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Osteoarthritis (OA) is a complex disease that affects articular joints and may

cause disability. The incidence of OA is extremely high. Most elderly people have the

symptoms of osteoarthritis. The physiotherapy of OA is time consuming, and the chances

of full recovery from OA are very minimal. The most effective way of fighting OA is early

diagnosis and early intervention. Liquid biopsy has become a popular noninvasive test.

To find the blood gene expression signature for OA, we reanalyzed the publicly available

blood gene expression profiles of 106 patients with OA and 33 control samples using an

automatic computational pipeline based on advanced feature selection methods. Finally,

a compact 23-gene set was identified. On the basis of these 23 genes, we constructed

a Support Vector Machine (SVM) classifier and evaluated it with leave-one-out cross-

validation. Its sensitivity (Sn), specificity (Sp), accuracy (ACC), and Mathew’s correlation

coefficient (MCC) were 0.991, 0.909, 0.971, and 0.920, respectively. Obviously, the

performance needed to be validated in an independent large dataset, but the in-depth

biological analysis of the 23 biomarkers showed great promise and suggested that mRNA

surveillance pathway andmulticellular organism growth played important roles in OA. Our

results shed light on OA diagnosis through liquid biopsy.

Keywords: osteoarthritis, blood, gene expression, signature, support vector machine, minimal redundancy

maximal relevance, incremental feature selection

INTRODUCTION

Osteoarthritis (OA) is a complex disease that affects articular joints and may cause disability
(Appleton, 2017). In the USA, 14million people have symptomatic knee osteoarthritis (KOA) (Vina
and Kwoh, 2017). Approximately 10–20% adult have OA (Bay-Jensen et al., 2018). Although OA
is considered a disease primarily for the elderly, nowadays, more than half of patients with OA are
under 65 years old. More and more young people show the symptoms of OA. The physiotherapy of
OA is time consuming, and the chances of full recovery from OA are very minimal (Nelson, 2017).
The most effective way of fighting OA is early diagnosis and early intervention. However, usually
at early stage when OA is treatable, the patients often ignore the symptoms and are reluctant to go
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to the doctor for consultation (Nelson, 2017).WhenOA becomes
serious, it is too difficult to treat this illness.

Blood is a vehicle for mRNAs from different tissues (Budd
et al., 2017). It has been widely used for the early detection
of various cancers (Zhang et al., 2017) and predictions of drug
responses (Huang et al., 2008; Zhang et al., 2012). As a complex
disease, the occurrence and development of OA involves changes
to the mRNA (Steinberg et al., 2017). The blood flow under the
subchondral bone (Aaron et al., 2018) may carry the signal of OA
(Fotouhi et al., 2018). It can be detected when the mRNA level
changes in blood (Budd et al., 2017). If so, then the detection
of OA will be much easier and more accurate. In fact, there
have been several studies of blood biomarkers for OA (Ramos
et al., 2014; Feng et al., 2015; Ahmed et al., 2016; Bay-Jensen
et al., 2018; Costa-Cavalcanti et al., 2018). For example, Ramos
et al. demonstrated that the mRNA expression of apoptotic
pathways was significantly different in the blood of patients with
OA (Ramos et al., 2014). Bay-Jensen et al. reported the use of
biochemical markers for OA, which measured the turnover of
joint tissue or the inflammatory status (Bay-Jensen et al., 2018).

To quantify the cartilage turnover, several discovered
biomarkers were used, such as PIIANP, CTX-II, ARGS, COMP,
and C2C. In serum, PIIANP and CTX-II were found to be
associated withOA progression byOsteoarthritis Initiative (OAI)
Study of FNIH (Foundation for the National Institutes of Health;
Kraus et al., 2017). ARGS was found to be associated with pain in
anterior cruciate ligament injury patients (Wasilko et al., 2016).
COMP was highly expressed in synovial fluid of patients with
OA (Lorenzo et al., 2017). C2C was significantly different among
patients with OA with no sign of cartilage damage, early signs
of OA, and radiographic OA, and it was highly expressed in the
patients with radiographic OA (Schaefer et al., 2017). In addition,
there were biomarkers for synovial inflammation and fibrosis,
such as C1M, C3M, and CRPM. They were positively correlated
with elderly symptomatic OA (Martel-Pelletier et al., 2016).

