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In brief

The wide applicability of graphs to many

scientific domains has fueled a large

corpus of network theoretical literature.

Here, we introduce HCGA, a package that

computes a comprehensive collection of

network-based properties and uses them

as features for the highly comparative

analysis of graph datasets. Our

methodology achieves state-of-the-art

accuracy on benchmarks and provides

interpretable insights into novel datasets.
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THE BIGGER PICTURE Graphs are used to model data across many scientific domains, from relationships
in social networks to the interactions between atoms in amolecule. The study of graphs and networks has a
long history, and a vast literature exists characterizing different properties and aspects of their structure.
Here, we present HCGA, a software package that computes a large, comprehensive collection of graph
properties and uses them as features for the systematic, highly comparative analysis of graph datasets.
Our toolbox makes it possible for researchers from diverse scientific fields to easily access an extensive
set of graph-theoretical tools to generate interpretable and quantifiable insights into their data.

Production: Data science output is validated, understood,
and regularly used for multiple domains/platforms
SUMMARY
Networks are widely used as mathematical models of complex systems across many scientific disciplines.
Decades of work have produced a vast corpus of research characterizing the topological, combinatorial, sta-
tistical, and spectral properties of graphs. Each graph property can be thought of as a feature that captures
important (and sometimes overlapping) characteristics of a network. In this paper, we introduce HCGA, a
framework for highly comparative analysis of graph datasets that computes several thousands of graph fea-
tures from any given network. HCGA also offers a suite of statistical learning and data analysis tools for auto-
mated identification and selection of important and interpretable features underpinning the characterization
of graph datasets. We show that HCGA outperforms other methodologies on supervised classification tasks
on benchmark datasets while retaining the interpretability of network features. We exemplify HCGA by pre-
dicting the charge transfer in organic semiconductors and clustering a dataset of neuronal morphology
images.
INTRODUCTION

Graphs provide an elegant and powerful formalism to represent

complex systems.1 Across many scientific disciplines there are

increasing volumes of data that are naturally described as

graphs (or networks) and can leverage the extensive results in

graph theory to solve research problems. Among many others,

examples include linking the structural motifs of proteins and

their function,2–4 aiding the diagnosis of diseases using fMRI
This is an open access article under the CC BY-N
data,5 understanding structural properties of organic crystal

structures for electron transport,6 or modeling network flows,

e.g., city traffic,7 information (or misinformation) spread in a so-

cial network,8,9 or topic affinity in a citation network.10 The

growing importance of such network data has driven the devel-

opment of a multitude of methods for investigating and revealing

relevant topological, combinatorial, statistical, and spectral

properties of graphs, e.g., node centralities,11,12 assortativ-

ity,13,14 path-based properties,15 graph distance measures,16,17
Patterns 2, 100227, April 9, 2021 ª 2021 The Author(s). 1
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Figure 1. Overview of the HCGA pipeline

HCGA can be applied to a wide range of graph datasets, such as ensembles of synthetic graphs, molecular structures, cell morphologies, and social and

ecological networks, among many others. HCGA first constructs a large feature matrix for the dataset by computing for each network a wide range of graph-

theoretical properties (several thousands) that have been compiled from classic and more recent literature. This feature matrix is then used to perform statistical

analyses on the graph dataset, including supervised and unsupervised learning tasks (e.g., classification, clustering, and regression) in conjunction with any

additional information known, such as class labels, a continuous dependent variable, or node features. HCGA preserves the interpretability of the features and

provides tools (e.g., Shapley values) to characterize the importance of features for the prediction task as an aid to get insights into network-based discovery for

the dataset at hand. HCGA is an open platform which allows for the expansion of the set of graph-theoretical features, as well as allowing for the inclusion of

additional statistical analyses.

ll
OPEN ACCESS Descriptor
connectivity,18 or community detection,19,20 to name but a few in

the highly interdisciplinary area of network science.

When analyzing network datasets, or when posing a research

question in terms of network properties, it is usually not immedi-

ately clear which graph-theoretical methodologies should be

used; particularly in real-world applications, which do not

conform to clear-cut constructive assumptions and, hence,

where differences between complex systems may be subtle.

For example, we may want to identify characteristics of a social

network that aid the spread of fake news,21 or identify structural

properties that would help us predict the toxicity of a given mole-

cule22 without restricting a priori the types of graph properties to

be considered. The viability and enormous potential of highly

comparative data-driven analyses of graphs was previously

shown23; however, existing software packages that derive

summary statistics of graphs often only compute a small set of

features that are usually chosen to target a subject area (e.g.,

neuroscience24 or biology25). Despite the myriad of graph prop-

erties, there currently exists no systematic way to leverage the

wide spectrum of available measures to identify graph features

that best characterize a given problem.

