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1. Introduction

Multiple sclerosis (MS) is a dominant cause of disability of the ner-
vous system with autoimmune disorders, raising the risks of depression, 
hypertension, osteoporosis, etc. (Tian et al., 2020; Walton et al., 2020). 
The high disease incidence of MS has been indicated since 2000. 
(Koch-Henriksen and Magyari, 2021). Chronic autoimmune neuro-
inflammation in MS causes the blockade of nerve conduction and 
various functional disorders such as eye dysfunction (Tian et al., 2020; 
Marcus, 2022). Currently, a cohort study with approximately seventeen 
thousand participants indicates that half of MS patients suffer from 
comorbidities, including depression, anxiety, hypertension, and hyper-
lipidemia (Salter et al., 2024). These findings indicate that multiple 
factors may influence the disease activities and outcomes of MS.

Th17 cells, first identified in 2005, are one major component in the 
neuroinflammation of MS (Harrington et al., 2005). Accumulating evi-
dence has indicated the massive infiltration of Th17 cells into the central 
nervous system (CNS) with interleukin-17 (IL-17) secretion (Beurel and 
Lowell, 2018). During the progressive stage of MS, a high proportion of 
Th17 cells is detected in the CNS lesions and the cerebrospinal fluid 
(CSF) (Kaskow and Baecher-Allan, 2018). CNS-infiltrated Th17 cells 
may directly cause neurological disorders in MS. The MS patients with 
epilepsy show higher IL-17A levels in CSF (Bautista et al., 2003). 
Importantly, the clinical trials in relapsing-remitting multiple sclerosis 
(RRMS) patients show reduced relapse rates as well as an obvious 
decline of lesion activity with the IL-17-neutralized monoclonal anti-
body treatment (Elain et al., 2014).

The CNS-infiltrated Th17 cells interact with tissue cells. For instance, 
the IL-17A secreted from infiltrated Th17 cells leads to apoptosis of 

oligodendrocytes and results in demyelination. Moreover, IL-17 induces 
neuronal cell death by direct cell-cell interaction and neuronal toxicity 
with Ca2+ overload (Siffrin et al., 2010). Importantly, Th17 cell-related 
cytokines upregulate the expression of IL-23R in neurons, resulting in 
increased levels of caspase 3 which marks the apoptosis of neuronal cells 
(Sonar et al., 2024). In the animal model of MS, experimental autoim-
mune encephalomyelitis (EAE), mice are immunized with the 
self-antigen of myelin protein to induce CNS autoimmune inflammation 
(Procaccini et al., 2015). During the induction, Th17 cells traverse the 
blood-brain barrier (BBB) via the IL-17A secretion and C-C chemokine 
receptor 6 (CCR6) expression (Y. Shi et al., 2022). CCL20 is upregulated 
in the EAE choroid plexus and guides the Th17 cells entering CNS via the 
CCL20-CCR6 axis. The number of Th17 cells significantly declines in the 
CNS of CCR6− /− EAE mice with ameliorated disease progression 
(Reboldi et al., 2009; Robinson et al., 2014). Therefore, the infiltration 
of Th17 cells into the CNS is directly linked to disease severity in MS 
pathogenesis (Robinson et al., 2014). Notably, the direct axonal and 
neuronal injury are mediated by Th17 cells. Th17 cells form 
immune-neuronal synapses with neurons, leading to the elevation of 
intracellular Ca2+ in neurons (Siffrin et al., 2010).

The critical function of Th17 cells is also observed in EAE using the 
two-photon microscopy. Th17 cells directly cause the axonal transection 
and initiate neuronal death with Ca2+ fluctuations. Moreover, Th17 cell 
infiltration is also related to the recruitment of other immune cells into 
the CNS, such as neutrophils (Beurel and Lowell, 2018). Therefore, 
Th17 cells play crucial roles in the neurological damage of MS. The 
interaction between Th17 cells and CNS tissue cells may provide novel 
therapeutic targets for the treatment of MS.
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2. The Th17 cell generation during MS development

Accumulating evidence indicates that the pathogenicity and plas-
ticity of Th17 cells are dependent on the distinct cytokines, including IL- 
1β, IL-6, IL-23, TGF-β, TNF-α and so on (B. Wu et al., 2021). Distinct 
genetic programs related to cytokines trigger the pathogenicity of Th17 
cells and the expression of retinoic acid-related orphan nuclear receptor 
γt (RORγt). Key transportation factors in Th17 cell generation include 
RORγt, IRF4, Runx1, bHLH, and so on (Ciofani et al., 2012; C. C. Lin 
et al., 2016a).

2.1. The cytokine related to Th17 cell differentiation in MS

Elevated levels of IL-1β, IL-6, IL-23, TGF-β and TNF-α have been 
reported in the serum and CNS of MS patients (D. W. Luchtman et al., 
2014). IL-1β, IL-6, and IL-23-induced Th17 cells exhibit higher patho-
genic features than the TGF-β and IL-6-triggered Th17 subsets (Ichiyama 
et al., 2016). In EAE mice, Th17 cells driven by IL-23 and IL-1β directly 
contribute to the disease severity (Mills, 2023) (Fig. 1).

IL-6 is critical in the differentiation of Th17 cells by promoting the 
expression of RORγt in Th17 cells via the phosphorylation of signal 
transducer and activator of transcription 3 (STAT3) (H. I. Lee et al., 
2022). Blocking IL-6 in EAE suppresses Th17 cell induction and disease 
progression (Serada et al., 2008). Evidence from both EAE and MS pa-
tients proves that IL-6 promoter can be activated by inflammatory cy-
tokines like IL-1β, TNF-α, TGF-β1 and TGF-β3 (Ruddy et al., 2004; 
Eickelberg et al., 1999; Mann et al., 2002). Additionally, it is reported 
that Th17 cells induced by ΤGF-β3 and IL-6 are more pathogenic than 

those induced by ΤGF-β1 and IL-6 (Y. Lee et al., 2012).
Though IL-6 can induce IL-17 and Th17 cells alone, its induction is 

limited without other cytokine interactions. Ilona’s team reported that 
IL-1 promoted the differentiation of Th17 cells in the absence of exog-
enous IL-6 by detecting Th17 cells in the blood, kidney, liver, and im-
mune organs of normal and EAE mice. Moreover, IL-1 can stimulate IL- 
6− /− T cells into Th17 cells. Therefore, IL-1 may serve as a key inducer, 
while IL-6 plays a more supportive role (Kryczek et al., 2007). IL-1 
further initiates the downstream signaling of transcription factor 
Bhlhe40 expression and promotes granulocyte-macrophage colony-sti-
mulating factor (GM-CSF) secretion (Lin et al., 2014; C.-C. Lin et al., 
2016a). Notably, IL-1β expressed by myeloid cells in EAE, contributes to 
generating GM-CSF-producing Th17 cells and enhancing their enceph-
alitogenic potential (Mufazalov et al., 2016). However, the function of 
IL-1β in Th17 cell differentiation can be suppressed by IL-10 and 
amplified by IL-17 and TNF-α (B. Li et al., 2015).

IL-11, another member of the IL-6 family, also plays a role in 
inducing the generation of encephalitogenic Th17 cells. During MS 
pathogenesis, IL-11 in CSF triggers Th17 cell polarization by activating 
STAT3 and stimulating the secretion of IL-1β, TGF-β, IL-21, and IL-23 (X. 
Zhang et al., 2015).

