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Human chorionic gonadotrophin (hCG) is the first specific molecule synthesized by the

embryo. hCG RNA is transcribed as early as the eight-cell stage, and the blastocyst

produces the protein before its implantation. hCG in the uterine microenvironment

binds with its cognate receptor, luteinizing hormone/choriogonadotropin receptor

(LHCGR), on the endometrial surface. This binding stimulates leukemia inhibitory factor

(LIF) production and inhibits interleukin-6 (IL-6) production by epithelial cells of the

endometrium. These effects ensure essential help in the preparation of the endometrium

for initial embryo implantation. hCG also effects angiogenic and immunomodulatory

actions as reported in many articles by our laboratories and other ones. By stimulating

angiogenesis and vasculogenesis, hCG provides the placenta with an adequate

maternal blood supply and optimal embryo nutrition during the invasion of the uterine

endometrium. The immunomodulatory properties of hCG are numerous and important

for programming maternal immune tolerance toward the embryo. The reported effects of

hCG on uterine NK, Treg, and B cells, three major cell populations for the maintenance of

pregnancy, demonstrate the role of this embryonic signal as a crucial immune regulator

in the course of pregnancy. Human embryo rejection for hCG-related immunological

reasons has been studied in different ways, and a sufficient dose of hCG seems to be

necessary to maintain maternal tolerance. Different teams have studied the addition of

hCG in patients suffering from recurrent miscarriages or implantation failures. hCG could

also have a beneficial or a negative impact on autoimmune diseases during pregnancy.

In this review, we will discuss the immunological impacts of hCG during pregnancy and

if this hormone might be used therapeutically.
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INTRODUCTION

In its first days of development, the trophoblast secretes an important hormone: the chorionic
gonadotrophic hormone (hCG). hCG is going to have a series of actions in the survival of the
embryo, the best known of which is progesterone secretion maintenance by the corpus luteum (1).

hCG is a glycoprotein hormone of 36–40 kDa. It is composed of two subunits, α and β, linked
with a noncovalent bond. The α subunit, composed of 92 amino acids, is encoded in chromosome
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6 and is common in various hormones of the glycoprotein
family including luteinizing hormone (LH), thyroid-stimulating
hormone (TSH), and thyroid-stimulating hormone (TSH). The
β subunit, which is different for each hormone, is encoded on
different genes on chromosome 19 (LH, hCG, and TSH) or
on chromosome 11 (FSH). The β subunit of hCG is encoded
in six different but very similar genes located in a group of
genes on chromosome 19 (2). The β subunit of hCG is, with
145, the β subunit with the highest number of amino acids
but also the largest glycosylated domain. This gives the hCG
greater stability and facilitates its rapid secretion. Unlike other
glycoprotein hormones that are synthesized by the anterior
lobe of the pituitary gland, hCG is not only produced by the
trophoblast (and mainly by the syncytiotrophoblast) but also by
malignant tumors. hCG contains four N-linked oligosaccharides
and four O-linked oligosaccharides.

hCG’s structure is similar to that of LH, but unlike LH, hCG
exists in several forms, known as classical hCG, hyperglycosylated
hCG, and the free β unit of hyperglycosylated hCG (3). Each
of these four molecules has different physiological functions.
Chorionic gonadotropins only exist in primates (in humans, this
is hCG) and in equines (named eCG for equine CG). In mice,
LH could play the same role as hCG and is secreted early by the
embryo (4).

hCG ISOFORMS

In addition to conventional hCG, there is a highly glycosylated
hCG variant, which is hyperglycosylated hCG (hCG-H). Its
β subunit has four oligosaccharide-linked Os instead of two
in classical hCG (5). This variant is massively produced
during the first trimester of pregnancy by the extravillous
cytotrophoblasts, the form of hCG that is the most massively
present during the very beginning of pregnancy. It represents
87% of the total hCG in the third week of gestation and
51% during the fourth week. Then, it decreases rapidly until
it completely disappears from the maternal blood circulation
at the end of the first trimester (6). hCG-H is known to
have an autocrine action rather than an endocrine action,
decreasing the apoptosis of trophoblast cells (7) and inducing
the implantation of the embryo (8) and trophoblastic invasion
(9). It is also massively secreted by choriocarcinomas and
germ cell tumors (5, 9, 10). A team suggested recently that
hCG-H is functionally similar to hCG, although it has lower
potency for luteinizing hormone/choriogonadotropin receptor
(LHCGR) activation (11). This result is controversial with other
results but not impossible (12, 13). hCG-H might act through
different receptors.

hCG-H monitoring is useful for predicting Down’s syndrome
(9), preeclampsia (14), therapeutic response to trophoblastic
diseases, and pregnancy predictions performed in in vitro
fertilization (15).

