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Abstract

Social communication differences are seen in autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder
(ADHD), and obsessive–compulsive disorder (OCD), but the brain mechanisms contributing to these differences remain
largely unknown. To address this gap, we used a data-driven and diagnosis-agnostic approach to discover brain correlates
of social communication differences in ASD, ADHD, and OCD, and subgroups of individuals who share similar patterns of
brain-behavior associations. A machine learning pipeline (regression clustering) was used to discover the pattern of
association between structural brain measures (volume, surface area, and cortical thickness) and social communication
abilities. Participants (n = 416) included children with a diagnosis of ASD (n = 192, age = 12.0[5.6], 19% female), ADHD (n = 109,
age = 11.1[4.1], 18% female), or OCD (n = 50, age = 12.3[4.2], 42% female), and typically developing controls (n = 65,
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age = 11.6[7.1], 48% female). The analyses revealed (1) associations with social communication abilities in distributed
cortical and subcortical networks implicated in social behaviors, language, attention, memory, and executive functions, and
(2) three data-driven, diagnosis-agnostic subgroups based on the patterns of association in the above networks. Our results
suggest that different brain networks may contribute to social communication differences in subgroups that are not
diagnosis-specific.
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Introduction
Capacity for “sociality” can be quantified at different levels of
social cognition (cognitive processes underlying social behavior),
social behavior (observable interactions between individuals),
and social functioning (contextualized ability to interact with
others) (Kennedy and Adolphs 2012). Social behavior is a com-
plex phenotype; its expression reflects the interaction of many
neurobiological processes and sociodemographic factors. The
neuroanatomical substrates of social behavior span multiple
levels of regulation, from neurotransmitters to a system of inter-
acting and functionally specialized neural networks regulating
social and nonsocial processes (e.g., perception, interpretation,
understanding the behavior and mental states of others, affec-
tive processing, executive function, and cognitive control) (Van
Overwalle 2009; Kennedy and Adolphs 2012; Bickart et al. 2014;
Lamblin et al. 2017; Alcalá-López et al. 2018; Baribeau et al. 2019;
Porcelli et al. 2019). An emerging body of literature is beginning
to delineate these networks (Kennedy and Adolphs 2012; Bickart
et al. 2014; Alcalá-López et al. 2018; Porcelli et al. 2019). For
example, the mirroring, mentalizing, and empathy networks
are suggested to underlie different domains of social behavior
(Van Overwalle 2009; Kennedy and Adolphs 2012; Bickart et al.
2014; Porcelli et al. 2019). A recent meta-analysis used a data-
driven approach to extend these to 4 functionally segregated cir-
cuits: visual-sensory and limbic circuits (collectively responsive
to biologically relevant cues, perception/action cycles in social
cognition), an intermediate-level processing circuit (empathy
and pain tasks, preprocessed sensory input and motor response
preparation), and a high-level associative circuit (responsible for
theory-of-mind, attention, executive functioning, memory, and
spatial processes) (Alcalá-López et al. 2018).

The high complexity of the brain systems affecting social
behaviors allows for susceptibility to pathology at different
points, making social communication a final common pathway
of many neuropathological processes. It is therefore not surpris-
ing that social communication differences are present in several
psychiatric and neurodevelopmental conditions (Kennedy and
Adolphs 2012). For example, these differences are a defining
feature of autism spectrum disorder (ASD), and are frequently
associated with other neurodevelopmental disorders (NDDs)
including attention-deficit/hyperactivity disorder (ADHD) and
obsessive–compulsive disorder (OCD) (Baribeau et al. 2019). This
has motivated the study of social communication differences
as a transdiagnostic dimension, the neurobiological correlates
of which may transcend the boundaries of existing diagnostic
labels (Ameis et al. 2016; Baribeau et al. 2019). To this end,
a data-driven, diagnosis-agnostic approach was used in our
previous work to examine neurobiological and phenotypic
overlap across ASD, ADHD, and OCD (Kushki et al. 2019). The
results revealed new groupings that contained participants from
multiple diagnostic categories, highlighting shared phenotypes
and cortical thickness patterns among the diagnostic groups.
These findings are also consistent with studies reporting shared
neurobiology among NDDs in terms of brain structure and
function (Dajani et al. 2019).