IL-21 cooperates with TGF-β to form an alternative pathway in the 
differentiation of Th17 cells to secrete IL-17 in EAE mice. Accordingly, T 
cells without IL-21 receptors are disabled to respond as Th17 cells (Korn 
et al., 2007). The secretion of IL-21 can be triggered by IL-6, IL-7, and 
IL-15 in Th0 cells, further contributing to the Th17 cell differentiation 
process (Caprioli et al., 2008). Besides, IL-21 enhances its own expres-
sion by recruiting STAT3 to its gene promoter, creating a positive 

Fig. 1. The cellular immune and metabolic regulation of Th17 differentiation in MS. The ligation of IL-6 and IL-6R, IL-23 and IL-23R, TREM-2 and p-ZAP70 
results in the phosphorylation of STAT3. The phosphorated-STAT3 binds to the promoter region, CNS6, and CNS9 regions in Rorc to promote the differentiation and 
maturation of Th17 cells. The p-STAT3 induced by IL-23 inhibit the expression of CD5L/AIM and control the synthesis of fatty acid. In animal model of MS, low 
expression of CD5L/AIM in the local Th17 cells decreases the cellular PUFA and increases hydroxycholesterols. These hydroxycholesterols can interact with RORγt 
and promote the expression of Il17 and Il-23r. Transcriptional factors including EGR2, Runx1, BATF, and IRF-4 promote the RORγt transcription and enhance Th17 
cell differentiation. The mitochondrial OXPHOS activates mTORC1-HIF-1 pathway and enhances the activation of STAT3. Additionally, OXPHOS also promotes the 
Th17 cell differentiation in a BATF-dependent manner through TCR signaling regulation. Glutaminase1 increases HIF-1 and promotes glycolysis, contributing to the 
differentiation of Th17 cells, while CoA combining with PKMZ inhibits glycolysis.
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feedback loop that supports Th17 cell differentiation (Caprioli et al., 
2008). Interestingly, IL-21 also acts as a regulatory cytokine by inhib-
iting the secretion of pro-inflammatory cytokines such as IL-6, IL-12, 
IL-1β, and TNF-α (Foster et al., 2003; Strengell et al., 2006).

IL-23 further amplifies Th17 cell polarization in the presence of TGF- 
β, IL-6, and IL-21 (Schinocca et al., 2021). It drives the generation of 
Th17 cells co-expressing RORγt and T-bet, enhancing their encephali-
togenic capacity in EAE (Ghoreschi et al., 2010). The upregulation of 
RORγt and IL-23R by IL-1β further boosts the Th17 cell differentiation 
when combined with IL-23 (Kryczek et al., 2007; Stritesky et al., 2008).

In contrast to the cytokines that promote Th17 cell differentiation, 
several cytokines have inhibitory effects on this process, including IL-2, 
IL-3, IL-19, IL-24, and interferon-beta (IFN-β). IL-2 can inhibit Th17 cell 
differentiation by the activation of STAT5 in vitro. The deficiency of IL-2 
is associated with enhanced IL-17 production and Th17 cell generation 
(Laurence et al., 2007). Similarly, IL-3 inhibits the differentiation of 
Th17 cells by blocking STAT3 phosphorylation in an IL-2-dependent 
manner (Rani et al., 2022). This cytokine plays a role in the CNS im-
mune response. The IL-3/IL-3RA axis forms a glial-peripheral immune 
network that worsens MS by recruiting immune cells to the CNS (Kiss 
et al., 2023).

IL-19 also exerts an inhibitory effect on Th17 cell differentiation. IL- 
19-deficient macrophages in EAE mice have increased mRNA levels of 
IL-1β, IL-6, TGF-β1, IL-12 p40, IL-23 p19, and severe Th17 cell infil-
tration in CNS. Mechanistically, IL-19 suppresses MS pathogenesis by 
inhibiting macrophage antigen presentation and Th17 cell expansion 
(Horiuchi et al., 2021). These findings highlight the importance of IL-19 
in suppressing both the initiation and expansion of Th17 cell-driven 
inflammation.

IL-24 inhibits the pathogenicity of Th17 cells in a STAT3-dependent 
manner. IL-24 gathers in the inner mitochondrial membrane and in-
teracts with Grim9. Then, the binding of IL-24 and Grim9 promotes the 
accumulation of STAT3 and the secretion of IL-10 to inhibit the disease 
development in EAE (Sie et al., 2022).

IL-27 has a complex role in regulating Th17 cell differentiation. It 
downregulates several Th17-related genes, including Il-17a, Il-17f, Rorc, 
and Ahr, and inhibits IL-17 secretion under Th17-polarizing conditions 
(Chong et al., 2014; Murugaiyan et al., 2009). IL-27R-deficient mice are 
highly susceptible to EAE development, indicating the protective role of 
IL-27 (Chong et al., 2014; Stumhofer et al., 2006). However, while IL-27 
inhibits Th17 cell differentiation in a STAT1-dependent manner and 
suppresses the expression of RORγt, it exerts the negligible effects on 
committed the fate of Th17 cells (El-behi et al., 2009; Yoshimura et al., 
2006).

IFN-β is another cytokine with comprehensive effects on Th17 cell 
differentiation. IFN-β− /− mice exhibit increased Th17 cell polarization 
and greater susceptibility to EAE, proving IFN-β to be a key regulator for 
Th17 cell differentiation. Mechanistically, IFN-β upregulates IL-27 in 
macrophages via I IFN receptor (IFNAR), contributing to the down-
regulation of IL-17 (B. Guo et al., 2008). However, the effects of IFN-β on 
Th17 cell differentiation are not entirely consistent. IFN-β promotes 
IL-23-driven-Th17 cell differentiation by enhancing RORγt expression 
and improving their encephalitogenicity in EAE, Besides, it inhibits 
TGF-β-driven Th17 cell differentiation (Agnieshka Agasing et al., 2021).

Activin-A is a member of the TGF-β superfamily, exhibiting dual roles 
in Th17 cell regulation. Its role is context-dependent, with contrasting 
effects observed in different studies of MS and EAE. In MS and EAE, 
exogenous Activin-A not only activates the aryl hydrocarbon receptor 
(AhR) to control CD39 and CD73 expression but also inhibits hypoxia- 
inducible factor-1 α (HIF-1α) to suppress the pathogenicity of Th17 
cells (Morianos et al., 2020). However, under inflammatory conditions, 
autocrine Activin-A-ALK4 signaling is activated in T cells and promotes 
the pathogenicity of Th17 cells. Correspondingly, blocking this pathway 
reduces IL-17A production during EAE induction (B. Wu et al., 2021).

In summary, cytokines play different roles in the development of 
Th17 cells through various mechanisms (Table 1). A better 

understanding of the interaction and function of these numerous cyto-
kines is helpful in the exploration of new therapeutic targets for MS.

2.2. Th17 cell differentiation-related transcriptional factor signaling 
pathways

Previous reviews focus on the complexity of TGF-β signaling in Th17 
cell development, including the receptor Activin receptor-like kinase 
(ALKs), Smad proteins and their crosstalk with RORγt, aryl hydrocarbon 
receptor (Haghayegh Jahromi et al., 2019), mitogen-activated protein 
kinase (MAPK) signaling and other important pathways (J. Wang et al., 
2023). The MAPK inhibitor PD98059 relieves MS by inhibiting Th1, 
Th9, and Th17 cells and promoting nTreg to maintain the immune 
balance. This is confirmed by the downregulation of Il-17a and the 
upregulation of Foxp3 mRNA and protein levels in the spleen and brain 
of EAE mice (S. F. Ahmad et al., 2023a,b). PD98059 also downregulates 
the NF-κB signaling and inhibits the expression of various cytokines 
including CM-CSF, IL-6 and so on (Alomar et al., 2023).