The free β subunit of hCG would also act like an antagonist
through the transforming growth factor beta (TGF-β) receptor
(16, 17) and is enabled to activate LHCGR (11). Like hCG-H, this
subunit would have a promotive action on cancer.

The sulfated hCG produced by the pituitary gland is hardly
detectable during the menstrual cycle. It is secreted in parallel
with LH during the cycle and is concentrated at approximately
one-fifth of the LH concentration (18–20). While these levels are
low, sulfated hCG is exactly 50 times more potent than LH (21).
Thus, sulfated hCG could perform comparable work with LH
in stimulating androstenedione production during the follicular
phase of the cycle as well as stimulating ovulation and corpus
luteum formation. During the luteal phase, it may help stimulate
progesterone production (18–21).

hCG SECRETION

hCG is one of the first molecules secreted by the embryo. Its
RNA is transcribed as early as the eight-cell stage (22), and the
blastocyst produces the protein before implantation (23, 24).
The syncytiotrophoblast highly produces this hormone after
implantation (25). Significant concentrations of hCG can already
be measured in the maternal blood 10 days after ovulation.
hCG concentration reaches its peak during the first trimester of
pregnancy. It occurs around the 10th of gestation and can be
measured 75,000 IU/L. Afterwards, the level decreases gradually
to the 19th week. Its remains basal until the end of the pregnancy,
∼15,000 IU/L. This rate remains higher than in nonpregnant
women (26, 27). It has been recently shown that during in
vitro fertilization (IVF) treatments, faster-growing blastocysts
produced significantly higher serum β-hCG concentrations 9
days after transfer than slower-growing blastocysts in fresh cycles,
but the difference was not significant by day 16 after transfer (28).

Macrophages can regulate excess hCG, known to have
teratogenic effects on fetal tissues. Human fetal tissue
macrophages are proposed to incorporate and destroy hCG
in a time-dependent manner, which protects fetal gonadogenesis
from the deleterious effects of hCG (29, 30). Specifically,
Katabuchi and his team have recently shown that hCG induces
the formation of vacuoles in human monocytes. With these
vacuoles, they look like fetal Hofbauer cells. They hypothesize
that Hofbauer cells, and more particularly their vacuoles, would
be involved in the protection of fetal tissues against unusually
high concentrations of hCG (31).

Abnormalities in the production and the circulating levels of
the several glycoforms of hCG throughout specific periods of
gestation and in the relative variations have been associated with
a large array of pregnancy complications, such as miscarriages
(32), fetal chromosomal anomalies (33), preeclampsia (34,
35), disturbances in fetal growth and development (36), and
gestational trophoblastic diseases (37). The serum β-hCG level
predicts biochemical/clinical pregnancy and singleton/multiple
pregnancy with robust sensitivity and specificity (38).

Emerging evidence suggests that prenatal exposure to selected
endocrine disrupting chemicals (EDCs) have a deleterious impact
on the fetus and long-lasting consequences in adult life as well.
Several reports have shown that in vitro effects of commonly
found EDCs, particularly bisphenol A and para-nonylphenol, can
alter hCG production, and through this action, it might exert
their fetal damage [reviewed by Paulesu et al. (39)].
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hCG (or its alpha subunit or beta subunit) is also
secreted by gestational trophoblastic neoplasia. It includes
malignant invasive mole, choriocarcinoma, and rare placental
site trophoblastic and epithelioid tumors (40). hCG can be found
in testicular cancer. Gestational choriocarcinoma and testicular
cancer have been routinely curable for over 50 years and have
cure rates approaching 95 and 85%, respectively. In contrast, hCG
production by cancers, aside from these two types, is generally
associated with a worsening of the prognosis, like in lung, liver,
or ovary cancers (41, 42). Immunization to hCG in experimental
models has been shown to have antitumor effects (43–45).