Given that some overlap in neuroanatomical features has
been reported in ASD, ADHD, and OCD (Ameis et al. 2016;
Baribeau et al. 2019), it may be the case that shared brain
differences contribute to social communication differences
across these disorders. However, it is also possible that the
diagnosis-specific neuropathological features may underlie
social communication differences in these disorders. This is
supported by the notion that different cognitive and affective
processes may impact social abilities across the diagnoses.
Very few studies have examined the association between brain
features and social communication abilities in a dimensional
manner and across ASD, ADHD, and OCD, revealing mixed
results. For example, functional (Lake et al. 2019) and structural
(Aoki et al. 2017) connectivity patterns have been associated
with autistic-like social differences across ASD and ADHD.
Looking at brain structure, both diagnosis-specific and shared
patterns of association were revealed across ASD, ADHD, and
OCD (Baribeau et al. 2019). However, large confidence intervals
were reported, highlighting the high variability within and
across disorders. This large within-diagnosis variability and
between-diagnosis overlap motivates the search for other
groupings that may have similar patterns of brain-behavior
associations (Byrge et al. 2015; Ciarrusta et al. 2019). To examine
this hypothesis, we used a data-driven, diagnosis-agnostic
approach to discover subgroups of children with ASD, ADHD,
and OCD who may share similar brain-behavior associations.

Social behaviors are modulated by many interacting cog-
nitive and affective processes which may share neurobiologi-
cal bases. Although we recognize the merit and importance of
studying these processes individually, the focus of this study
was investigating system-level neurobiological heterogeneity
that ultimately results in variability in social behaviors. This
approach provides some abstraction of complexities of inter-
acting processes, compensatory mechanisms, and environmen-
tal contexts that may influence the outcomes of those with
neurobiological risk factors. Our goal was to characterize neu-
roanatomical predictors of social communication across ASD,
ADHD, and OCD and how these may differ across the empirically
derived diagnosis-agnostic subgroups.

Materials and Methods
Participants

Participants were recruited through the Province of Ontario
(Canada) Neurodevelopmental Disorders Network (POND), a
multicentre research network studying NDDs. Consent and
assent was obtained as per institutional ethics board guidelines.

The included participants were 3–22 years old, had sufficient
English comprehension to complete the testing protocols, and
did not have contraindications for magnetic resonance imaging
(MRI). Diagnoses for the clinical groups were confirmed using in-
depth assessments (ASD: Autism Diagnostic Observation Sched-
ule–2 (ADOS) (Lord et al. 2000) and Autism Diagnostic Interview–
Revised (ADI-R) (Lord et al. 1994); ADHD: Parent Interview for



Brain Correlates of Social Communication Kushki et al. 5069

Child Symptoms (PICS) (Ickowicz et al. 2006); OCD: Kiddie Sched-
ule for Affective Disorders and Schizophrenia (K-SADS) and the
Children’s Yale–Brown Obsessive Compulsive Scale (CY-BOCS)
(Scahill et al. 1997)). The typically developing (TD) controls did
not have a neurodevelopmental, psychiatric and/or neurological
diagnosis, were born after 35 weeks gestation, and did not
have a first-degree relative with a neurodevelopmental condi-
tion. Having complete responses for the Social Communication
Questionnaire (SCQ) (Rutter et al. 2003a) social communication
questions was an inclusion criterion.

