DN in Breast

Mammary tissue). In the unconditional analysis one chromosomal path-

way, chr3p21, was common between SCZ, BIP, and MDD in seven dif-

ferent tissues, while in the conditional analysis this common pathway

survives only for BIP and MDD (Text S10 and Figure S28 in Supporting

Information).

3.4 | JEPEGMIX2-P comparison with MAGMA

Comparing our methodwithMAGMA,most likely due to not modeling the

LD between gene statistics, MAGMA finds fewer signals when it was

applied to the TWAS gene statistics from JEPEGMIX2 (Table 4).

JEPEGMIX2-P and MAGMA found 1 common specific tissue-pathway for

BIP (GO_REGULATION_OF_PROTEIN_SUMOYLATION in the Brain Cer-

ebellar Hemisphere tissue, with/without conditional analyses) (Text S10

and Figure S29 in Supporting Information), 1 for MDD (Text S10 and

Figure S30 in Supporting Information) only for the unconditional analysis

(GNF2_ZAP70 for the Pancreas tissue) and 16 for SCZ (Text S10 and

Figure S31 in Supporting Information) only for the unconditional analysis

(e.g., GO_COMPLEMENT_BINDING, REACTOME_COMPLEMENT_CAS-

CADE and REACTOME_REGULATION_OF_COMPLEMENT_CASCADE

for the Brain Cerebellum tissue).

4 | DISCUSSION

The discovery of biological pathways implicated in diseases is the tar-

get for any genetic analysis. Despite the numerous methods available

for pathway analyses, none of these methods rely solely on eQTLs to

infer the association between expression of genes in pathway and

trait, which is widely posited to be the critical causal mechanism. To

overcome these two main limitations, we propose JEPEGMIX2-P

method for testing the association between pathway expression and

trait. Even for pathways enriched GWAS and in high LD,

JEPEGMIX2-P with its automatic weights fully controls the false posi-

tive rates at or below nominal levels.

While the method is a novel addition to the pathway tools reper-

toire, it still has major limitations when attempting to use it for assig-

ning “causal” tissues/cell types. Firstly, due to the rather small sample

sizes of existing GE experiments �80% of genes do not have good GE

prediction from cis-SNPs. Secondly, there is a large difference

between the sample sizes available for different tissues; generally, tis-

sues that are more accessible (peripheral tissues and blood) have

larger sample sizes, and thus have more accurate predictions for more

genes. Given the large sample size discrepancies, from the applied

TWAS analyses probably the most important findings are the path-

ways and genes that are associated with the trait, not necessarily the

tissue/single cell where they are (the most) significant. This argument

is supported by recent research (Hekselman & Yeger-Lotem, 2020); it

shows that while mis-regulation of gene is causal in one/few tissues,

these genes might be mis-regulated in many other tissues. Conse-

quently, even if we do not assay the gene/pathway in the causal cell

types directly, we can find the mis-regulated genes/pathways by

detecting signals in some other tissues and cell types. Unfortunately,

until we have similarly large sample sizes for all tissues, the causal tis-

sue discovery will require additional validation effort involving wet-

lab experiments (Chatzinakos, Georgiadis, & Daskalakis, 2020).

TABLE 4 Numbers of pathway signals found by JEPEGMIX2-P and MAGMA

Trait

JEPEGMIX2-P without conditional analysis JEPEGMIX2-P conditional analysis MAGMA unconditional analysis

FDR Holm FDR Holm FDR Holm

ADHD — — — — — —

AUT 2 2 2 2 — —

BIP 149 14 88 16 3 3

ED 590 6 1 1 - -

MDD 607 31 7 2 2 1

SCZ 3,342 824 27 — 113 16

PTSD — — — — — —

Sources: Autism Spectrum Disorders Working Group of The Psychiatric Genomics, 2017; Demontis et al., 2019; Duncan et al., 2017; Nievergelt

et al., 2019; Schizophrenia Working Group of the Psychiatric Genomics, 2014; Stahl et al., 2019; Wray et al., 2018.
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After applying our method broadly to neuropsychiatric GWAS,

our pathway results bring forward two main questions: i) why there

are so many pathway signals and ii) how these signals can be used in

practice. There are many signals for some diseases, for example, SCZ,

mainly due (a) passenger effect (in unconditional analyses) for path-

way having just one/a few genes near large signals, (b) the same path-

way yielding significant findings in multiple tissues, and (c) some

pathways in MSigDB database sharing many genes. The number of

signals is greatly reduced by summarizing pathway p-value across all

tissues. While having numerous signals might be overwhelming for

some researchers, they can be very useful for fine-mapping gene sig-

nals. Intuitively, pathways with significant signals are more likely to

include many genes that are causal, not just LD passengers alongside

true signals, and that genes in these pathways have a larger probabil-

ity to be causal. Consequently, an heuristic approach to gene fine-

mapping might consist of i) counting how many times each gene (with

significant signals) is found in significant pathways and ii) revealing

clusters of signals coming from genes in LD. The gene(s) with the

highest number of counts of significant pathways including it (them) is

(are) the most likely candidate(s) to be causal.