hCG ACTIONS

In 1920, Hirose showed a hormonal link between a hormone
produced by the placenta and the production of progesterone
by corpus luteum’s cells (3, 46). This hormone has been called
gonadotropic chorionic hormone. Stimulation of progesterone
production by the corpus luteum has long been the only known
function of hCG (Figure 1). This hormone induces also the
upregulation of aromatase expression and estradiol production
in human granulosa lutein cells. This effect might be mediate by
amphiregulin (47). hCG strongly stimulates the expression of its
own receptor in human luteal cells (48).

Three independent teams have shown that the
preimplantation blastocyst secretes hCG into the uterine space
that will bind to its LHCGR receptor on the deciduous surface.
In response, the decidua prepare for implantation (49–51). The

stromal cells undergo the decidualization under the effect of
hCG, after which they secrete prolactin (52). hCG also increases
the secretion of leukemia inhibitory factor (LIF) and decreases
the secretion of interleukin-6 (IL-6) by endometrial cells,
molecules known for their influence on embryo implantation
(50). It promotes the differentiation of cytotrophoblasts into
syncytiotrophoblasts (53), and it can regulate prostaglandin
synthesis (54) and the formation of cyclic AMP (cAMP)
(55). A study has shown that different forms of hCG might
stimulate trophoblastic invasion independently of the classical
hCG receptor, LHCGR (56). The glycosylation of hormones
has a direct influence on their bioactivity. Hyperglycosylated
hCG would be more beneficial than conventional hCG for the
implantation (8). Further studies are required to clarify whether
this hCG-H effect on endometrial stromal cells involves LHCGR
or TGFβ receptor (TGFβR) or both (57).

hCG also has angiogenic actions as discussed in two papers
from our laboratory (58, 59). hCG increases blood vessel
formation and the migration and maturation of pericytes in
different in vitro and in vivo models (60–63). It also has a
positive impact on the secretion of vascular endothelial growth
factor (VEGF), a well-known molecule of angiogenesis (60,
64). Recently, a study has shown that hCG regulates VEGF
through the activation of nuclear factor kappa B (NF-κB) in
luteal angiogenesis (65). hCG has protective effects on vascular
endothelial cells against oxidative stress through inhibition of
apoptosis, activation of cell survival signaling, and mitochondrial
function retention (66).

FIGURE 1 | Summary of the paracrine and endocrine actions of human chorionic gonadotrophin (hCG) and hyperglycosylated hCG (hCG-H). These two molecules

act through two different receptors, luteinizing hormone/choriogonadotropin receptor (LHCGR) and transforming growth factor beta receptor (TGFβR).
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hCG-H also displays a potent angiogenic effect. However,
hCG-H induces angiogenesis regardless of LHCGR signaling
pathways (13, 67). The antiapoptotic action of hCG-Hwould also
be achieved independently of LHCGR. The specific receptor(s)
activated by hCG-H on trophoblasts cells and, potentially, on
various decidual cells has/have not been fully identified (57).
Berndt et al. demonstrated that hCG-H displayed a potent
angiogenic effect by interacting with TGFβR (more precisely
TGFβRII). They eliminated the angiogenic effect of hCG-H
by the addition of SB431542n, the antibody against TGFβRII,
in the culture medium of their model. It was confirmed in
LHCGR-knockout mice (13). Several groups implicated hCG-H
in promoting growth and invasion of placental and germ cell
malignancies through the TGF-β signaling pathway by utilizing
potential autocrine interactions (17, 68). Structural similarity
between hCG-H and TGFβ supported this idea of interaction
between hCG-H and TGFβRII. They share a unique four-
peptide cysteine knot structure identified in several cytokines
that collectively form the cysteine knot growth factor family
(67, 69, 70). Interestingly, a study reported a woman with an
inactive mutant LHCGR who maintained a normal pregnancy
after becoming pregnant with ovum donation. This suggest that
the maintenance of pregnancy through LHCGR activation is
not unavoidable and that, during pregnancy, the main hCG
effect may be mediated by other mechanisms than LHCGR
activation (71).