RORγt is a symbolized transcriptional factor of Th17 cells and its 
transcriptional activity greatly affects the differentiation of Th17 cells 
(Y. Shi et al., 2022). Cathepsin B antagonist CA-074 reduces mRNA and 
protein levels of IL-17A and RORγt in the brain of EAE to lower its 
clinical scores (M. A. Ansari et al., 2022a,b). Previous studies have 
demonstrated that Interferon regulatory factor 4 (Irf4) could control 
Th17 cell differentiation by regulating the transcriptional activity of 
rorc. IRF4 is usually bound with Basic Leucine Zipper ATF-Like Tran-
scription Factor (BATF), which is a basic leucine zipper transcription 
factor of the activator protein-1 (AP-1) family (Nalbant and Eskier, 
2016). Schraml et al. finds the disability of Batf− /− mice in Th17 cell 
differentiation and the resistance to EAE (Schraml et al., 2009). During 
Th17 differentiation, IRF4 and BATF not only improve chromatin 
accessibility and then start the transcriptional program together with 
STAT3 but also assist the recruitment of RORγt (Ciofani et al., 2012). 

Table 1 
Cytokines related to the differentiation of Th17.

Cytokines Related signaling 
cascades and 
transcriptional 
factors

Upstream 
enhanced 
cytokines

Upstream 
reduced 
cytokines

Activators IL-6 STAT3 TNF-α; 
IL-1β; 
IL-17; 
TGF-β1; 
TGF-β; 
IFN-β;

IL-27; 
IL-21;

IL-23 STAT3 IL-21; 
TGF-β; 
IL-6; 
IFN-β;

Unknown

IL-1β Bhlhe40 TNF-α; 
IL-17;

IL-10; 
IL-21;

IL-21 STAT1; 
STAT3; 
STAT5;

IL-6; 
IL-7; 
IL-15; 
IL-21;

Unknown

IL-11 STAT3 IL-17F; 
TNF-α; 
IL-1β; 
TGF-β; 
IL-11;

Unknown

Endogenous 
Activin-A

ALK4 IL-6; 
IL-23; 
IL-1β;

Unknown

Inhibitors IL-24 STAT3 IL-17 Unknown
IL-27 STAT1; 

STAT3;
IFN-β Unknown

IL-2 STAT5 IL-3 Unknown
Exogenous 
Activin-A

AhR; 
STAT3; c-Maf;

Not applicable
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What’s more, the Histamine H4 Receptor (H4R) is found to be expressed 
by Th17 and enhanced the expression of IL-17 (Passani and Ballerini, 
2012). H4R antagonist JNJ10191584 alleviates EAE by downregulating 
the mRNA expression of IL-17a and RORγt, which sheds light on novel 
therapeutic targets for MS (Aldossari et al., 2023). In line with this, H4R 
agonist 4-methylhistamine (4-MeH) increases the expression of NF-κB 
p65, GM-CSF, and IL-6 mRNA, resulting in more severe EAE (Alsaad 
et al., 2023). Additionally, acetyl-11-keto-β-boswellic acid (AKBA) also 
alleviates EAE by suppressing NF-κB signaling in dendritic cells, thus 
inhibiting the activation of Th17 cells (Nadeem et al., 2022). Similarly, 
the CCR5 antagonist DAPTA inhibits the NF-κB/NOTCH pathway and 
downregulates the expression of IL-17A and RORγt in the brain, exerting 
anti-inflammatory effects (Alghibiwi et al., 2023; Ahmad et al., 2022). In 
addition to the CCR5 antagonist, the gold compound auranofin AFN also 
inhibits the NF-κB signaling and enhances the nuclear factor erythroid 
2-related factor 2 (Nfr2) signaling which upregulates the expression of 
IL-17A by Th17 cells (Al-Kharashi et al., 2023).

Moreover, runt-related transcription factor 1 (Runx1) is identified to 
enhance RORγt expression as well as interact synergistically with RORγt 
during the transcription of Il17 (F. Zhang et al., 2008). In addition, a 
study showed that the absence of early growth response protein 2 
(EGR2) prevented the differentiation of Th0 cells towards Th17 cells. 
This suggests that EGR2 probably encourages the differentiation of 
Th17 cells through promoting RORγt transcription. EGR2 also is also 
reported to directly adjust the transcription of other Th17 cells signature 
genes such as Il17a (Gao et al., 2023).

The STAT3 signaling induced by IL-6 and regulated by IL-23 is 
considered to be one of the most related transcriptional factors in Th17 
differentiation. Under the Th17 cell-skewed conditions, IL-6 activates 
the STAT3 signaling and induces the expression of IL-23R. The combi-
nation of IL-23 and IL-23R results in the phosphorylation of STAT3 and 
STAT4, which form heterodimers to bind to RORγt, generating a com-
plex located in the IL-17 promoter site and promoting the maturation of 
the Th17 cells (Samuels et al., 2018; Harris et al., 2007; P. W. Lee et al., 
2017). In accordance with this, inhibiting the STAT3 pathway can block 
the neuroinflammation to alleviate EAE. The selective STAT3 inhibitor 
S3I-201 downregulates the expression of pSTAT3, IL-17A and RORγt in 
the brain of EAE (S. F. Ahmad et al., 2023a,b). Similarly, another STAT3 
signaling inhibitor, Stattic decreases the levels of Th17-related inflam-
matory cytokines in EAE including IL-17A and IL-1β. Taken together, 
these studies have shown that STAT3 is a potential target for MS 
(Alhazzani et al., 2021).

Other factors related to STAT3 signaling and influencing Th17 cell 
differentiation include Recombination Signal Binding Protein for 
Immunoglobulin Kappa J Region (RBPJ) and Conserved Non-coding 
Sequences 6/9 (CNS6/9). Using CD4CreRBPJfl/fl mice, researchers 
demonstrated that RBPJ, a canonical Notch signaling mediator, could 
bind to the Il23r promoter regions and synergize with RORγt. This 
process maintains the expression of IL-23R, forming the pathogenic 
phenotype of Th17 cells (Meyer Zu Horste et al., 2016). In addition, 
CNS6 and CNS9 at the Rorc gene are crucial to Th17 differentiation. 
STAT3 binds to the Rorc promoter and CNS6 and CNS9 regions, pro-
moting the differentiation of Th17 cells (Chang et al., 2020).

Moreover, peptidylprolyl Cis/Trans Isomerase, NIMA-Interacting 1 
(Pin1), a member of the peptidyl proline isomerase (PPIase) family, is 
proven to promote pathogenic Th17 cell differentiation (Lu, 2000). Pin1 
elevates RORγt expression by interacting with STAT3 in Th17 and 
directly binds RORγt to increase the transcriptional activation of RORγt 
to the +11 kb cis-regulatory element of Rorc (Fan et al., 2024).

Apart from IL-6 and IL-23, the significance of the TREM-2/ZAP70/ 
STAT3 signal axis for Th17 cell differentiation has been recently 
discovered in EAE. Researchers have proven that the triggering receptor 
expressed on myeloid cell 2 (TREM-2) is highly expressed in pathogenic 
CD4+T cells in MS patients as well as EAE mice. Trem-2 knockout mice 
show that TREM-2 could encourage the activation of STAT3 by stimu-
lating the phosphorylation of ZAP70 (zeta-chain associated protein 

kinase 70) (Qu et al., 2024). Overall activated STAT3 positively regu-
lates RORγt and promotes the differentiation of Th17 cells.

2.3. Th17 cell differentiation-related epigenetic modification in MS

The epigenetic modification related to Th17 cell differentiation and 
IL-17 secretion mainly includes DNA methylation and histone modifi-
cation, especially methylation. For instance, the methylation level of the 
promoter region at STAT3 is lower and the expression of STAT3 is higher 
than that in CD4 T cells of RRMS patients (A. Hosseini et al., 2020).

