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Two closely related mitogen-activated protein (MAP)

kinases, extracellular signal-regulated protein kinase (ERK)1

and ERK2, are known to be involved in the regulation of cell

proliferation. These ubiquitous protein-serine/threonine

kinases are well known as key players in signaling pathways

downstream of growth-factor receptor-tyrosine kinases,

cytokine receptors and G-protein-coupled receptors [1];

they often indirectly mediate the actions of members of the

Ras family of small GTPases. Gain-of-function mutations

have been implicated in more than 30% of human tumors,

but chronic activation of Ras by mutated mitogen receptors

occurs in even higher frequency than this [2]. Most pre-

viously published work has inferred that ERK1 and ERK2

are commonly regulated and that they target the same

substrates. In this issue of the Journal of Biology, however,

Riccardo Brambilla and colleagues [3] provide compelling

evidence that the two ERK proteins in fact counteract each

other in the regulation of the cell-proliferation effects of

Ras in mouse fibroblasts. 

Vantaggiato and Formentini et al. [3] have demonstrated

that induced reduction of ERK1 expression using antisense

constructs leads to enhanced ERK2 function and increased

Ras-dependent cell proliferation, whereas knockdown of

ERK2 expression has the opposite effect on cell growth. Fur-

thermore, they found that catalytically inactive (knockdown

or KD) and active (wild-type or WT) forms of ERK1 were

equally capable of inhibiting oncogenic Ras-mediated cell

proliferation, cell colony growth in soft agar, and tumor for-

mation in nude mice. These findings run counter to the

popular notion that the ERK1 and ERK2 MAP kinases,

which share 83% amino-acid identity, have similar if not

the same functions [1].

At first glance, it is extraordinary that ERK1 can inhibit

oncogenic Ras-mediated cell proliferation, given that it was

thought that ERK1 and ERK2 have the same targets and

functions. Ras mediates the recruitment of the protein-

serine/threonine kinases Raf1 and RafB to the plasma mem-

brane, where they become phosphorylated and activated by

several other protein kinases. In turn, the Rafs phosphory-

late and activate the MAP kinase kinases MEK1 and MEK2,

which then phosphorylate and stimulate ERK1 and ERK2.

Hyperactivation of Ras and other oncoproteins that stimu-

late this canonical MAP kinase pathway can induce apopto-

sis; Vantaggiato and Formentini et al. [3] have shown,
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however, that the antagonistic effects of ERK1 on Ras action

are not simply due to an overall gain of MAP kinase activity

that elicits a feedback inhibition response. 

To explain their surprising observations, Vantaggiato and

Formentini et al. [3] have proposed a simple competition

model for the interaction of ERK1 and ERK2 with their

immediate upstream activating kinases MEK1 and MEK2.

They argue that ERK1 might act by displacing ERK2 from

MEK1 and MEK2. If this were the case, it might be possible

to compensate for the effect of WT-ERK1 or KD-ERK1 on

reduction of phosphorylation of ERK2 by increasing the

levels of MEK1 or MEK2, thus reducing the amount of com-

petition. The authors [3] also found, however, that the sup-

pressive effects of WT-ERK1 or KD-ERK1 on Ras-induced cell

proliferation were even greater when a version of ERK2 was

used that was defective in its kinase activity. This indicates

that simple competition for MEK1 or MEK2 is insufficient to

account for the results entirely; there is in fact no evidence

that ERK1 and ERK2 do not compete equally for binding to

MEK1 and MEK2. 

The KiNET proteomics database [4] holds expression and

phosphorylation data for MAP kinases and hundreds of

other signaling proteins that have been quantified by

western blotting of thousands of cell and tissue extracts.

Using KiNET, it is possible to perform meta-analyses and

correlate these proteins, in order to uncover their inter-

relationships. As shown in Figure 1, this analysis reveals a

broad range of differential expression levels of ERK1, ERK2,

MEK1 and MEK2 in organs, tissues and cultured cell lines.

The protein levels of ERK1 were more than double the ERK2

levels in two-thirds of 30 different mouse and human

tumor cell lines examined; only one cell line showed a

modest 30% increase in levels of ERK2 relative to ERK1

(data not shown). Remarkably, MEK2 levels were also typi-

cally double those of MEK1 in these cell lines. These same

trends were found when 33 different mouse and human

tissues and organs were also tested for expression of these

kinases (Figure 1). In view of these findings, it is somewhat

ironic that MEK1 tends to dominate the discussion within

the scientific literature, as revealed by a simple PubMed

search (1,772 MEK1 citations; 156 MEK2 citations).