By applying JEPEGMIX2-P to psychiatric phenotypes, we uncov-

ered numerous genes and pathways with significant signals for SCZ,

AUT, BIP, ED, andMDD.Herewe provide a viewpoint on the overall pic-

ture of the pathway analyses results. The major finding is that the signals

fall, in the order of their strength, roughly into three main named catego-

ries: (a) immune related, (b) cell cycle/RNA transcription, and (c) synapse/

dendrite regulation. While it might appear counterintuitive that general

biological processes (i.e., immunity and cell cycle) to be more heavily

involved in psychiatric disorders than the neuron specific ones, it is con-

firmed bywell-known prior results: (a) most significant signals among the

first batch of replicated psychiatric disorder signals were in the MHC

region on chromosome 6 (Stefansson et al., 2009), and (b) immune path-

ways were already implicated in psychiatric diseases like SCZ, likely due

to be being involved in synapse pruning/maintenance (Sekar

et al., 2016). We note that “REACTOME_COMPLEMENT_CASCADE”

pathway is the nonchromosomal band pathway for SCZ with the most

significant signals, under both unconditional (MHC and C4 excluded) and

conditional analyses (Figures 2 and 3); thus, our finding aligns well with

the involvement of the complement pathway in SCZ pathogenesis (Sekar

et al., 2016).

The fact that general biological processes seem more consequen-

tial rather than strictly neuronal might also indirectly explain the fact

that the drug development for psychiatric disorders is an exceedingly

low yield affair (Hyman, 2013), presumably due pharmaceutical com-

panies focusing exclusively on neuronal specific pathways. These prior

drug development failures in the last 15 years led GlaxoSmithKline to

exit the field, and Pfizer and AstraZeneca to drastically reduce internal

drug development for psychiatric disorders (Hyman, 2013). Nonethe-

less, the prominent involvement of the immune pathways suggests

that it is reasonable to envision drug repurposing of common immune

modulatory drugs in psychiatry.

Interpreting and validating all pathway signals require substan-

tially more work. However, JEPEGMIX2-P provides carefully vetted

targets for wet-lab validation (see Supplementary Excel 2, https://

cutt.ly/ypFpWdh) as our findings allow to generate somewhat

narrower hypotheses for future testing (Chatzinakos et al., 2020). For

instance, in ED results, the most significant signal corresponds to

GEISS_RESPONSE_TO_DSRNA_UP pathway (Supplementary Excel

file 2 https://cutt.ly/ypFpWdh), which is a pathway that is involved in

response to virus infections. The immune system was already strongly

suspected to have a role in ED etiology, for example, a large study of

0.5 million Danish girls showed that a severe childhood infection

greatly increases the chances of developing ED at puberty (Breithaupt

et al., 2019). Thus, similar to other psychiatric disorder, our signals

support previous findings that the immune system is implicated in

ED. However, the dsRNA pathway ED signal suggests that a narrower

focus could be accomplished, that is, pointing to the subset of the

immune system responses dealing with virus infections could be the

most relevant to ED etiology. This finding suggests that for ED clini-

cians might want to pay special attention to active virus infections in

ED patients.

Concluding, JEPEGMIX2-P is a novel transcriptomic method/soft-

ware for pathway associations with complex traits. Unlike existing

methods, JEPEGMIX2-P has a linear computational burden when

computing internally the LD correlation between SNPs and genes

using a large and diverse reference panel (33 K). Moreover, it fully

controls the false positive rates at or below nominal levels by per-

forming a competitive test, that is, adjusting for the background

enrichment of TWAS gene statistics. Being written in C ++,

JEPEGMIX2-P is very fast while future versions of the software will

use (a) cis-eQTL for all the available tissues in the v0.8 version of

PredictDB (http://predictdb.hakyimlab.org/) and (b) larger reference

panel (e.g., 10,000 more African American samples). Due to its internal

computation of the correlations between gene/pathway TWAS sig-

nals, the software is very well positioned to have its functionality

extended to gene level fine mapping.
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