Additionally, H3K4me3 modification marks are evident at the IL17 
and Rorc locus in Th17 cells and also evident in Th1 and Th2 cells (Wei 
et al., 2009). Correspondingly, the H3K27me3 marks are evident at the 
Ifng and IL4 locus in Th17 cells (Wei et al., 2009). However, 17β-estra-
diol increases H3K27me3 enrichment and decreases H3K4me1 at Rorc, 
as well as inducing H3K4me3 and H3K4me1 enrichment at FOXP3 in 
polarized Th17 cells, limiting the production of Th17 cells (Iannello 
et al., 2018). Therefore, estrogen plays a critical role in histone modi-
fication of the Rorc through its α receptor and decreases the relapse rate 
in pregnant MS patients (Iannello et al., 2018). Since methionine re-
striction of Th17 cells reduces H3K4me3 and H3K4me1 at Il17a, Il17f, 
and Batf, as well as Rorc, dietary methionine limitation can reduce the 
expression of IL-17 and release neuroinflammation of EAE (D. G. Roy 
et al., 2020). Besides, H3K27 demethylase (JmjC domain-containing 
protein 3) Jmjd3 and histone acetyltransferase (p300) are recruited in 
the conserved noncoding sequence 2 (CNS2) and promote the chromatin 
remodeling and gene expression of IL-17A and IL-17F (X. Wang et al., 
2012). Additionally, Jmjd3 is enriched at the Rorc in Th17 cells and 
decreases H3K27me3 at the Jmjd3 binding sites (p-4, p-6, and BS1) of 
Rorc locus in Th17 cells (Z. Liu et al., 2015). Due to the important role of 
jmjd3 in Th17 cell differentiation, Jmjd3 cKO mice exhibit delays in the 
onset of EAE induction compared to WT mice, and its severity is reduced 
(Z. Liu et al., 2015). Importantly, the histone H3K27me3 demethylases 
KDM6A/B also link to metabolic response. Blockades of KDM6A and 
KDM6B both selectively inhibit the polarization of human Th17 cells in 
culture. Mechanism study shows KDM6A/B inhibition blocks the 
H3K27me3-mediated transcriptional activation of multiple metabolic 
genes, including peroxisome proliferator-activated receptor gamma 
coactivator-related protein 1 (PPRC1) in Th17 cells (Cribbs et al., 2020).

Tripartite motif-containing proteins (Trims) 28, induced by the IL-6- 
STAT3 axis, act as an epigenetic activator in Th17 cell differentiation. It 
binds to the IL17a and IL17f locus with active H3K4me3 and DNA 5hmc, 
recruiting RORγt and enhancing Th17 cell differentiation. Trim 28fl/ 

flIl17f-Cre mice are less severe than WT mice during EAE induction. And 
in Trims28KO Th17 cells, p300 binding, the H3K27Ac at Th17 signature 
SE regions, and the interaction between CNS2 and promotors of Il17 or 
Il17f are decreased (Jiang et al., 2018; “EGR2 drives TH17 cell patho-
genicity in autoimmune neuroinflammation,” 2023). Moreover, Trim33 
plays a pivotal role in regulating Th17 cell differentiation. In its absence, 
the severity of EAE and the number of T cells in CNS are reduced. 
Mechanistically, Trim33 enhances IL17 expression while decreasing 
IL10 expression at the chromatin level in a TGF-β/Smad2-dependent 
manner. In Trim33 KO CD4+ T cells cultured under Th17 conditions, 
H3K9me3 and H3K27me3 at the Il17 locus are enhanced while 
H3K4me3 and H3Ac in the Il17 gene are not affected. In contrast, 
H3K4me3 is increased in multiple conserved regions at the Il10 locus 
(Tanaka et al., 2018). In summary, the cytokine signaling cascades that 
drive the differentiation of Th17 cells are crucially controlled by 
epigenetic modification.

2.4. The Th17 cell differentiation-related metabolic reprogramming in MS

Besides genetic and epigenetic factors, metabolic reprogramming 
and heterogeneity also influence the cytokine network and fate of Th17 
cells. Th17 cells exhibit distinct metabolic characteristics, including 
enhanced glycolysis, lipid synthesis, glutaminolysis, and mammalian 
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target of rapamycin (mTOR) activation, crucially modulate Th17 cell 
differentiation (Kanno et al., 2023).

The function of Th17 cells is mainly affected by glycolysis and the 
related metabolic pathways. Glutaminase1fl/flIl17Cre F2 mice display 
ameliorating disease during EAE induction as inhibition of glutaminase1 
decreases HIF-1α, suppressing glycolysis during Th17 cell differentiation 
(McGettrick and O’Neill, 2020; Kono et al., 2019; Vakili et al., 2023). 
Since ATP-linked mitochondrial oxidative phosphorylation (OXPHOS) 
plays a role in naïve T cells and promotes the signaling of ZAP70/STAT3, 
inhibition of ATP synthase during Th17 differentiation reduces the 
severity of EAE (Shin et al., 2020; S. Roy et al., 2019). mTORC1, a key 
integrator of environment signals to coordinate cellular metabolism and 
immune function, can mediate transcriptional factors like HIF-1 to 
promote glycolytic metabolism and stabilize the expression of RORγt. 
Both the T cell-specific HIF-1α− /− mice and mice receiving the 
HIF-1α− /− T cells show significantly delayed development during EAE 
induction (Waickman and Powell, 2012; L. Z. Shi et al., 2011; Eric V. 
Dang et al., 2011). Additionally, NO production decrease regulated by 
Formyl peptide receptor 2 signaling in DCs promotes Th17 cell differ-
entiation in the context of neuroinflammation (Lim et al., 2024).

Besides, the lipid biosynthesis regulated by CD5L/AIM also alters the 
non-pathogenic and pathogenic states of Th17 cells through poly-
unsaturated fatty acid/saturated fatty acid (PUFA/SFA) balance the 
activity of RORγt ligands. In Th17 cells from the CNS in EAE, IL-23 binds 
IL-23R and enhances STAT3 function, which suppresses the expression 
of CD5L. Loss of CD5L decreases the level of PUFA and affects choles-
terol biosynthesis enzymes, resulting in high level of RORγt ligands. 
RORγt ligands like hydroxycholesterols bind to RORγt ligands and 
promote the expression of IL-17A and IL-23R (C. Wang et al., 2015; Jin 
et al., 2010). Governed by the mTORC1 activation, ATP-linked OXPHOS 
promotes the Th17 cell differentiation in a basic leucine zipper ATF-like 
transcription factor (BATF)-dependent manner through TCR signaling 
regulation and mTORC1 activation (Shin et al., 2020). Moreover, co-
enzyme A (CoA) can limit the inflammation caused by Th17 cells in EAE 
and MS. CoA binds to pyruvate kinase isoform 2 (PKM2) to impede its 
phosphorylation and nuclear translocation, inhibiting glycolysis and 
STAT3 phosphorylation in Th17 cells (C. Chen et al., 2022). Vitamin B5 
catabolized into CoA in a pantothenate kinase (PANK)-dependent 
manner to participate in fatty acid metabolism. Notably, it alleviates 
EAE and its level is reduced in the serum of MS patients (C. Chen et al., 
2022). CoA fueling with the CoA precursor pantethine (PTTH) reduces 
pro-inflammatory cytokine production and limits T cell pathogenicity in 
EAE and peripheral blood mononuclear cells (PBMCs) from MS patients 
(Angiari et al., 2024).