Behavioral Measures

Our analyses focused on “autism-like” social communication
differences, quantified using the SCQ-life-time version. The
SCQ is a 40-question parent questionnaire probing reciprocal
social interaction, communication, and restricted, repetitive,
and stereotyped patterns of behavior (Rutter et al. 2003a). The
SCQ has acceptable psychometric properties including internal
consistency (alpha 0.84–0.93), discriminant ADI-R (correlation
coefficients 0.73–0.82; (Rutter et al. 2003b). Of the 40-items
on the SCQ, the 28 questions relate to social communication
differences and were used after correction for age and sex. The
28 questions were determined based on alignment with the
ADI-R domains (Rutter et al. 2003b, p. 8). Additional measures
of social cognition, behavior, and function used to validate
the findings included scores on the Reading the Eyes in the
Mind task (RMET) (Baron-Cohen et al. 2001), the Child Behavior
Checklist (CBCL)—Social Problems subscale (Achenbach 1994),
and the Adaptive Behavior Assessment System-II (ABAS)—the
Social and General Adaptive Composite subscales (Oakland
and Harrison 2008). Full-scale IQ was estimated using the
age-appropriate Wechsler or Stanford–Binet scales.

Imaging Data

Measures of brain structure (volume, cortical thickness, and
cortical/subcortical volume) were used in the analyses. These
features have been consistently implicated in the neurobiology
of NDDs (Van Rooij et al. 2018; Hoogman et al. 2019; Boedhoe
et al. 2020), have been shown to be associated with differences
in autistic-like traits (Van Rooij et al. 2018), and specifically social
communication differences (Baribeau et al. 2019). Neuroanatom-
ical features are also suggested to serve as an intermediate
phenotype to link genetic variants such as those seen in NDDs
(Ellegood et al. 2015).

Structural MRI data were collected at the Hospital for Sick
Children, in Toronto, Ontario. Nearly half of the scans were
obtained using a 3-Tesla Siemens Trio TIM (184 participants); the
remaining participants were scanned after a hardware update
to the Siemens PrismaFIT. T1-weighted images were acquired
(Trio: TR/TE: 2300/2.96 ms; FA: 9◦; FOV: 192 × 240 × 256mm;
1.0 mm isotropic voxels; Prisma: TR/TE: 1870/3.14 ms, FA: 9◦, FOV:
192 × 240 × 256mm, 0.8 mm isotropic voxels; both scan times:
5 min). Cortical volume, surface area, and cortical thickness
were extracted from the T1-weighted images using the CIVET
pipeline (version 2.1.0) (Sled et al. 1998). The pipeline applies
a nonuniformity correction on the images (Sled et al. 1998)
followed by stereotaxic registration to the Montreal Neurologic
Institute (MNI ICBM152) template (nonlinear sixth generation
target) (Collins et al. 1994; Grabner et al. 2006). Next, brains
were masked, extracted, and classified into gray matter, white
matter, and cerebrospinal fluid. Tissue classification images

were used to generate gray and white matter surfaces (Zijdenbos
et al. 1998; MacDonald et al. 2000; Smith 2002; Tohka et al. 2004;
Kim et al. 2005) and surfaces were registered to the automated
anatomical labelling (AAL) atlas (Robbins 2003; Lyttelton et al.
2007; Boucher et al. 2009). Cortical thickness was computed
for each region of interest in the AAL atlas as the average
t-link distance between the gray matter and white surfaces
extracted by CIVET distance (30 mm bandwidth heat-kernel
smoothing). Volumes for subcortical structures were determined
based on segmentations using the multiple automatically
generated templates (MAGeT) (Pipitone et al. 2014). Quality
assurance was carried out using CIVET’s automatic quality
control pipeline, relaxed slightly such that scans that produced
surfaces with fewer than 150 surface–surface intersections
and self-intersections per hemisphere were included. This
cutoff was chosen to represent a reasonable trade-off between
including manually identified high quality scans and excluding
manually identified low quality scans in a subset of the data.
Further scans with gross subcortical segmentation failures were
excluded where at least one atlas structure was not identified
in the segmentation.

The above measurements were linearly regressed against
age, sex, total gray matter volume, and scanner type in a sequen-
tial manner and the z-scored residuals were used in subsequent
analyses.