Unfortunately, many of these biomarkers were for synovial
fluid and most of them were only differentially expressed. Such
qualitative biomarkers cannot be used in clinical settings directly,
and for this reason, a blood biomarker-based quantitative
classifier was the ideal model.

To build such a useful model, we reanalyzed a publicly
available dataset from Ramos et al. (2014), which included
the blood gene expression profiles of 106 patients with OA
and 33 control samples with advanced feature selection
methods, such as minimal redundancy maximal relevance
(mRMR) and incremental feature selection (IFS), instead
of a conventional statistical test. We identified 23 blood
gene expression biomarkers. On the basis of these 23
genes, we constructed a Support Vector Machine (SVM)
classifier and evaluated its performance with Leave-One-Out
Cross Validation (LOOCV). The sensitivity (Sn), specificity
(Sp), accuracy (ACC), and Mathew’s correlation coefficient
(MCC) were 0.991, 0.909, 0.971, and 0.920, respectively.
In addition, we performed in-depth biological analysis
of the 23 biomarkers. They were involved in the mRNA
surveillance pathway and multicellular organism growth. Not
only was a quantitative classifier constructed, but also the

underlying mechanisms of OA occurrence and progression were
revealed.

MATERIALS AND METHODS

The Blood Gene Expression Profiles of
Osteoarthritis and Control Samples
We downloaded the blood gene expression profiles of 106 OA
and 33 control samples from the Gene Expression Omnibus
(GEO) database under the accession number of GSE48556
(Ramos et al., 2014). The gene expression levels were measured
using Illumina HumanHT-12 V3.0 expression beadchip. There
were 48,802 probes corresponding to 25,159 genes. The probes
representing the same gene were averaged, and the gene
expression profiles of OA and control samples were quantile-
normalized.

Unlike Ramos’s study (Ramos et al., 2014), which identified
694 genes with adjusted p-value smaller than 0.05 using linear
regression analysis and then narrowed down the genes to a
short list using functional annotation, we aimed to develop an
automatic analysis pipeline that minimized human intervention
and avoided the hand-picking during biomarker selection.
Despite the great performance achieved by Ramos et al. (2014),
we believe that there are other actionable biomarkers which may
function in a different way and we are trying to find them with
advanced feature selection methods.

FIGURE 1 | The IFS curve with the number of genes and the performance of

classifiers. The x-axis was the number of genes used for SVM classifier

construction and the y-axis was the classification Mathew’s correlation

coefficient (MCC) of the SVM classifier evaluated with Leave-One Out-Cross

Validation (LOOCV). The peak of the IFS curve was MCC of 0.920 when 23

genes were used. The sensitivity, specificity, and accuracy of the 23-gene

classifier were 0.991, 0.909, and 0.971, respectively.
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Mutual Information-Based Feature Ranking
Identifying the phenotype-associated features is one of
the basic problems in bioinformatics, and for different
problems, there are different solutions (Huang et al., 2008;
Cai et al., 2010; Zhang et al., 2012, 2015, 2016, 2017; Li
et al., 2014; Chen et al., 2018a; Wang et al., 2018). For
identifying differentially expressed genes (DEG), the most
widely used methods are the t-test, significance analysis
of microarrays (SAM; Tusher et al., 2001), and linear
regression as performed by Ramos et al. (2014). However,
usually such statistics-based methods will identify too many
DEG than we require. The redundancy between DEG is
extremely high. Many genes have very similar expression
patterns.

Unlike DEG, we needed a smaller number of signature genes
that can be applied in clinical settings. Therefore, we adopted
a mutual information-based method, i.e., mRMR (Peng et al.,
2005), which has been widely used in feature ranking (Niu et al.,
2013; Zhao et al., 2013; Zhou et al., 2015; Zhang et al., 2016;
Li and Huang, 2017; Liu et al., 2017). It considers both the
relevance between features and sample labels and the redundancy
among features and has been proven to be an effective feature
selection method, especially for gene expression analysis (Qin
et al., 2012; Zhang et al., 2014b, 2017, 2018; Zhang Y. et al.,
2014; Li et al., 2015; Zhou et al., 2015; Wang et al., 2016;
Song et al., 2017; Chen et al., 2018b). The method works like
this: let us use � to denote all the 25,159 genes, �s to denote

TABLE 1 | The 23 osteoarthritis biomarker genes.