Interestingly, dietary intake such as essential fatty acids and salt also 
affects Th17 cell differentiation. For instance, Eicosapentaenoic Acid- 
treated EAE mice exhibited lower clinical scores and less production 
of IL-17 in the CNS (Hoffman et al., 2023; Ramirez-Ramirez et al., 2013). 
The effect of EPA in Th17 cells is correlated with the activation of 
peroxisome proliferator-activated receptors (PPARs) including PPAR-α, 
PPAR-γ, and PPAR-β/δ which inhibit EAE. PPAR-δ-knockout mice show 
increased Th17 cells in the spinal cord and more severe EAE (Dunn et al., 
2010). Besides, EPA-containing fish oil treatment decreases the serum 
levels of TNF-α, IL-1β, IL-6, and nitric oxide metabolites in RRMS pa-
tients (Ramirez-Ramirez et al., 2013). Though mice fed a high salt diet 
(HSD) show increased EAE severity compared to WT mice, 
Cd4CreSgk1fl/fl mice are resistant to HSD. Researchers suggest that HSD 
upregulates the expression of glucocorticoid kinase (SGK1) and IL-23R, 
resulting in amplified Th17 cell differentiation and accelerating EAE 
pathogenesis (Wu et al., 2013).

Bile acid biosynthesis also influences Th17 cell fate. The conditional 
knockout of Ahr in mice results in alterations of the gut environment, 
promoting the formation of taurocholic acid, isovaleric acid, and other 
bile acids. These changes induce the apoptosis of Th17 cells and prevent 
EAE (Merchak et al., 2023). Despite the energy-related metabolisms, 
second messenger cyclic adenosine monophosphate (cAMP) can also 

influence the function of Th17 cells via the cytoplasmic PKA signal 
pathways. CRTC2 is a co-activator of cAMP-response element binding 
protein (CREB). Upon exposure to prostaglandin E2 (PGE2), it binds to 
CREB on the promoter of IL-17A and IL-17F. Therefore, CRTC2-mutant 
mice are defective in Th17 cell differentiation and resistant to EAE 
(Hernandez et al., 2015).

In summary, a high glycolytic metabolic state promotes Th17 cell 
differentiation, significantly contributing to their plasticity and patho-
genic potential. Additionally, high salt intake and EPA influence the 
cytokine network and Th17 cell differentiation, impacting the process of 
EAE and MS.

3. The interaction between Th17 cells and the central nervous 
system in MS

Previous studies suggest that Th17 cells in the CNS during MS are 
mainly derived from the peripheral immune system. A meta-analysis 
showed increased Th17 cells in peripheral blood and Th17 cell-related 
cytokines in the serum of MS patients (Y. F. Li et al., 2017). By 
analyzing single-cell transcriptomes and surface protein, Kaufmann 
et al. identified CNS-homing T09 cluster of T cells that exhibited the 
Th17-Tfh phenotype and were enriched in the peripheral immune sys-
tem in RRMS patients (Kaufmann et al., 2021). In addition to the pe-
ripheral immune system, recent studies suggest that the choroid plexus 
(ChP) acts as a reservoir for Th17 cells and plays an important role in 
their migration into the CNS. Since Th17 cells expressed CCR6, re-
searchers investigated the CCL20-CCR6 interaction and found that 
CCL20 possibly assisted Th17 cells in migrating to ChP rather than 
crossing the BBB (Lazarevic et al., 2023). Th17 cells show a specifically 
greater ability to reach CNS through the epithelial blood-cerebrospinal 
fluid barrier (BCSFB) of the ChP and this process mainly relies on the 
epithelial ICAM-1 expression (Nishihara et al., 2020).

Th17 cells release various cytokines, including IL-17, IL-6, and IL-22, 
with IL-17 being central to pathogenic damage in the CNS. IL-17 impairs 
astrocyte function, disrupting glutamine metabolism and promoting 
glutamine excitotoxicity in MS (Kostic et al., 2017). Notably, the effects 
of IL-17 on oligodendrocytes are quite comprehensive. Liu et al. found 
that exposure to IL-17 increased Kv1.3 expression, subsequently 
inhibited the proliferation and differentiation of oligodendrocyte pro-
genitor cells (OPCs), leading to myelin loss (H. Liu et al., 2021). How-
ever, Rodgers et al. suggest that IL-17A enhanced OPC differentiation 
and maturation by stimulating extracellular regulated protein kinases 
(ERK)1/2 signaling in a dose-dependent manner. Taken together, the 
effects of IL-17 depend on the dose, timing, and developmental stage of 
OPCs. While IL-17A inhibits early multipotent progenitors, it promotes 
later-stage O4+ OPCs (Rodgers et al., 2015). Notably, the IL-17A- and 
IL-22-double-expressing Th17 cells can secrete granzyme B, which has 
cytolytic effects on human fetal neurons, potentially by targeting the 
glutamate receptor, GluR3 (Kebir et al., 2007; Ganor et al., 2007). 
Additionally, IL-1β also plays an important role in damage to spinal cord 
white matter (SCWM) (Xue et al., 2023).

Interestingly, although IL-22 is produced by pathogenic Th17, it is 
not necessary for MS development and IL-22− /− mice also develop 
similar disease to WT mice (Kreymborg et al., 2007). In addition, a 
recent study shows that the overexpression of IL-22 could inhibit the 
generation and invasion of Th17 cells into CNS, being protective for EAE 
and MS progression (Eken et al., 2021). The cytokines ELISA result 
demonstrates that in EAE, the level of IL-22 is increased during the in-
duction and peak phase of the disease, but decreased during the re-
covery phase. One possibility may be that IL-22 exerts its protective 
effects while the inflammation begins (Villoslada et al., 2011). To 
localize the IL-22 expression, researchers used immunofluorescent and 
found that compared to healthy individuals, MS patients showed 
increased IL-22 expression in astrocytes, blood vessels and MS plagues 
especially in strong astrogliosis regions. IL-22 protects astrocytes in 
TNF-α-induced inflammation conditions (Perriard et al., 2015). While 
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for oligodendrocytes in EAE, exogenous IL-22 induces its apoptosis 
through the mitogen-and stress-activated protein kinase 1 
(MSK-1)/NF-κB pathway (Zhen et al., 2017). These results suggest that 
IL-22 has comprehensive effects on different cells and the exact mech-
anisms still need exploration.

Besides, GM-CSF is produced by Th17 cells, promoting the antigen- 
representing function of antigen-presenting cells (APCs) and boosting 
the pathogenicity of Th17 cells. (Fleetwood et al., 2007). GM-CSF ele-
vates inflammatory cytokines especially IL-23 from APCs, which in turn 
promotes Th17 cell differentiation and increases GM-CSF production 
(El-Behi et al., 2011). Interestingly, GM-CSF regulation differs between 
humans and mice. In MS patients, GM-CSF expression is constrained by 
the IL-23/RORγt/Th17 axis but promoted by the IL-12/T-bet/Th1 axis 
(Noster et al., 2014). Conversely, IL-23 and RORγt can induce GM-CSF 
production in EAE mice (Codarri et al., 2011).

Besides different cytokines produced by Th17 cells, other inflam-
matory and cellular elements and molecule pathways are also impli-
cated in the immune dysfunction of CNS in MS. CCR1 is a chemokine 
detected increased in inflammatory tissues and MS brain lesions. 
Detected by flow cytometry, EAE mice treated with CCR1 antagonist J- 
113863 are found to have decreased levels of GM-CSF, NF-κB-expressing 
CD4+T cells in the spleen, while anti-inflammatory cytokines IL-10 and 
IL-27p28 are increased (M. A. Ansari et al., 2022a,b). In line with this, 
EAE mice treated with J-113863 show decreased IL-17-expressing 
CD4+T cells, IL-17 mRNA expression and STAT3 signaling in brain tis-
sues, proving the pro-inflammatory effects of CCR1 (Al-Mazroua et al., 
2022).