The team of Gallardo has suggested that the striking
overlapping of hCG and Heme oxygenase-1 (HO-1) functions
in pregnancy could indicate that hCG hormonal effects are
mediated by HO-1 activity, which may be affected by a HMOX1
polymorphism in humans (72). HO-1 regulates angiogenesis and
vasculogenesis, and trophoblasts proliferation, migration, and
invasion, thus contributing to the adaptive changes in the uterine
circulation to pregnancy.

hCG and hCG-H are therefore considered proangiogene
molecules. By stimulating angiogenesis and vasculogenesis, they
allow the placenta to have adequatematernal blood supply during
functional endometrial invasion and optimal fetal nutrition.

A study investigated the effects of different doses of hCG on
hCG receptor-immunoreactive neuron density in the prefrontal
cortex and cerebellum of a rat model of stretozotocin-induced
Alzheimer’s disease (73). hCG administration resulted in a
significant dose-dependent increase in the number of hCG
receptor-ir neurons in the prefrontal cortex and cerebellum
(74). The same group showed that hCG attenuates amyloid-β
plaques induced by streptozotocin in the rat brain by affecting
cytochrome c-ir neuron density (75). They conclude that hCG
might be useful in patient with Alzheimer’s disease to prevent
the congophilic Aβ plaque formation and decrease cytochrome
c-immunoreactive neuron density in the brain.

IMMUNOLOGICAL ACTIONS OF hCG

The immunomodulatory properties of hCG are numerous
and important for maternal tolerance of the embryo (59).
The activation of the maternal immune system tolerance

appears essential for the embryonic development and the
implantation (76).

CD4+ T cells can be classified into the following subsets:
T helper (Th) 1, Th2, Th17, and regulatory cells T (Treg)
according to their functions. One study indicated that immunity
in patients suffering with recurrent miscarriages is dominated
by the Th1/Th2 hypothesis (77). However, the Th1/Th2
paradigm alone is not enough to explain the mechanism by
which the fetus is rejected by maternal immune cells. The
Th1/Th2 paradigm has been extended to the Th1/Th2/Th17
and Treg cell paradigm. Th17 cells and Treg have been
described as lymphocyte subsets that are different from Th1
and Th2 cells. These are known to play a major role
in the development of autoimmune diseases and infection.
Previous studies have shown that Th17/Treg imbalance can
be associated with recurrent spontaneous abortion (78, 79).
While most studies show that hCG has a suppressive effect
on T-cell proliferation (80), trophic effects of hCG have also
been reported (81). Evidence exists of a potential intersection
between the hCG and the T cell receptor (TCR) signal. In
a contradictory manner, hCG encourages trophoblast invasion
and interstitial theca cell proliferation by overmodulating
extracellular-regulated kinase (ERK) and AKT signals (82,
83); leptin production by hCG requires a dialogue between
cAMP and p38 signaling pathways in the syncytiotrophoblast
(84). Gestational trophoblastic neoplasias strongly express
programmed cell death ligand 1 (PD-L1), a protein expressed
by T cells activated. The team from Ghorani describes the
curative treatment of women with chemotherapy refractory
choriocarcinoma with Pembrolizumab (PD1 immunotherapy)
(40). This paper shows the impact that removal of T
cell regulation has on the interface between T cell and
trophoblast cells and further strengthens the debate regarding
the immunosupressive pregnancy environment in part resulting
from hCG.