Rank Name mRMR score

1 SERINC3 0.298

2 ADRB2 0.153

3 NUFIP2 0.100

4 UBXD8 0.08

5 MLLT6 0.081

6 TNFSF14 0.083

7 APP 0.088

8 H3F3B 0.095

9 MFAP1 0.085

10 TAOK1 0.088

11 MTSS1 0.075

12 UPF1 0.084

13 C17orf91 0.079

14 GNL3L 0.072

15 ZNF20 0.074

16 RNF34 0.075

17 SNORD38A 0.072

18 PVRIG 0.073

19 CEP250 0.077

20 LRRC33 0.073

21 COG5 0.075

22 CDC2L5 0.071

23 PELO 0.073

the selected gene set that includes m genes, and �g to denote
the n genes that will be evaluated, and one of them will be
selected.

First, the relevance of gene g from�g with sample labels l was
measured using mutual information (I) (Sun et al., 2012; Huang
and Cai, 2013):

I(g, l) (1)

As the mutual information can only be calculated between
categorical variables, the expression levels of each gene were
discretized with the thresholds of meanminus standard deviation
and mean plus standard deviation.

Then, the redundancy of gene g with selected gene set �s was
quantified:

1

m

(

∑

gi∈�s
I(g, gi)

)

(2)

As we wanted to maximize the relevance and minimize the
redundancy, the optimization goal can be characterized as follows
and the best gene form �g will be selected:

maxgj∈�g

[

I
(

gj, l
)

−
1

m

(

∑

gi∈�s
I(gj, gi)

) ]

(

j = 1, 2, . . . , n
)

(3)
After n rounds of optimization, a ranked gene list S =
{

g1′ , g2′ , . . . , gr′ , . . . , gN′
}

was obtained. The top ranked genes
had strong relevance to OA but little redundancy among each
other. In the next step, we further optimized the top 300 mRMR
genes and got the final OA biomarker.

Osteoarthritis Biomarker Optimization
Although the mRMR method can rank genes effectively, it is
still unknown how many genes should be finally selected as the
OA biomarker. Therefore, we applied a greedy method called
incremental feature selection (IFS) (Jiang et al., 2013; Li et al.,
2014; Shu et al., 2014; Zhang N. et al., 2014a; Huang et al., 2015;
Zhang et al., 2015; Chen et al., 2018a) to optimize the number
of signature genes. In this method, too few genes may miss
the important information and too many genes may introduce
noise.

During the IFS procedure, different numbers of genes were
tried and their performances were evaluated. As there were too
many combinations and the mRMR have already ranked the
genes meaningfully, the mRMR genes were tested sequentially,
i.e., in the r rounds,

{

g1′ , g2′ , . . . , gr′
}

were tested. For each
round, an SVM classifier was constructed based on the selected

TABLE 2 | The confusion matrix of the predicted and actual sample classes.

Actual OA Actual control

Predicted OA 105 3

Predicted control 1 30

Sensitivity: 0.991 Specificity: 0.909 Accuracy: 0.971
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genes and its performance was evaluated through LOOCV.
We used the R function SVM from package e1017 with
default parameters and kernel of radial to build the SVM
classifier.

To have a complete measurement of the prediction
performance, four statistics, which were the sensitivity (Sn),
specificity (Sp), accuracy (ACC), and Matthew’s correlation
coefficient (MCC), were calculated:

Sn =
TP

TP + FN
(4)

Sp =
TN

TN + FP
(5)

ACC =
TP + TN

TP + TN + FP + FN
(6)

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(7)

In Equations (4–7), TP, TN, FP, and FN were the number of
true OA, true control, false OA, and false control samples,
respectively.

On the basis of IFS results, we can determine how many
genes should be chosen finally as the OA biomarker to
achieve the best performance. As the numbers of OA
samples and control samples were not balanced, the
MCC was used as the main measurement for classification
performance.