Although measurement of the expression levels of target pro-

teins can provide some clues about their potential roles in

biological processes, specific quantification of the function-

ally active forms of the proteins can give far more insights.

Queries of the KiNET database [4] enabled me to assess the

phosphorylation status of ERK1, ERK2, and MEK1/MEK2 at

their activation sites in 116 human and rodent cell lines.

Only aggregate data was available for MEK1 and MEK2,

because MEK1 phosphorylation-site-specific antibodies

recognize both kinases identically, and the two MEKs also

co-migrate closely on western blots. Figure 2 shows the

results from the specific analysis of 69 human cell lines. It is

evident that there is huge variability in the phosphorylation

status of these kinases across the cell lines examined, and

several lines lacked detectable phosphorylation of one or

more kinases. These findings show no apparent correlation

between the levels of either active ERK1 or active ERK2 and

cell proliferation. Of the 116 cell lines, however, 40% had

twofold or higher levels of phospho-ERK2 than of phospho-

ERK1 (59% had 25% or more phospho-ERK2 than

phospho-ERK1). By contrast, only 8.6% of the cell lines

showed twofold or higher levels of phospho-ERK1 relative to

phospho-ERK2 (18% of the cell lines showed 25% or more

phospho-ERK1 than phospho-ERK1). 

Elevated phosphoprotein levels detected by western blotting

with phosphorylation-site-specific antibodies can reflect a

rise in the number of protein molecules (if the stoichiometry

of phosphorylation is unchanged), increases in the rates of

phosphorylation, or reductions in the rates of dephosphory-

lation of these proteins. In most cell lines the phosphoryla-

tion signals were higher for ERK2 than for ERK1, whereas the

total protein levels of ERK2 were generally much lower than

those of ERK1. This indicates that, in general, ERK2 was pref-

erentially activated over ERK1 in the proliferating cells. If

phospho-ERK2 is more susceptible to proteolysis when it is

activated, that could also account for the lower protein levels

of ERK2 relative to ERK1 in proliferating cells. 

In their study, Vantaggiato and Formentini et al. [3] have

speculated that the rates of translocation and sequestration

of ERK1 and ERK2 to the nucleus or their dephosphoryla-

tion may differ. They also point out that there could be

subtle differences in the substrate specificity of ERK1 and

ERK2. Even though these two kinases are both directed to

their phosphorylation site by proline-rich motifs and

appear to have identical preferences for the consensus phos-

phorylation site sequence in their substrates (Pro-X-Ser/Thr-

Pro) [5,6], there are additional specialized docking sites on

MAP kinase substrates, such as D-domains (a cluster of

basic amino-acid residues surrounded by hydrophobic

amino-acid residues) and DEF domains (Phe/Tyr-X-

Phe/Tyr-Pro) that might confer additional specificity [7,8].

The ability of MAP kinases to dimerize contributes yet

another level of complexity to their regulation and substrate

specificity. Over the past few years, there has been mount-

ing evidence that ERK1 and ERK2 are retained in inactive

states in the cytoplasm of cells, bound in dimeric complexes

with MEK1 and MEK2 [9,10]. Direct phosphorylation of

these MEK isoforms (human MEK1 at Ser217 and Ser221;