Furthermore, hCG has different effects on CD4+ T cells.
During the 1970s, it was suggested that hCG might have an
effect on maternal lymphocytes (85). Since then, it has been
shown that hCG has a positive impact on the proliferation
of CD4+25+ T cells and that it attracts these cells to
the endometrium in early pregnancy (86, 87). Immune cells
located at the implantation site actively contribute to embryo
implantation (88, 89). hCG increases the frequency of murine
Treg cells in vivo and decreases their suppressive activity
in vitro (90).

hCG increases the presence of regulatory T cells and increases
the level of IL-1beta in mice (91). This hormone appears to play a
key role as a tolerancemodulator during pregnancy (90). A recent
study shows that hCG inhibits the expression of CD25 and CD28
on the surface of naive T cells (CD45RA+) and the expression
of CD25 on memory T cells (CD45R0+). Apparently, hCG
promotes the differentiation of memory T cells by increasing
the expression of CD45R0+ but reduces their functional activity
toward fetal antigens through a competitive process. hCG also
increases the production of IL-2 by naive and memory T cells.
This hormone is therefore involved in the regulation of these T
cells (92).
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By modulating the balance between inflammatory-type
Th1 cells and anti-inflammatory-type Th2, the hCG plays a
fundamental role in the implantation of the embryo (59, 93).

hCG has a positive impact on uterine natural killer (uNK)
cells, important leukocyte cells in the nongestating uterus that act
on the establishment and maintenance of embryo implantation
in women and mice (94–96). hCG regulates the proliferation
of uNKs (97) in a dose-dependent manner in vitro (98). These
cells do not express LHCGR, and hCG would act directly
on these cells through another receptor, mannose receptor
(98), which is expressed by the uNK. uNKs participate in the
remodeling of spiral arteries, a crucial vascular modification for
the vascularization of the placenta, which guarantees a sufficient
supply to the fetus (99). They also secrete proangiogenic factors
such as members of the VEGF family (100).

In a murine model, different teams demonstrated an
inhibitory effect of hCG on bone-marrow-derived dendritic cells
(DCs) as well as on peripheral and local (decidual) DCs, therefore
supporting the idea that hCG supports a tolerogenic rather than
an immunogenic DC phenotype. Furthermore, hCG influence
the differentiation and function of DCs, decreasing their ability
to stimulate T-cell proliferation (93, 101, 102).

hCG acts on other immune cells, like monocytes, by
promoting their function and secretion of IL-8 (103) and also
induces the functions of macrophages (104). By stimulating
the function of macrophages, hCG cleans the endometrium by
purifying apoptotic cells and fighting possible infections, which
are two important mechanisms in the maintenance of pregnancy.

It has been shown that hCG could increase the ability of
trophoblast cells to invade the extracellular matrix in vitro,
which is accompanied by an increase in the expression of matrix
metalloproteinase (MMP)-2, MMP-9, and VEGF and a decrease
in the expression of tissue inhibitor matrix metalloproteinase
(TIMP)-1 and TIMP-2. Peripheral blood mononuclear cells
(PBMCs) support in vitro embryo invasion, and hCG enhances
the effects of PBMCs (105).

An in vitro study supports the hypothesis that hCG is not
a regulator of cell damage from peripheral blood dendritic
cells (PBDCs). Nevertheless, in an inflammatory context, hCG
seems to maintain the delicate balance between plasmoid
dendritic cells and myeloid dendritic cells (MDCs) and seems
to retain a tolerogenic MDC1profile, which might contribute to
maintaining tolerance (106).

The administration of hCG could have an impact on
the cytokine profile expressed by the endometrium (107).
hCG directly or indirectly influences the genetic expression
of several cytokines in cell signaling, proliferation, apoptosis,
immunological modulation, tissue remodeling, and angiogenesis
in endometrial stromal cells (108). A study was performed in a
3D cell culture model to demonstrate that hCG administration
significantly alters the secretion of several cytokines in epithelial
cells, stromal cells, and both cell types together (109). hCG
inhibits the expression of tumor necrosis factor alpha (TNFα)
and interferon gamma (IFN-γ) in thematernal/fetal interface and
decreases the rate of resorption in abortive mouse models (110).
Bai et al. cultured in vitro PBMCs with different concentrations of
hCG and showed that hCG significantly inhibited IL-6 and TNFα

messenger RNA (mRNA) expression, indicating that hCG could
inhibit the production of proinflammatory cytokines (111).

Control of complement system’s activation in the feto-
maternal environment seems critical for embryo development.
One study has shown that hCG plays a role in this complement
control, particularly on decay accelerating factor (DAF) and C3
protein, in in vitro and in vivomodels (112).