RESULTS

The Osteoarthritis-Associated Genes
Selected and Ranked Based on the mRMR
Method
To identify the OA-associated genes, we used the mRMRmethod
that can select and rank genes based on their relevance with

FIGURE 3 | The Venn diagram of our 23 genes and the 27 genes from Ramos

et al. (2014). There were four overlapped genes, ADRB2, H3F3B, PELO, and

ZNF20, between the 23 osteoarthritis biomarker genes we identified and the

27 genes from Ramos et al. (2014). To evaluate the significance of overlap, we

calculated the hypergeometric test p-value and odds ratio, which were

9.18e-09 and 229.87, respectively. The overlap was very significant.

FIGURE 2 | The heatmap of the 23 genes in osteoarthritis and control samples. Each row represented the expression level of one gene. The warm colors meant high

expression and the cold colors meant low expression. The red and green columns were osteoarthritis and healthy samples, respectively. It can be seen that the

osteoarthritis and control samples had very different expression patterns.
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OA and their redundancy with other genes. The top 300 most
discriminative genes for OA were selected and ranked using
the mRMR method. These 300 mRMR genes will be further
optimized using the IFS method.

The Osteoarthritis Biomarker Optimization
Based on the IFS Method
As a ranked gene list, the top 300 mRMR genes included the
candidate OA biomarker genes. However, we still did not know
how many genes should be finally selected. To optimize OA
biomarker selection, we tried different number of top genes and
calculated their prediction performance. On the basis of these
performances, we plotted an IFS curve, as shown in Figure 1, in
which the x-axis was the number of genes and the y-axis was the
LOOCV MCC of the SVM classifier. It can be seen that when
the top 23 mRMR genes were used, the MCC was the highest,
i.e., 0.920. Meanwhile, the sensitivity, specificity, and accuracy of
the 23-gene classifier were 0.991, 0.909, and 0.971, respectively.
The 23 genes are listed in Table 1. The confusion matrix of the
predicted and actual sample classes is given in Table 2.

To investigate the associations of the 23 genes with OA, we
plotted the heatmap of the 23 genes inOA and control samples, as
shown in Figure 2. It can be seen that theOA and control samples
had very different expression patterns. Generally speaking, APP,
SERINC3, GNL3L, MLLT6, C17orf91, NUFIP2, TAOK1, H3F3B,
and SNORD38A were highly expressed in control samples,
whereas COG5, UBXD8, ZNF20, PELO, MTSS1, CEP250,
CDC2L5, MFAP1, RNF34, UPF1, LRRC33, TNFSF14, ADRB2,
and PVRIG were highly expressed in OA samples.

We compared our 23 genes with the 27 genes from Ramos
et al. (2014) and plotted the Venn diagram, as shown in Figure 3.
There were four overlapped genes: ADRB2, H3F3B, PELO, and
ZNF20. We evaluated the significance of overlapping using the
hypergeometric test. The p-value was 9.18e-09 and the odds ratio

was 229.87. The overlap between our 23 genes and the 27 genes
from Ramos et al. (2014) was very significant.

The Functional Analysis of the Optimal
Osteoarthritis Biomarker
We did functional enrichment analysis of 23 OA biomarker
genes using Metascape (Tripathi et al., 2015). The Gene
Ontology (GO) results are shown in Figure 4. The enriched GO
terms were GO:0032200: telomere organization, GO:1903829:
positive regulation of cellular protein localization, GO:0010389:
regulation of G2/M transition of mitotic cell cycle, and
GO:0010951: negative regulation of endopeptidase activity.

There have been many studies about the relationship between
telomere length and OA (Kuszel et al., 2015; Wiwanitkit, 2017).
OA is a typical geriatric disease and the telomere length becomes
shorter and shorter during aging. In patients with OA, the
shortening of telomeres was accelerated (Kuszel et al., 2015).
H3F3B, UPF1, and GNL3L were involved in GO:0032200:
telomere organization.

The dysfunctional regulation of cellular protein localization
in OA was reasonable. Osteoarthritis is a joint disease and the
gap junctional communication is regulated by the extracellular

FIGURE 5 | The PPI network of the 23 osteoarthritis biomarker genes. The 23

osteoarthritis biomarker genes formed two PPI clusters: the APP cluster that

included APP, RNF34, TNFSF14, CEP250, and MLLT6, and the GNL3L cluster

that included GNL3L, UPF1, TAOK1, ADRB2, and H3F3B.