Analysis

Pipeline
We used a machine learning pipeline (Supplementary Fig. 1) for
regression clustering. The pipeline entails three steps. First, a
Gaussian mixture model is used to cluster participants using a
given brain measure (volume, cortical thickness, surface area)
and SCQ. A Gaussian mixture model is a probabilistic model
that assumes the data points in a sample are generated from
a mixture of a finite number of Gaussian distributions with
unknown parameters. The model parameters are estimated
using the expectation–maximization (EM) algorithm. We used
the Bayesian Information Criterion (BIC) to estimate the number
of clusters (mixtures) within the range of one to five clusters
(range determined based on visual inspection of the data). Next,
linear regression analysis was used to test the association of
SCQ and each brain measure within each cluster. Each time
a significant regression coefficient was found, the respective
entry in a feature-participant matrix was incremented. To
improve stability and generalizability of our results, bagging
(Breiman 1996) was used. Bagging is a method for generating
and aggregating decisions based on multiple random subsets
of data to improve the accuracy, stability, and generalizability
of machine learning algorithms (Dudoit and Fridlyand 2003).
For this study, a full run of the pipeline consisted of 125 000
subsamples (bootstrapping), each using a random subset of 63%
of participants (Breiman 1996).

Clustering
The above pipeline yielded a feature-participant significance
frequency matrix. Each entry (b,p) of this matrix indicated how
frequently a participant, p, appeared in a subsample where a
brain measure b was significantly associated with the SCQ social
communication score. Hierarchical clustering was then used to
cluster this matrix, with the Euclidean distance as the distance
function. Scores for each brain measure were computed as the
median of the scores across all participants in consideration

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab142#supplementary-data
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Table 1 Participant demographics. Reported values are median (interquartile range (IQR)). P values are not corrected for multiple comparisons
(6 comparisons)

ASD (n = 192) ADHD (n = 109) OCD (n = 50) TD (n = 65) Group effect (uncorrected P value)

Age 12.0(5.6) 11.1(4.1) 12.3(4.2) 11.6(7.5) 0.06
Sex (m:f) 155:37 89:20 29:21 34:31 <0.0001 Male ASD, ADHD > OCD, TD
Full-scale IQ 96.5(29.7) 102.5(20.0) 115.0(15.5) 110.0(18.0) <0.0001 ASD < ADHD<OCD, TD
SCQ 20.0(10.0) 5.0(8.0) 4.5(6.8) 1.0(3.0) <0.0001 TD < OCD, ADHD< ASD
SCQ—social
communication

14.0(9.0) 3.0(6.0) 2.0(4.0) 1.0(3.0) <0.0001 TD < OCD < ADHD < ASD

SWAN—inattention 5.0(5.0) 7.0(4.0) 0.5(3.7) 0(0) <0.0001 TD < OCD < ASD < ADHD
SWAN—hyperactivity 3.0(5.0) 3.0(6.0) 0(1.7) 0(0) <0.0001 TD < OCD < ASD < ADHD
TOCS −3.0(29.5) −17.0(45.0) 20.5(24.0) −42.0(53.5) <0.0001 TD < ADHD<ASD < OCD
CBCL—anxiety
problems

67.5(17.0) 60.0(16.0) 70.0(9.5) 51.0(4.0) <0.0001 TD < ADHD<ASD,OCD

CBCL—internalizing
problems

65.0(12.7) 65.0(14.5) 68.0(12.5) 48.0(12.0) <0.0001 TD < ASD, ADHD, OCD

CBCL—externalizing
problems

60.0(15.0) 61.0(15.0) 53.0(12.0) 40.0(14.0) <0.0001 TD,OCD < ASD,ADHD

Note: Fifty-seven of the 416 participants were missing IQ data. CBCL, Child Behavior Checklist; SWAN, The Strengths and Weaknesses of Attention-Deficit/Hyperactivity
Disorder Symptoms and Normal Behavior Scale (SWAN); TOCS, Toronto Obsessive Compulsive Scale.

of the skewed nature of the distributions. The scores can be
interpreted as the frequency with which a given brain measure
has a significant linear association with SCQ score across 125 000
randomly chosen subsets of the sample.