Therefore, the hCG has an important immunomodulatory
function, and its effects on the cells uNK and Treg (twomajor cell
populations in the maintenance of pregnancy) demonstrate the
crucial role of this embryonic signal as an immune regulator in
the course of pregnancy. For more information on the regulation
of these immune cells by hCG, you can read the article of
Schumacher and Zenclussen (113).

hCG AND AUTOIMMUNE DISEASES

Pregnancy, which encourages a Th2-like environment,
should encourage the production of antibodies making
this type of disease more aggressive while improving
Th1/Th17-related diseases.

Indeed, pregnancy is associated with an improvement in
autoimmune disease symptoms associated with a Th1 profile
(114, 115). The administration of hCG prevents (or decreases
the severity) T-cell mediated autoimmune diseases in mice and
humans (86, 116–118).

Unfortunately, the effect of pregnancy is rather deleterious for
diseases with a Th2 cytokine profile. Pregnancy is believed to
constitute a Th2 environment, where heightened hormonal levels
may influence disease and promote its effects (119, 120). Systemic
lupus erythematosus (SLE) is thought to be a disease induced by
autoantibodies. Pregnancy-associated flares have been reported
in certain studies (114). Estrogens and prolactin have deleterious
effects on SLE (121, 122), where progesterone and testosterone
have beneficial effects (122, 123). SLE is characterized by broad-
spectrum antibody responses against autoantigens (124, 125).
Higher levels of hCG have been reported in pregnant women
with lupus (126), and nonpregnant patients with lupus also have
high levels of hCG in their blood (127). A clinical case has
been reported to show the appearance of SLE in three patients
receiving hCG to induce ovulation (128). These results suggest
that selective transductive, proliferative, and differentiative
effects of hCG on adaptive immune cells may drive autoreactive
responses in lupus environment and may also potentially provide
insights into the association between the presence of higher hCG
levels (or the administration of hCG) with the presence (or
appearance) of humoral autoimmunity (129).

Regulatory B cells can modulate the immune response
by creating an immunotolerant environment in autoimmune
diseases and infections (130, 131). Several studies have suggested
that B10 cells and Breg IL-35+ cells may play a role in
autoimmune diseases and during pregnancy (132, 133). The
combination of hCG and IL-35 induces the amplification of
Breg IL-35+ and B10 cells that play a vital role in peripheral
regulation during pregnancy (134). This phenomenon could have
an influence on autoimmunity during pregnancy. hCG has also
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been identified as an important factor regulating phenotypes
and the production of B-cell antibodies (135, 136). B1a B
cells produce autoantibodies and proliferate in response to
hCG (137).

Injections of hCG in patients are associated with ovarian
hyperstimulation syndromes (OHSSs). (138, 139), a condition
that is characterized by thrombosis that itself is related to the
presence of antiphospholipid antibodies. In addition, increased
levels of hCG have been associated with preeclampsia (74, 140),
another thrombotic disease with possible autoimmune origins
(141, 142). A study in a pregnant mouse model with lupus
shows that hCG increases autoimmune responses in vitro and
in vivo, events that are correlated with high responses at the
cytokine level. In this study, hCG had a stimulating effect on
the expression of CD40 and CD86 on B cells (129). On the
contrary, after repeated hCG injections in nonobese diabetic
mice, an induction of indoleamine 2,3-dioxygenase in dendritic
cells could be observed. It resulted in an inhibition of autoreactive
T cells and the prevention of diabetes onset (143). hCG can
have effects that accumulate or decrease diseases of the immune
system. These effects could become visible in a Th2 environment
like pregnancy.

AUTOIMMUNITY TO hCG?

Cases of anti-hCG autoimmunity have been described, where
patients have a history of repeated attempts to perform
unsuccessful IVF treatments (144). The beta subunit of hCG is
not immunogenic in women (145). Currently, the hCG vaccine
is the only vaccine against pregnancy that has passed Phase
II clinical trials. The Talwar et al. study provides evidence
that persistent anti-hCG antibodies prevent pregnancy; in 1,224
sexually active women, only 1 pregnancy was observed. The
authors also reported that fertility was restored when anti-hCG
levels in the serum dropped below 35 ng/ml and thus that the
effects of the vaccine were reversible (146). Contraception is
achieved without impacting ovulation or menstrual disturbance.