MEK2 at Ser222 and Ser226) by upstream kinases (such as
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Figure 1
Relative expression levels of MAP kinases and MAP kinase kinases in diverse tissues and organs. Western blotting was used to quantify the relative
protein levels of (a) ERK1 and ERK2 and (b) MEK1 and MEK2 in 306 human (Hu) and mouse (Mo) tissue and organ specimens. Values are the mean of
at least triplicate (range 3 to 38) determinations from measurements for each kinase in 33 diverse tissues and organs analyzed by Kinetworks™ Protein
Kinase Screen (KPKS) immunoblotting [4]. The mean values for kinase expression from the pooled average values from 30 different cultured tumor cell
lines evaluated with another 111 Kinetworks™ KPKS immunoblots are also shown at the top of each panel. Equivalent total amounts of proteins from
tissue or cell lysates were assayed on each immunoblot, and the relative affinities for the antibodies for their target proteins were comparable.
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Figure 2
Relative phosphorylation levels of MAP kinases and MAP kinase kinases in human cell lines. Western blotting was performed to quantify the relative
phosphorylation of ERK1 (yellow), ERK2 (blue) and MEK1 or MEK2 (purple) at their activation sites in subconfluent cultures of proliferating cells.
MEK1 and MEK2 cannot be distinguished with the antibody used. Values are the means of at least triplicate (range 3 to 54) determinations for
measurements of the phosphorylated forms of the kinases in 69 diverse human cell lines analyzed with 588 lysates by Kinetworks™ Phospho-Site
Screen (KPSS) multi-immunoblotting [4]. Cell lines have been divided into groups on the basis of their organ of origin.
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Raf1, RafB, RafA and Mos) stimulates their ability to phos-

phorylate and activate the associated ERK isoform (human

ERK1 at Thr202 and Tyr204; human ERK2 at Thr185 and

Tyr187) [1]. This also triggers the release of the ERK isoform

from its MEK partner and its subsequent reassociation into

active ERK homodimers [11-14]. MEK1 and MEK2 have

nuclear exclusion sequences that normally prevent MEK-

ERK heterodimers from accumulating in the nucleus [15].

Following their phosphorylation and release, however, acti-

vated ERK1 and ERK2 can enter the cell nucleus both by

passive diffusion and by active transport [9-11,13,16]. Once

in the nucleus, the MAP kinases can phosphorylate tran-

scription factors that are important for cell-cycle progres-

sion. Careful studies have revealed that ERK1 and ERK2

homodimers are more catalytically active than their

monomeric counterparts [14,17]. 

The ERK and MEK expression data presented in Figure 1

supports this model. There is a strong correlation between

the total combined levels of expression of ERK1 and ERK2

and the total combined expression levels of MEK1 and

MEK2 across the many organs examined (a notable excep-

tion appears to be the mouse breast). This indicates that

most of the inactive ERK1 and ERK2 in cells is bound to

MEK1 and MEK2, although there is no obvious preferential

binding of either ERK to either MEK. 

Melanie Cobb and Elizabeth Goldsmith [18], starting from

their solution of the dimeric X-ray crystallographic structure

of ERK2, proposed that the formation of an ERK2 homo-

dimer could be important for the recognition of dimeric

substrates. Many transcription factors that are targeted by

MAP kinases, such as the AP1 Fos-Jun complex, also occur

as dimers. They predicted that the occurrence of het-

erodimeric complexes of WT-ERK2 and KD-ERK2 would

result in incomplete phosphorylation of a dimeric substrate

[11]. They also noted that ERK1 and ERK2 can form hetero-

dimeric complexes, but that these are unstable. It would

seem that this model would account nicely for the findings

of Vantaggiato and Formentini et al. [3], as KD-ERK2 should

be a more potent inhibitor of active ERK2 dimer formation

than WT-ERK1 or KD-ERK1. Apart from reduced stability,

however, why would the WT-ERK1-WT-ERK2 heterodimer

not be as functional as a WT-ERK2-WT-ERK2 homodimer?

One possibility is the WT-ERK1-WT-ERK2 heterodimer will

not dock transcription-factor substrates as efficiently, as the

amino-terminal regions of ERK1 and ERK2, which are

located near the active sites of these enzymes in the dimeric

complex, are quite distinct, with ERK1 featuring an addi-

tional 17 amino acids that are not present in ERK2. Interest-

ingly, in a study of protein kinases that interact with AP1

transcription-factor complexes, ERK2 but not ERK1 was

detected [19].