Cluster Validity
To confirm that the clustering result was indicative of true
connections between participants, the analyses were run on 100
sets created by randomly permuting the SCQ values. Feature-
participant entries were retained only if they were different than
those from the randomly permuted data at a significance the
level of 0.05.

Post-hoc Statistical Analyses
Phenotypic and behavioral characteristics were compared using
the Kruskal–Wallis test given the non-normal nature of the data.
False discovery rate (FDR) or Bonferroni corrections were used
where multiple comparisons were performed.

Regression clustering and statistical analyses were con-
ducted using Python 3.6.1 and R 3.3.3.

Results
Participants

The dataset used in the analyses was pulled from POND
database in December 2019. Of the 613 scans available,
197 were excluded due to failed quality control (QC; n = 89)
and 108 were excluded due to missing or incomplete SCQ
(Supplementary Table 1). Demographic information for the
remaining participants is shown in Table 1. The list of med-
ications used by participants in the study is provided in
Supplementary Table 2. The diagnostic groups in our sample
were not statistically different in age, but the ASD and
ADHD groups had a higher proportion of males and lower IQ
compared to OCD and TD groups (P < 0.0001). As expected,
there was a significant effect of diagnosis on total SCQ score
(P < 0.0001); despite the differences in median values, the
distributions of SCQ scores were highly overlapping among
groups (Supplementary Fig. 2; Supplementary Fig. 3).

Clusters

The optimal number of clusters was determined to be two
based on the Silhouette Coefficient and the Calinski-Harabasz
and the Davies-Bouldin metrics. However, in the interest of
generalizability, we present the results of hierarchical clustering
as the number of clusters, C, increases from 2 to 8. As seen in
Figure 1, two large groups of participants are evident regardless
of the number of clusters used: a cluster of participants
with NDDs (NDD cluster) and a cluster containing a mix of
participants from all groups (mixed cluster). The NDD and
mixed clusters were not significantly different in age, but the
NDD cluster had a higher proportion of males (NDD: 0.80,
mixed cluster: 0.67; χ2(1) = 8.34, P = 0.004). As seen in Figure 2,
the NDD cluster is also characterized by significantly higher
degrees of social differences, both in measures used in clustering
(SCQ-social communication: NDD: 14.0(8.0), mixed: 2.0(3.0),
χ2(1) = 307.0, P < 0.0004) and those not used in clustering. The
latter include measures of social cognition (RMET: NDD: 17.0(7.0),
mixed: 19.0(6.0), χ2(1) = 24.9, P < 0.0001), social behavior (CBCL
social problems subscale: NDD: 65.0(12.0), mixed: 54.0(11.5),
χ2(1) = 57.19, P < 0.0001), and social function (ABAS-social: NDD:
68.0(19.25), mixed: 96.0(27.0), χ2(1) = 8.34, P < 0.0001). This group
also had significantly decreased full-scale IQ (NDD: 97.0(27.5),
mixed: 108.0(18.0), χ2(1) = 41.98, P < 0.0001) and general adaptive
functioning (ABAS-General Ability Composite: NDD: 66.0(20.0),
mixed: 91.0(29.0), χ2(1) = 128.4, P < 0.0001) scores.

NDD Cluster
Looking at the two-cluster solution (C = 2; Fig. 1), the first
cluster contains participants with neurodevelopmental diag-
noses and predominantly those with ASD (NDD cluster: 86%
ASD, 26% ADHD, 16% OCD, and 3% TD). As the number of
clusters increases, this cluster further differentiated into a
“predominantly-ASD” and an NDD cluster (C = 3; predominantly-
ASD cluster: 48% ASD, 3% ADHD, 4% OCD, 0% TD; NDD cluster:
38% ASD, 23% ADHD, 12% OCD, and 3% TD), and these groupings
remain stable as the number of clusters increases to 8. The
predominantly-ASD subgroup was not significantly different
than the other participants in the NDD cluster in age or sex
proportion, but as seen in Figure 2 (C = 3), was more impaired

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab142#supplementary-data
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Figure 1. Results of hierarchical clustering. Bar plots represent percent participants from each diagnostic group in the cluster. Width of each band represents the
number of participants in the respective cluster. The NDD and mixed clusters and their subdivisions are shaded in blue and green, respectively.

on measures of social communication (SCQ-social communi-
cation, P < 0.0001), social behavior (CBCL social, P = 0.05), social
function (ABAS-social, P < 0.0001), general adaptive functioning
(ABAS-General Ability Composite, P < 0.0001), and IQ (P = 0.008).