Anti-hCG antibodies have been observed in young men who
have been treated with exogenous hCG. The possible role of these
particular antibodies in establishing and maintaining infertility
is unclear. Hearn et al. reported that marmoset embryos
exposed to anti-hCG immunoglobulins did not implant (147).
Immunization against hCG has been shown to block fertility
in baboons and rhesus monkeys (148). Anti-hCG vaccination
studies in women provide evidence that a high level of antibodies
may be a cause of fertility failure (149). Nevertheless, it is clear
that not all women will develop autoimmunity to hCG after
pregnancy or assisted reproductive treatment. In this context,
a structural alteration, due to a mutation in one of the beta-
hCG genes and/or a functional abnormality of the immune
system, could be implicated. In one case of infertility described
with hCG immunization, pregnancy was achieved as a result of
plasmapheresis treatment to detoxify the patient’s body (144).
Immunotherapy could be beneficial for patients who suffered
from repeated implantation failures (RIFs) previously. The
problem would be the assessment of autoimmunity to hCG.

INFUSION OF hCG DURING EMBRYO
TRANSFER

RIF is a source of great frustration for patients. They concern
patients who have carried out several IVF treatments with
embryo transfers that have failed in pregnancy. The RIFs have
a variable definition, but the most generally used definitions
correspond to transfers of three or more embryos or 10 or more
embryos of good quality in a patient and no pregnancy was
obtain. The causes of RIF include many factors of maternal or
fetal origin (150). Unfortunately, in many patients, the origins of
RIF are not identified. A team administered intracerebral PBMCs
previously activated by hCG, and the percentage of pregnancy
was better when these activated PBMC cells were administered
in patients with RIF (151, 152).

Intrauterine hCG infusion has been proposed to improve
the success rates of embryo transfer during IVF treatments.
hCG plays an important role in synchronizing fetal and
endometrial developments. Many studies in recent years have
investigated the impact of this intrauterine hCG administration
before embryo transfer in patients with repeated implantation
failures. The results of these studies are controversial (153–155).
The differences in design and population can explain the
contradictory results. Endometrial receptivity may also affect
the effectiveness of hCG administration. Further evidence from
multicenter, randomized controlled trials are needed to confirm
the potential therapeutical intervention of hCG. Several meta-
analyses seem to show a positive effect in RIF patients (156, 157).

Since embryos can be transferred at the end of the
cleavage stage or at the blastocyst stage, the clinical effect of
hCG administration in the uterus may be different even if
performed just before the embryo transfer. The influence of this
administration on the pregnancy rate was controversial when
it took place before the transfer of cleaved embryos (158–162),
while there was no improvement in the rate when administration
was performed before embryo transfer at the blastocyst stage
(154, 163).

Following these clinical studies, various authors have studied
the impact that this administration of hCG could have on
the physiological level (Figure 2). One team showed that the
percentage of peripheral Treg was increased compared to control
patients when intrauterine hCG was administered (164). hCG
was administered in the uterus from oocyte donors 3 days after
their puncture to observe changes in the endometrium before
embryo implantation. Infusion of hCG has been associated with
endometrial synchronicity and reprogramming of stromal cell
development following ovarian stimulation. Steroid receptors,
estrogen receptor I (ESR I) and progesterone receptor (PGR),
were significantly higher in treated vs. control patients (165).

Infusion of hCG during the implant window in a nonhuman
primate model increased the expression of glycodelin by
endometrial cells (166). Glycodelin is a protein secreted by
the glandular portion of the endometrium that is expressed
during and after the implant window (167). This protein has
been suggested to play a role as an immunomodulator for the
prevention of fetal allograft rejection by maternal cells (168, 169).
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FIGURE 2 | Impact of uterine infusion of human chorionic gonadotrophin (hCG) in classical in vitro fertilization (IVF) patients and in patient suffering from repeated

implantation failure (RIF) (at least three embryos have been transferred in these patients, and no pregnancy was observed). In classical IVF patients, in most studies,

there has been no significant increase in pregnancy rate following the introduction of hCG intrauterine. Whereas in the RIF population, several studies show that it is

beneficial for the implantation of the embryo.