FIGURE 4 | The enriched GO terms of the 23 osteoarthritis biomarker genes. The 23 osteoarthritis biomarker genes were enriched onto GO terms, such as

GO:0032200: telomere organization, GO:1903829: positive regulation of cellular protein localization, GO:0010389: regulation of G2/M transition of mitotic cell cycle,

and GO:0010951: negative regulation of endopeptidase activity.
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signal pathway (Niger et al., 2009). APP, TNFSF14, CEP250,
and GNL3L were involved in GO:1903829: positive regulation of
cellular protein localization.

There have been many theories about cell cycle and OA.
Franke et al. found that during the pathogenesis of OA,
advanced glycation end products (AGEs) influence osteoarthritic
fibroblast-like synovial cells through inducing cell cycle arrest
(Niger et al., 2009). de Andrés et al. discovered that the
demethylation of an NF-κB enhancer can induce OA by
regulating the cell cycle (de Andrés et al., 2016). APP, CEP250,
and TAOK1 were involved in GO:0010389: regulation of the
G2/M transition of the mitotic cell cycle.

It is known that several endogenous peptides have strong
inflammatory effects in the joint and they are regulated by
endopeptidase (Solan et al., 1998). Therefore, the genes from
GO:0010951: negative regulation of endopeptidase activity, such
as APP, TNFSF14, and RNF34, may play regulatory roles
in OA.

The Protein Interactions Between the
Optimal Osteoarthritis Biomarkers
The protein–protein interaction (PPI) between the optimal
OA biomarker was derived from the STRING database
(https://string-db.org/) and is shown in Figure 5. STRING is
a comprehensive database that integrates protein functional
associations from multiple sources, such as experiment and
literature (Szklarczyk et al., 2015). From Figure 5, we can see that
APP, RNF34, TNFSF14, CEP250, and MLLT6 formed a cluster
and GNL3L, UPF1, TAOK1, ADRB2, andH3F3B formed another
cluster.

Basically, the functions of the APP cluster that included
APP, RNF34, TNFSF14, CEP250, and MLLT6 were regulation
of endopeptidase activity, cell cycle, and cellular protein
localization, whereas the functions the GNL3L cluster that
included GNL3L, UPF1, TAOK1, ADRB2, and H3F3B
were involved in telomere organization and cellular protein
localization. Common function that linked the two clusters was
cellular protein localization, which indicated that the secretion
of protein into extracellular synovia was the key processes of OA.

DISCUSSION

As a common geriatric disease, OA has extremely high incidence,
especially in elder people. As the chances of full recovery from
late-stage OA are minimal, the most effective way of fighting
OA is early diagnosis and early intervention. As a popular
noninvasive test, liquid biopsy showed great potential in cancer
detection. To identify the blood gene expression signature for

OA, we studied the blood gene expression profiles of 106 patients
with OA and 33 control samples. With mRMR and IFS methods,
we identified 23 genes whose sensitivity, specificity, accuracy, and
Mathew’s correlation coefficient were 0.991, 0.909, 0.971, and
0.920, respectively. The prediction performance was excellent.
The biological function analysis of these 23 genes suggested that
there were two pathways or PPI modules associated with OA
through aging, cellular protein localization, and inflammation.
These findings may be helpful for understanding OA.

There were still some disadvantages of this work. Here, we
investigated only the gene expression levels. However, recent
studies have suggested that the genome-wide association study
(GWAS) and epigenetics approaches were also effective in OA
mechanisms (Kerkhof et al., 2010; Panoutsopoulou et al., 2011;
Rushton et al., 2014; Ramos and Meulenbelt, 2017; Simon and
Jeffries, 2017). Integrating the genetic and epigenetic data with
gene expression may provide a more comprehensive view of
OA. We surveyed the identified genes based on one expression
and found that the variant rs3815148 of COG5 was found
to be associated with OA by GWAS reports (Kerkhof et al.,
2010; Panoutsopoulou et al., 2011). Rushton et al. reported
that the methylation status of MLLT6, TNFSF14, TAOK1, and
MTSS1 was different between OA hip subtypes and LRRC33 was
hypermethylated in OA hip than OA knee (Rushton et al., 2014).
These results encourage us and others to do integrative studies of
multiomics data in OA in future.
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