The related stress-activated MAP kinase p38 would not be

expected to interact with MEK1 or MEK2, but rather with its

own upstream activating kinases, MEK3 and MEK6 [2]. As a

control, the Vantaggiato and Formentini et al. study [3] also

transfected mouse fibroblasts with p38-�, which appeared

to have relatively little effect on ERK1 and ERK2 phosphory-

lation or Ras-induced cell proliferation. In these experi-

ments, however, p38 was not stimulated. Activation of p38

by diverse cellular insults is known to inhibit ERK1 and

ERK2 activation [20,21]. Furthermore, high ratios of either

phospho-ERK1 or phospho-ERK2 relative to phospho-p38,

or ERK1/2 activity relative to p38 activity, were observed to

be strong predictors of tumorigenicity of breast, prostate,

melanoma, and fibrosarcoma cell lines in vivo [22]. One

explanation for these findings is that phosphorylated and

active p38-α and p38-δ isoforms appear to form inhibitory

complexes with ERK1 and ERK2 [20,21]. But there is also

one report of a splice variant of p38 called Mxi2 that seems

to bind and stabilize both ERK1 and ERK2 in the nucleus

to prolong their signaling [23]. There have been no reports

of p38 homodimers, although ERK5 [24] and the c-Jun

N-terminal kinase (JNK) family of MAP kinases appear to

form homodimers [11]. Heterodimerization of c-Jun with

other transcription proteins seems to be important for their

recognition for phosphorylation by JNK MAP kinases [25].

Dimerization is not only widespread among the MAP

kinases, but is also rampant in many of their upstream-

acting kinases. Although homodimerization of MEK iso-

forms has yet to be described in cells, MEK2 has been

crystallized as a homodimer [26]. Furthermore, there are

several reports of interactions of Raf1 and RafB isoforms

and the related kinase ‘kinase suppressor of Ras’ (KSR) in

homodimeric and heterodimeric complexes [27-30].

Dimerization of Ras in the plasma membrane may be essen-

tial for Raf1 homodimerization [27]. Dimers of members of

the multifunctional 14-3-3 protein family can also promote

complex formation of KSR with Raf1 [31]. There are also

numerous reports of homodimerization for many of the

other upstream kinases in the p38 and JNK MAP kinase sig-

naling pathways. These include: the Ste20-like kinases MST1

[32,33], MST2 [34], SLK [35], and TAO1 [36]; the Ste11-like

kinases ASK1 [37], MEKK2 [38], and MEKK4 [39]; and the

mixed lineage kinases DLK [40,41], MLK3 [42], and LZK

[43] (see ‘Kinases’ box for more information).

For a substantial proportion of the 515 known human

protein kinases, the appearance of two or more kinase cata-

lytic domains in the holoenzyme forms has been directly

reported or can be inferred from the high levels of homology

among related kinase subfamily members. All of the 58

receptor-tyrosine kinases probably dimerize when activated,

and this may also be true for the 20 receptor-serine/threonine
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kinases. Furthermore, the existence of heterodimeric com-

plexes between diverse receptor-tyrosine kinases (such as

between IGF1 receptor and ErbB2 [44], and between the

receptors for PDGF and EGF [45]) has been described. At

least eight non-receptor-tyrosine kinases have multiple

kinase catalytic domains, either within the same polypep-

tide chain (JAK1-3, TYK2) or in holoenzymes (Abl, FAK,

BMX, BTK) and, on the basis of the levels of homology, Arg,

Pyk2, ITK, and TEC are strong candidates as well. By con-

trast, there is no evidence for dimerization of Syk, ZAP70 or

any of the Src kinase family members, despite exhaustive

studies of these enzymes.

When it comes to the non-receptor protein-serine/threonine

kinases, eight have tandem catalytic domains (SgK069,

GCN2, MSK1, MSK2 and RSK1-4), whereas at least 59 others

have been reported to dimerize or oligomerize. Again, on the

basis of strong homology, at least another 36 protein kinases

are likely to also undergo complex formation. Some notable

exceptions for dimerization include all of the protein

kinase C isoforms and the cyclin-dependent kinases. In view

of the very limited enzymological characterization of most

protein-serine/threonine kinases, however, it may well be

that more than half of them are subject to homo- and

heterodimeric catalytic kinase domain interactions. Like the

MAP kinases, dimerization may have a profound impact on

their regulation and their substrate selectivity. 

In conclusion, dimerization has a crucial role in the regu-

lation of many kinases, and this might help to explain the

seemingly paradoxical results of Vantaggiato and Formen-

tini et al. [3]. Another important ramification of the study

[3] is that chemotherapy drugs that inhibit ERK2 more

than ERK1 could be more optimal for inhibition of onco-

genic cell proliferation, but that selective inhibition of

ERK1 might actually enhance cell growth and division and

tumorigenesis. Overall, it is clear that detailed studies of

the differences in regulation between related members of

kinase families can yield considerable insights into their

specialized functions.
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