One study showed for the first time that the endometrial
proteome composition of RIF patients differs from fertile
controls during the window of implantation. The in vivo infusion
of hCG into the uterine cavity of RIF patients stimulated
the presence of endocytosis proteins, hypoxia-inducible factor-
1 (HIF1) signal, and chemokine production (170). They
hypothesize that the intrauterine infusion of hCG before an
embryo transfer could improve the chemokine triggered embryo-
endometrial dialogue and intensify the angiogenesis and immune
response. Another team showed that infusion of hCG increased
the endometrial Tregs and CCL2 expression in RIF patients,
while the Tregs migration was blocked with CCL2 small
interfering RNA (siRNA) or CCR2 antagonist treatment in vitro
(171). We believe that intrauterine infusion of hCG might be a
new therapy for Treg-decreased RIF patients, which need to be
explored in a larger prospective study.

hCG AND MISCARRIAGES

hCG and progesterone were analyzed concomitantly to
determine whether their levels would be able to rapidly predict
whether or not doubtful early pregnancy will continue, and
the results provided a 48-h diagnosis of viability in 41.1% of
patients (172). Another study shows that hCG and progesterone

levels 14 days after oocyte retrieval may be predictive for
continued pregnancy in patients with recurrent miscarriages
(173). Another team showed similar results with the analysis of
hCG 11 days after embryo transfer (28). hCG-H could also be
used as a predictor for progressive pregnancy vs. nonprogressive
pregnancy (174).

Recurrent spontaneous abortion (RSA) is one of the
most common complications of early pregnancy. This affects
about 10–20% of all pregnancies (175). In 80% of cases,
spontaneous miscarriages occur during the first 12 weeks
of pregnancy. The causes of embryo loss are variable and
include cytogenetic abnormalities, maternal problems (e.g., lupus
erythematosus or diabetes), uterine malformations, cigarette
smoking, or inadequate placental development (176, 177).
One study showed that hCG-related cytokines, macrophage
inflammatory protein 1 alpha (MIP1a)/hCG, granulocyte-colony
stimulating factor (GCSF)/IL-1ra, and MIP1a/TGF-beta1 ratios
after 4 weeks of pregnancy were significantly altered in women
with spontaneous miscarriages (178). hCG treatment in a
mouse model of spontaneous miscarriages increases the number
of Treg cells at the maternal/fetal interface and decreases
the number of miscarriages. Schumacher et al. suggest that
levels of hCG and Treg in the decidual and placenta of
pregnant women with RSA are lower than in normal pregnant
women (90).
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A meta-analysis of five studies was conducted to determine
whether hCG treatments could prevent miscarriage in patients.
The results of this study show that there is a nonsignificant
beneficial trend for women with RSA to receive hCG in
early pregnancy. However, this result remains ambiguous and
therefore does not demonstrate the interest of treating patients
with hCG in the event of a history of miscarriages (176). The
combination of hCG and immunoglobulin treatment on Th17+
cells and Foxp3+ Treg cells in patients with RSA was analyzed,
and the Th17/Treg ratio was decreased, which could be beneficial
for these patients (179). Another study investigated the impact of
hCG in the regulation of FOXP3+ Treg cells in patients with RSA
and may have a positive impact in these patients (155).

CONCLUSIONS

hCG is involved in many processes ensuring the smooth progress
of a pregnancy: the recognition of the pregnancy by the
maternal organism, the maintenance of the corpus luteum, the
stimulation progesterone production, the strengthening of the
implantation of the embryo, angiogenesis, and vasculogenesis
necessary for placental development, control of trophoblast

differentiation, and finally immune regulation in the maternal/
fetal interface.

These different actions have allowed this hormone to be
considered as a treatment in cases of RIF and RSA. The future
will tell if hCG is an effective tool to help these patients to improve
their uterine receptivity. We believe that patient populations
need to be more targeted to study hCG to have a beneficial effect
from this hormone. Targeting must focus on the immunological
and angiogenic profile of the patients to detect their
specific problems.
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