3.1. The interaction between Th17 cells and the blood-brain barrier 
(BBB) in MS

The integrity of BBB is maintained by the neurovascular unit (NVU), 
including various cells, high expression of tight-junctions (TJs)-related 
molecules, and low expression of leukocyte function-associated adhe-
sion molecules (LFA) (Nishihara et al., 2022).

Th17 cells interact with BBB-related cells mainly by communicating 
with vascular endothelial cells (VECs) and astrocytes to alter adhesion 
molecules and cytokines, inducing inflammation. Th17 cells secrete 
mass pro-inflammatory cytokines that activate VECs to express re-
ceptors, impairing BBB and recruiting more inflammatory cells to CNS 
through chemokine signaling. Researchers observe that the increased 
levels of CCL2 and CXCL1 produced by VECs under the stimulation of IL- 
17 recruit immune cells. These results in further increased levels of pro- 
inflammatory cytokines in CNS (Wojkowska et al., 2017). Additionally, 
IL-17A induces VECs to produce reactive oxygen species (ROS), causing 
a decline in TJs-related molecules (Huppert et al., 2010). Notably, even 
though IL-17 increases the permeability of BBB, studies demonstrated 
that IL-26 produced by non-pathogenic Th17 cells could maintain the 
integrity of BBB. VECs stimulated by IL-26 expressed ascending junc-
tional adhesion molecules (JAM1) and claudin5 (CLDN5) to enhance the 
tight junctions of BBB (Broux et al., 2020). Collectively, the interaction 
between Th17 cells and VECs depends on the pathogenicity of Th17 
cells. IL-17 secreted by pathogenic Th17 cells can improve BBB perme-
ability, while IL-26 produced by non-pathogenic Th17 cells is involved 
in BBB homeostasis. Importantly, a current study detected the expres-
sion of IL-17 receptor and IL-22 receptor in human BBB-endothelial 
cells. The treatment of IL-17 significantly induces the secretion of IL-6 
and CXCL8 and decreases the expression of tight junction-associated 
molecules (occludin and zonula occludens-1) in human 
BBB-endothelial cells. These findings provide crucial pre-clinical evi-
dence of Th17 in BBB disruption during MS pathogenesis (Kebir et al., 
2007).

Glial fibrillary acidic protein (GFAP) is a protein highly expressed in 
activated astrocytes. During EAE, it is observed in the white matter and 
grey matter of lumbar medullar of WT mice, while is only observed in 
white matter in α4− /− mice (Prajeeth et al., 2017). Chemokines from 

Th17 cells can induce an inflammatory phenotype of astrocytes. Th17 
cells generally express CCR6, and its ligand CCL20 is faintly expressed in 
astrocytes of healthy people. However, MS patients are observed to have 
higher expression of CCL20 in GFAP+ astrocytes, attracting CCR6+

Th17 cells to the inflamed area in the CNS (Reboldi et al., 2009). In 
primary astrocytes, IL-17A/F promotes IL-6/R-induced CCL20 expres-
sion by activating NF-κB and regulating the CCL20 promoter (Meares 
et al., 2012). However, a recent study using CCR6-KO mice and 
CCL20-KO mice by CRISPR/cas9 suggests that CCL20/CCR6 axis may 
not be necessary for Th17 cell migration and may be compensated by 
other chemokines (Sachi et al., 2023). Therefore, the mechanisms of 
Th17 cell migration to the CNS by chemokines still need further explo-
ration. Th17 cells also regulate the expression of cytokine receptors in 
astrocytes to promote their phenotype change. By co-culturing Th17 and 
astrocytes, researchers reported that the expression of astrocytic 
IL-17RA was significantly increased in the spinal cord and cerebellum, 
especially during the onset and peak phase of EAE. In accordance with 
this, gene ontology analysis suggests that the gene change in activated 
astrocytes is related to immune activation and pro-inflammatory cyto-
kine signaling (Milne et al., 2024). In the IL-17-activated astrocytes of 
EAE mice, lncRNA AK018453 is upregulated, promoting the TGF-β 
receptor-associated protein 1 (TRAP1)/Smad signaling pathway in as-
trocytes to enhance the secretion of pro-inflammatory cytokines (Q. 
Zhang et al., 2022). In EAE, the expression of Rorc in the 
astrocyte-deficient spinal cord is lower than in the control group, sug-
gesting that activated astrocytes promoted the infiltration of Th17 cells 
(Prajeeth et al., 2017). The activated astrocytes promote the secretion of 
CCL2, CCL20, CXCL10, CXCL12, IL-1β, IL-6, and other cytokines, further 
recruiting Th17 cells. The synergy between Th17 cells-derived IL-17 and 
TNF activates astrocytes, creating a vicious cycle of inflammation 
(Prajeeth et al., 2017; Z. Q. Li et al., 2022; Murphy et al., 2010). 
Astrogliosis is a typical sign of EAE, accompanied by upregulated 
expression of connexin 43 (Cx43) gap junction channel proteins. Re-
searchers found that deleting Cx43 in astrocytes decreases Th17 cell 
infiltration in the CNS and the CNS-permeable Cx blocker IN-0602 
reversed astrocytes into an anti-inflammatory phenotype, providing a 
novel therapeutic target (Takase et al., 2024). Altogether, the mecha-
nisms of Th17 cells communicating with astrocytes mainly focus on the 
secretion of chemokines and other cytokines to promote inflammatory 
phenotypes.

Adhesion molecules crucially control the Th17 cells trafficking 
across the BBB into the CNS. Increased integrin α3 in Th17 cells pro-
motes the expression of migration-related genes in Th17 cells. Integrin 
α3 can also interact with laminin α5, an important composition of BBB to 
mediate the infiltration of Th17 cells into CNS (Park et al., 2023). Th17 
cells can also infiltrate the CNS without α4 integrin but require β2 
integrin. Nevertheless, under α4 chain and α4β7 integrin blockade, 
Th17 cells can directly enter the cerebrum but not the spinal cord, 
causing atypical EAE. This indicates the crucial role of these integrins in 
Th17 cell adhesion and the development of EAE. In addition, dual 
immunoglobulin domain-containing cell adhesion molecule (DICAM), 
which is preferentially produced by Th17 cells, slows Th17 cell move-
ment and promotes their adhesion on BBB-ECs (Charabati et al., 2022). 
Intercellular cell adhesion molecule (ICAM-1) mediates the adhesion 
between white cells and VECs. During the primary stage of EAE, ICAM-1 
on APCs facilitates the formation of immune synapses between T cells 
and dendritic cells (DCs), activating the MOG-specific CD4+T cells. The 
adhesion and rolling process of Th17 cells in VECs cells is blocked in 
ICAM-1/-2− /− mice during EAE and reveals milder EAE symptoms 
(Haghayegh Jahromi et al., 2019). Melanoma cell adhesion molecule 
(MCAM) also plays a key role in the development of EAE. Its depletion 
delays disease onset, reduces EAE symptoms, and decreases IL-17+ and 
IL-17+IFN-γ+ lymphocytes, indicating its importance in the invasion of 
Th17 cells into CNS and EAE progression (Larochelle et al., 2012).

In addition to various adhesion molecules, the low expression of tight 
and adherens junction-related molecules weakens the BBB, allowing 
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Th17 cells to invade the CNS. The most studied molecules related to MS/ 
EAE include occludin, claudin5, and ZO-1. Notably, decreased levels of 
occludin, claudin5, and ZO-1 in EAE mice are observed, together with 
the infiltration of inflammatory cells and demyelination, indicating the 
destruction of tight and adherens junctions (Guo Xiuli and Guo, 2018).