Mixed Cluster
Looking at the two-cluster solution (C = 2), the second cluster
houses the majority of participants in the ADHD, OCD, and TD
groups as well as a small subgroup of those with a diagnosis
of ASD (mixed cluster: 13% ASD, 74% ADHD, 84% OCD, and 97%
TD). This cluster continues to differentiate into clusters with a
mix of participants from the ADHD, OCD, and TD groups. The
subgroups of the mixed cluster are not statistically different on
age, sex, proportions, or any measures of social behavior and
function except for the SCQ-social communication score (C = 4–
6; P < 0.01). Across the various cluster numbers, none of the
subgroups separated controls from the ADHD and OCD groups.

Neuroanatomical Correlates of Social Behavior

Scores were computed for brain measures based on how fre-
quently each measure was found to be significantly correlated
with the SCQ social communication score (Fig. 3). Overall, the
regions whose volume, cortical thickness, or surface area were
associated with SCQ scores came from distributed networks of
cortical and subcortical regions commonly implicated in the
social brain (Kennedy and Adolphs 2012; Alcalá-López et al. 2018)
and other cognitive processes that underlie social behavior and
function (e.g, attention, language, memory), as well as thala-
mocortical networks for visual and somatosensory processing.

Components of the default mode network (ventromedial pre-
frontal cortex (vmPFC)/dorsomedial prefrontal cortex (dmPFC),
posterior cingulate cortex (PCC), precuneus) also featured in
the top scoring regions. Across all groups, association between
SCQ and cortical thickness were mainly seen in the frontal and
occipital lobes, whereas associations with surface area were
more widespread across the cortex.

With the two-clustering solution (Fig. 3A), compared to the
mixed cluster, the NDD group was characterized by more fre-
quent associations between SCQ scores and brain measures,
predominantly featuring right/bilateral cortical and left sub-
cortical regions. Medium to large positive effect sizes (r > 0.3)
were seen in regions implicated in the social behavior, attention,
memory, and thalamocortical networks involved in sensory pro-
cessing. There was also increased association between SCQ and
components of the default mode network in the NDD group.

With reference to the three-cluster solution (Fig. 3B), within
the NDD cluster, the predominantly-ASD subgroup showed
increased frequency of association between SCQ and the
brain measures in the social brain regions, as well as the left
cuneus and the right parahippocampal gyrus (medium effect
sizes). Decreased association frequencies were found in the left
hippocampus, superior temporal gyrus, and precuneus.

To quantify the direction of the effects and differences
between clusters in SCQ-brain associations, traditional linear
regression analyses were used (Supplementary Fig. 4). Com-
paring the mixed and NDD subclusters, a significantly larger
negative slope was found for the NDD subgroup in the left
hippocampus (CA1 volume, P = 0.03; stratum volume, P = 0.02)
and thalamus (medial geniculate nucleus (MGN) volume,

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab142#supplementary-data
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Figure 2. Demographic characterization of clusters for the 2, 3, and 4 cluster solutions. Demographic characterization of clusters for the 2, 3, and 4 cluster solutions.
ASD, autism spectrum disorder; ABAS-GAC, Adaptive Behavior Assessment System—General Adaptive Composite; CBCL, Child Behavior Checklist; IQ, Intelligence

Quotient; RMET, Reading the Mind in the Eyes Test; SCQ, Social Communication Questionnaire.

P = 0.03; CN volume, P = 0.02; LP volume, P = 0.02), although
the differences did not survive FDR correction for multiple
comparisons.

Compared to the mixed cluster, a significantly larger posi-
tive slope was found for the predominantly-ASD group in the
bilateral superior temporal gyrus (surface area, P = 0.002), the
right temporal pole of the middle temporal gyrus (surface area,
P = 0.04), right parahippocampal gyrus (surface area, P = 0.01),
bilateral insula (right surface area, P = 0.02; left volume, P = 0.003),
and the left hippocampus (subcortical volume; CA1, P = 0.003;
stratum, P = 0.04; alveus, P = 0.04). After FDR correction, only dif-
ferences in the bilateral superior temporal gyrus, the left insula,
and the left hippocampus (CA1) survived.

Discussion
Subgroups

In this study, we used a data-driven, diagnosis-agnostic
approach to examine the association of brain morphology and
social behavior. In contrast to traditional statistical approaches
which use a priori group labels (e.g., diagnosis), the proposed
approach allowed for multiple types of linear associations to
emerge from the data. To increase the generalizability of the
results and decrease the risk of overfitting, we reported on
patterns that emerged consistently when different numbers of
clusters were used. Overall, our results suggest that there may be
subgroups of neurodevelopmental conditions defined by unique
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Figure 3. Frequency of association of brain measures with SCQ scores for the 2 (A) and 3 (B) cluster solutions. Only measures with association frequency significantly
higher than chance are shown. Side bar shows effect size.

patterns of brain-social behavior association. In particular, two
groups of participants emerged: a mixed group comprised of TD
participants together with the majority of those with ADHD and
OCD, but very few participants with ASD. The second cluster
was comprised of participants with NDDs; within this cluster, a
subgroup with predominantly-ASD diagnosis emerged.

The composition of these groups supports the conceptualiza-
tion of social communication differences as a transdiagnostic
dimension with neurobiological correlates that transcend the
boundaries of existing labels of ASD, ADHD, OCD, and typical
development (Ameis et al. 2016; Aoki et al. 2017; Baribeau et al.
2019; Lake et al. 2019). For example, the predominantly-ASD
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cluster contained fewer than half of those with a diagnosis
of ASD, with the others spread across the mixed and NDD
groups. Our data-driven groups were differentiated by behav-
ioral and demographic profiles not used in the clustering, with
the predominantly-ASD group showing increased impairment
in a number of domains including social cognition, behavior,
and function, attention, IQ, and adaptive functioning. Given the
pervasiveness and lack of specificity of impairments, this group
may represent a “severe neurodevelopmental difference” group,
and likely not a subtype unique to ASD.

Neuroanatomical Correlates

Overall, our results support the idea that transdiagnostic
neuropathological features may underlie social deficits in
ASD, ADHD, and OCD. This is consistent with the substantial
etiological overlap between these disorders and typical variation
in social communication ability (Robinson et al. 2016). These
results also support the notion of a continuous dimension of
ASD-like social differences, with NDDs at the extremes of this
continuum (Plomin et al. 2009; van der Meer et al. 2017). Our
findings suggest that these transdiagnostic features may not lie
in a continuous spectrum, but that different neuropathological
signatures may exist depending on the level of impairment,
regardless of the diagnostic label.

Across our entire sample, common neuroanatomical corre-
lates of social behaviors were found to be distributed across
networks of cortical and subcortical networks previously impli-
cated in social cognition/behavior as well as attention, language,
memory, and executive control. This is not a surprising finding
given that social behavior is a complex phenotype that reflects
the downstream effect of many cognitive processes. These find-
ings resonate with those of a recent meta-analysis (Alcalá-López
et al. 2018) which found that social behaviors may not be realized
by a single region or network, as well as other cross-diagnosis
investigations of neurobiological social behavior correlates (Aoki
et al. 2017; Baribeau et al. 2019; Kushki et al. 2019; Lake et al.
2019).