3.2. The interaction between Th17 cells and glial cells in MS

In MS pathogenesis, the interaction between Th17 cells and various 
glial cells in the CNS is responsible for the breakdown of BBB and the 
aggravation of MS and EAE. Activated leukocyte adhesion molecule 
(ALCAM) and MCAM are closely involved in the interaction between 
Th17 cells and oligodendrocytes (Jamann et al., 2024). Blocking ALCAM 
significantly reduces the interaction between Th17 cells and oligoden-
drocytes, while MCAM shows no notable change (Jamann et al., 2024). 
Act1 combines with NICD1 under IL-17A stimulation. This process ac-
tivates the NOTCH1 pathway, suppresses OPC differentiation, and 
drives demyelination. The translocation of the Act1-NICD1 complex into 
the nucleus of OPCs alters OPC proliferation. Furthermore, IL-17R may 
recruit the Fas-associating protein with a novel death domain (FADD) 
through one of Act1’s domains and promote the apoptosis of OPCs (Kang 
et al., 2013; C. Wang et al., 2017). During EAE, versican-V1 promotes 
Th17 cell polarization. Co-culturing OPCs with versican-V1 and Th17 
cells results in more severe OPC impairment, shown by more propidium 
iodide (PI) incorporation (Ghorbani et al., 2022). Additionally, Th17 
cells directly impair the myelination in oligodendrocytes by expressing 
high levels of CD29 and glutamate (Larochelle et al., 2021).

Additionally, IFN-γ/LPS-induced microglia exhibit M1 phenotype to 
promote Th17 cell differentiation by producing IL-23. A higher con-
centration of IL-1β, IL-6, and TNF-α is observed while co-culture 
microglia and Th1/Th17 cells which are characterized by secreting 
both IFN-γ and IL-17 (Prajeeth et al., 2017; Z. Q. Li et al., 2022; Murphy 
et al., 2010). Notably, CXCR3 expressed by glial cells, astrocytes and 
microglia activates extracellular regulates protein kinases (ERK), which 
inhibit the NF-κB pathway, a key signaling pathway for IL-23 and 
CCL-20, both critical for Th17 cell expansion and CNS infiltration 

(Chung and Liao, 2016). In addition to various cytokines, a recent study 
suggests that bromodomain protein 4 (BRD4) expressed in microglia, 
contributes to EAE progression by regulating related genes including 
Cst7, Ccl6 and so on. In Brd4-deficient microglia, lower expression of 
Cd40 and Vcam1 are observed, interrupting the T-microglia interaction 
and resulting in less severe EAE (Dey et al., 2024). Fig. 2 summarizes the 
interaction between Th17 cells and VECs, glial cells, and neurons in MS.

3.3. The interaction between Th17 cells and CNS-infiltrated B cells in MS

Previous studies confirm that the interaction between Th17 cells and 
B cells promotes Th17 cell differentiation and maturation, worsening 
neuroinflammation (Comi et al., 2021). In Samples from MS patients, B 
cell aggregation in the meninges was observed, which may be driven by 
Th17 cells, as higher expression of Il17f was observed (Schropp et al., 
2019). Given that B cells are antigen-presenting cells (APCs), they are 
capable of presenting myelin antigens and activating brain-homing T 
cells (Comi et al., 2021). Additionally, B cells are a major source of IL-6, 
enhancing the Th17 cell polarization (Barr et al., 2012). Bcl-6 in Th17 
cells partially regulates the phenotype of meningeal B cells by upregu-
lating transcripts related to meningeal follicular B cells (FOBc) and 
downregulating transcripts related to antigen presentation. Bcl-6 also 
influences isotype class switching, convinced by decreased IgG1, IgG2b, 
and IgG3 in the CSF from Bcl6KO-R compared to wt-R (Hartlehnert 
et al., 2021). In conclusion, previous studies have focused on the 
antigen-presenting and molecule-secreting functions of B cells, as well as 
how Th17 cells regulate B cells at the transcriptional level, yet the exact 
mechanisms still need further investigation. In conclusion, Th17 cells 
can interact with various cells including VECs, astrocytes, microglia, 
oligodendrocytes, and B cells to affect the permeability of BBB and 
aggravate MS or EAE.

4. The Th17 cells-related immune therapy in MS

For the novel treatment of MS, several immune therapies fail due to 
unexpected serious adverse events including immunological 

Fig. 2. The interaction between Th17 cells, VECs, neurons, and glial cells in MS. During the migration through the blood-brain barrier (BBB), Th17 cells express 
IL-17 to upregulate CCL2, CXCL1, and ROS in vascular endothelial cells (VECs). IL-17 and TNF cause the activation of astrocytes which express CCL20, IL-1β, and 
other cytokines to expand Th17 cell differentiation. IL-17 blocks the maturation from OPCs to oligodendrocytes and impairs oligodendrocytes, thus causing 
demyelination. Th17 cells damage neurons by producing IL-17 to increase its Ca2+ and forming immune-neuronal synapses. IL-17 produced by Th17 cells upregulates 
MHC II in microglia which present myelin-specific antigen and express IL-23 to stimulate Th17 cells, thus resulting in demyelination during MS development.
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complications and potential liver toxicity (Krämer and Wiendl, 2022; 
Ghosh, 2012; Soleimani et al., 2019; Havla and Hohlfeld, 2022). 
Daclizumab, a humanized monoclonal antibody targeted at the α sub-
unit of the IL-2 receptor (CD25), was withdrawn in 2018 for its potential 
liver toxicity and immune-mediated disorders like progressive multi-
focal leukoencephalopathy (The, 2018). In a phase III clinical trial called 
ASCEND, natalizumab treatment has no significant effect on secondary 
progressive multiple sclerosis compared to placebo and 20% of patients 
have serious adverse events (Kapoor et al., 2018). Furthermore, the 
α4-integrin antagonist Natalizumab, anti-CD20 mAbs alemtuzumab, 
and anti-CD52 mAbs cladribine are three disease-modifying therapy 
(DMT) drugs of MS (J. Guo et al., 2024). mAbs targeting Th17 
cell-related cytokines have potential therapeutic implications and are 
under investigation (D. W. Luchtman et al., 2014; Buttmann, 2010; Deiβ 
et al., 2013; Gensicke et al., 2012).

Targeting cytokines that promote Th17 cell differentiation is a 
promising approach for MS. Ustekinumab, which binds to the D1 
domain of p40, a subunit shared by IL-12 and IL-23, shows potential in 
inhibiting EAE (Papp et al., 2008). However, in a phase II study, uste-
kinumab treatment has no significant difference in the efficacy of RRMS 
compared to placebo (Martin, 2008; Segal et al., 2008). This discrepancy 
may be attributed to the interaction between the drugs and BBB and its 
role in MS. Similarly, ABT-874, a monoclonal antibody against IL-12 
receptor β1 shared by IL-12 and IL-23, shows below-average results in 
MS (Vakili et al., 2023). Despite these setbacks, IL-12/23 blockers may 
be effective in certain MS subtypes, requiring further exploration 
(Longbrake and Racke, 2009). Notably, though ustekinumab seems to be 
ineffective, its tolerability in MS remains important as demonstrated in 
other diseases. A phase I study confirms that IL-12/23 monoclonal 
antibody has tolerability in RRMS (Kasper et al., 2006). Given the 
complexity of cytokines pleiotropy, BBB obstruction, and varying dis-
ease phenotypes, more research is needed on the efficacy of the novel 
drugs in MS.