We found three data-driven subgroups which showed
uniqueness in some neuroanatomical correlates of social
communication behaviors. The largest and most pervasive
differences were seen between the predominantly-ASD and
the other two groups, in cortical and subcortical regions
implicated in social behaviors and memory. These results
reflect the nature of social behaviors as the final common
pathway of many interacting cognitive and affective processes
whose neurobiological bases are distributed across the brain.
We found more frequent associations between neuroanatom-
ical features commonly related to social function (e.g., the
social brain) in the predominantly-ASD group. These were
apparent across the same range of the neuroanatomical
measures as in the other groups, but only existed at higher
degrees of impairment. This may suggest higher sensitivity
to differences in neuroanatomical features as impairment
increases and may reflect differences in underlying biological
mechanisms. Future studies are needed to further investigate
this.

Relative to the mixed cluster group, the predominantly-ASD
group seemed to be differentiated by a pattern of a positive
association between social communication impairments and
surface area of regions implicated in social function (superior
temporal gyrus and insula) as well as hippocampal volume.
In this context, our results support the notion that different

mechanisms may underlie social differences across the
subgroups. Moreover, our results suggested a prominent role
for cortical surface area in contributing to social differences in
the predominantly-ASD group. Surface area is one determinant
of cortical volume, the other being cortical thickness which
was less prominently featured in our findings. Surface area
and cortical thickness are suggested to have distinct genetic
determinants and may quantify different aspects of the
underlying neural structure (number of cells within cortical
columns vs. number of columns in a cortical region) (Raznahan
et al. 2011). The literature is generally mixed on the contribution
of cortical thickness and surface area to the neuropathology
of ASD (Ecker et al. 2013; Mensen et al. 2017; Van Rooij et al.
2018). Our results may offer some explanation for this variability
and highlight the role of impairment severity as an important
stratification variable in future studies.

Implications

Overall, the findings of this study are consistent with the
previous literature reporting misalignment between the existing
diagnostic labels of ASD, ADHD, and OCD and underlying
neurobiology (Aoki et al. 2017; Baribeau et al. 2019; Kushki
et al. 2019; Lake et al. 2019). Collectivity, this emerging literature
raises questions about the validity of our existing diagnostic
categories, and whether alternative groupings should be used
for neurobiological studies of NDDs. Specifically, the diagnosis-
agnostic subgroups can provide an alternative stratification
approach for examination of biomarkers and brain-behavior
associations.

From a clinical perspective, the lack of alignment between
diagnostic labels and underlying biology questions our existing
focus on these labels for provision of services and interventions,
and motivates a needs-based approach for supporting children
with neurodevelopmental conditions.

Limitations

Our findings should be interpreted in the context of several
limitations. First, the association between brain structure and
social communication abilities may vary by age, and complex
developmental trajectories have been observed for the different
regions (Van Rooij et al. 2018). Our analyses statistically con-
trolled for the effect of age, and it is encouraging that the data-
driven clusters did not differ significantly in age. It is important
that future studies further extend this to explore the interaction
of brain and age effects on social communication. In our sample,
the majority of participants in the high SCQ range had a diagno-
sis of ASD. Future studies focused on ranges where significant
overlap in SCQ scores occurs can help to further understand
the impact of diagnoses on neural correlates of social behaviors.
Furthermore, differences in IQ can play an important role in
interpreting differences across the neurodevelopmental groups
studied here. Despite the lower IQ in our ASD group, the mean
IQ score is relatively high in our sample, and inclusion of a
broader range of IQ in future samples is needed. In addition, the
inclusion of a developmental delay control group could further
clarify the role of overall cognitive ability in driving the group
differences found in this study. Finally, the sample size used for
the analyses reported in this paper was limited, with unequal
distribution of participants across the diagnostic groups. A larger
control group may help to further characterize the variability in
the nonspecific group.
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Conclusion
We examined the neuroanatomical correlates of social abilities
across ASD, ADHD, OCD, and typical development. Our results
revealed associations with social communication symptoms
in distributed cortical and subcortical networks implicated in
social behaviors, language, attention, memory, and executive
functions. Based on these associations, we found a group of
participants with predominantly-ASD diagnoses which showed
high impairments across a number of functional domains, a
neurodevelopmental group which contained participants with
diagnoses of ASD, ADHD, and OCD, and a mixed group which
included TD participants as well as the majority of those with
ADHD, and OCD.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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