Among Th17 cells-derived cytokines, GM-CSF and IL-17 are key 
players in MS. MOR 103, a monoclonal antibody targeting GM-CSF, is 
tolerated in MS patients in a phase Ib clinical study (Behrens et al., 2015; 
Constantinescu et al., 2015). Secukinumab, a fully human monoclonal 
antibody against IL-17A approved in 2015 for the treatment of psoriasis, 
reduces MRI lesion activity in RRMS and can reduce IL-17A-induced 
levels of IL-6 in human astrocytes (Elain et al., 2014; Sanford and 
McKeage, 2015; Havrdová et al., 2016). Despite its effectiveness in 
treating skin and neurological manifestations, cases of MS exacerbation 
following secukinumab treatment have been reported (Tsiogkas et al., 
2024). Nonetheless, the relationship between MS and psoriasis and the 
effectiveness of mAbs of IL-17A in MS still need further investment.

Th17 cell differentiation is mainly controlled by JAK/STAT, NF-κB, 
and PI3K/AKT/mTOR, offering several potential therapeutic targets. For 
example, JAK1/2 inhibitors baricitinib and ruxolitinib are found effec-
tive in ameliorating EAE through suppressing JAK and then STAT 
phosphorylation, reducing the inflammatory cytokines (C. Dang et al., 
2021; Arezoo Hosseini et al., 2021). Previous research showed that the 
differentiation of Th17 cells could be suppressed by STAT3 inhibitors in 
EAE (S. F. Ahmad et al., 2023a,b; Alhazzani et al., 2021). The 
STAT-specific single-domain nanobody (SBT-100) derives from camelids 
and targets at conserved residues in Src homolog 2 (SH2) domains of 
STAT1 and STAT3. SBT-100 also suppresses the expansion of Th17 and 
Th1 cells in the brain and spinal cord, ameliorating EAE (Mbanefo et al., 
2024). Additionally, NTG-A-009 (6-aminopyridin-3-ol) reduces the 
infiltration of Th17 cells in CNS and ameliorates EAE by the inhibition of 
STAT3 phosphorylation (Acharya et al., 2018). BJ-3105, a 6-alkoxypyr-
idin-3-ol Analog, also inhibits the STAT3 phosphorylation (Ashour et al., 
2017). Notably, plant-derived natural compounds are gaining attention 
for restraining STAT3 phosphorylation, including 4-phenyl coumarin 
isolated from propolis, named cinnamoyloxy-mammeisin (CNM), 
Plumbagin (PL), berberine, and Magnolol (Franchin et al., 2022; Tansey 
et al., 2011; J.-Y. Chen et al., 2023; Qin et al., 2010). Except for targeting 

at STAT3, PL, and berberine also inhibit NF-κB, while the total flavo-
noids of Astragalus (TFA), active ingredients in Astragali Radix (AR) 
regulate both JAK/STAT and NF-κB signaling pathways (Han et al., 
2023).

Several pathways are involved in the metabolic modulation of Th17 
cells. For instance, the HIF-1α and mTOR are involved in the glycolysis. 
The blockade of mTOR with rapamycin significantly reduces the IL-17 
levels with ameliorated spinal cord damage in EAE mice (Li et al., 
2020). Additionally, the supplement of metabolic coenzyme A and 
Vitamin B5 may also limit T cell pathogenicity in MS patients (Angiari 
et al., 2024). Interestingly, dietary intake such as essential fatty acids 
EPA shows therapeutic effects in the animal models of MS as well. Thus, 
metabolic modulation may apply as a novel therapeutic strategy in the 
treatment of MS.

Besides, the anti-hCCR6 mAbs targeting at CCR6 on pathogenic 
Th17 cells are evident in suppressing Th17 cell infiltration in EAE 
(Richard et al., 2017). The selective cannabinoid 2 (CB2) receptor ligand 
Gp1a can also alleviate EAE symptoms. CB2 is a cannabinoid receptor 
expressed primarily on hematopoietic cells and activated microglia and 
it is selectively activated by Gp1a. Its early effect is the inhibition of 
Th17 cell differentiation in peripheral immune organs through 
restraining RORγt expression. Subsequently, Th17 cell accumulation in 
CNS is observed, along with the reduction of local proinflammatory 
signals, including IL-1β and TNF-α, chemokines such as CCL2, CCL5, 
CXCL10, and adhesion molecules like VCAM-1 and iNOS (Kong et al., 
2014; G. Y. Liu et al., 2022). Detailed information on Th17 cell-related 
signaling pathways in MS treatment is summarized in Table 2.

5. Conclusion

Increasing evidence indicates the importance of Th17 cells in MS 
pathogenesis especially in the local interactions between Th17 and CNS. 
Comprehensive cytokine networks control the differentiation and 
function of Th17 cells in MS. For instance, IL -6, IL-23, IL-1β, IL-21 and 
IL-11 promote the differentiation of Th17 cells, while IL-24, IL-27, IL-19 
and IL-2 inhibit the generation of Th17 cells. The transcriptional activity 
of RORγt is critical for Th17 cell differentiation, and various pathways 
also crosstalk with RORγt to modify Th17 cell differentiation. Mecha-
nism studies indicate the importance of the epigenetic modification of 
RORγt in the differentiation and pathogenicity of Th17 cells. Besides, 
metabolic factors, such as a high glycolytic metabolic state, high lipid 
biosynthesis state high salt diet, and EPA have comprehensive effects on 

Table 2 
Drugs targeting Th17-related cytokines and signaling pathways.

Target Drug Effect on Th17 differentiation and MS

IL-12/ 
23

Ustekinumab; 
ABT-874;

No significant reduction of MS 
Improvement below average level in MS patient

GM-CSF MOR 103 Tolerability in MS
IL-17A Secukinumab Reduction of MRI lesion activity in MS
JAK/ 

STAT
Baricitinib; 
Ruxolitinib; 
BJ-3105; 
CNM; 
PL; 
Berberine; 
Magnolol; 
TFA;

Downregulation of IL-6, IL-17, IL-23, TNF-α; 
Inhibition of STAT3 phosphorylation

NF-κB PL; 
Berberine;

Downregulation of iNOS, IL-6 and IFN-γ etc.

PI3K Novel 
azaindoles

Inhibition of PI3K/AKT/mTOR pathway

mTOR Sirolimus; 
Temsirolimus; 
Everolimus;

CCR6 Anti-hCCR6 
mAbs

Inhibition of Th17 migration to CNS

CB2 Gp1a Downregulation of RORγt, IL-1β, TNF-α, CCL2, 
CCL5, CXCL10, VCAM-1 and iNOS
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Th17 cell differentiation. Due to the complexity of the CNS microenvi-
ronment, the precise mechanisms and kinetic changes of Th17 cells in 
MS require further investigation.

Importantly, the interaction between Th17 cell-derived cytokines 
and other cells in the CNS such as VECs, astrocytes, microglia, and oli-
godendrocytes directly affects the permeability of BBB and aggravates 
neuroinflammation in MS. Based on the crucial roles of Th17-derived 
cytokines, potential therapeutic strategies are indicated for the treat-
ment of MS. Additionally, researches on the CNS will provide novel 
insights into the understanding of neural-immune axis, the differentia-
tion and function of Th17 cells in MS pathogenesis.

Gliosis and glial scar formation are hallmark pathological features of 
MS. Although relative studies indicated the key pathogenic roles of glial 
cells in the pathogenesis of MS, the involvement of Th17 cells is still 
largely unknown (Sen et al., 2022; J. Q. Wang et al., 2024). Thus, further 
investigation into the interactions between Th17 cells and the CNS will 
shed light on novel therapeutic interventions for MS treatment.
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