Here, we introduce highly comparative graph analysis (HCGA),

a modular, expandable Python software package (the HCGA Py-

thon package is available at https://github.com/barahona-

research-group/hcga) that allows researchers to perform

massive graph feature extraction together with statistical learning
2 Patterns 2, 100227, April 9, 2021
and analysis of feature importance. Our computational frame-

work is illustrated in Figure 1 and takes both inspiration and ideas

fromHCTSA and CATCH22, powerful frameworks for time series

feature extraction.26–29 Given a set of complex systems modeled

as networks representing, e.g., molecules, proteins, neuronal

morphologies, transportation routes, or ecological or social net-

works, HCGA first extracts from each network in the set a few

thousand graph features, each encoding a different interpretable

network property. The selection of features to be extracted is

flexible and can be adapted by the researcher to the particular

problem at hand. Following the feature extraction step, each

graph in the dataset is described as a high-dimensional feature

vector, and the whole dataset is encoded as a feature matrix.

To facilitate data-driven analyses of the dataset, HCGA includes

a suite of tools for statistical learning aimed at classification,

regression, and unsupervised learning. Since HCGA preserves

the interpretability of the features, our framework also includes

in-depth feature importance analysis using Shapley additive

values (SHAP) to aid feature selection aimed at deriving scientific

insights.30 HCGA thus removes the time-consuming and subjec-

tive task of implementing individual graph-theoretical methods

for the analysis of network datasets. The structure of HCGA is

modular and open-source, allowing researchers from any

research area to contribute further graph-theoretical features;

to extend the statistical learning tools; or to improve visualization

modules for the use of the research community.

https://github.com/barahona-research-group/hcga
https://github.com/barahona-research-group/hcga


Table 1. Classification results on biochemical benchmark

datasets obtained by HCGA using the XGBoost classifier and

compared against other methodologies

Method

Datasets (biochemical networks–benchmarks)

Enzymes Proteins D&D NCI1 MUTAG

Multi-Hop34 56:1± 9:1 76:7±2:9 – 77:3±1:7 89:8±5:6

DGCNN35 38:9± 5:7 72:9±3:5 76:6±4:3 76:4±1:7 –

GIN36 59:6± 4:5 73:3±4:0 75:3±2:9 80:0±1:4 –

ECC37 29:5± 8:2 72:3±3:4 72:6±4:1 76:2±1:4 –

DiffPool38 59:5± 5:6 73:7±3:5 75:0±3:5 76:9±1:9 –

HCGA 69:0± 5:5 75:7±4:0 79:9±3:5 79:4±2:0 90:3±6:6

HCGA* 74:0± 2:4 79:3±3:5 83:8±2:6 79:5±2:1 91:5±4:9

The HCGA accuracies are obtained from the top 100 features, whereas

HCGA* accuracies are obtained from features selected by optimizing

against a validation set. The hyperparameters of the XGBoost classifier

were not optimized for any of the HCGA runs. The classification accu-

racies for MUTAG are not available for most methods due to long compu-

tation times; however, we retain this example to show that HCGA is also

capable of analyzing large datasets. Results are presented as mean ±

standard deviation.
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RESULTS

We illustrate howHCGA can be employed in three tasks aimed at

network-based scientific discovery: supervised classification,

regression, and unsupervised clustering.

Supervised classification of benchmark graph datasets
from biochemistry and social science
We evaluated the performance of HCGA for supervised classifi-

cation using known collections of labeled graphs that have been

used as benchmarks. The sets comprise five biochemical

datasets (proteins,31 enzymes,32 D&D, NCI1, MUTAG) and six

standard social media datasets (collab, reddit-binary, reddit-

multi-5k, reddit-multi-12k, IMDB-binary, IMDB-multi); see Table

S2 for details. In Tables 1 and 2, we show the classification ac-

curacy achieved on the biochemical and social datasets,

respectively, using an XGBoost classifier (with default settings)

applied to the top 100 features extracted with HCGA. Our results

show that HCGA achieves top accuracy without optimizing the

hyperparameters of the XGBoost classifier (as would be the

case in a realistic user case scenario) when compared with pop-

ular deep-learning methodologies and Kernel algorithms under

the Fair Comparison protocol.33 If we choose the best subset

of features through cross-validation, the results are improved

further (still without optimizing the classifier).

In addition to its high classification performance, HCGA pre-

serves the interpretability of features, which can then be ordered

according to their importance for each modeling problem. In the

supplemental information we exemplify a more detailed analysis

(Figures S1 and S2) of the features underpinning the classifica-

tion of the benchmark proteins dataset (classifying proteins as

enzymatic or non-enzymatic). Among the features that display

the largest impact on the prediction task we find an increased

number of cliques in enzymatic proteins, reflecting the structur-

ally stable modules necessary for catalysis (Figure S1). Our

deep-dive analysis also reveals that, despite being derived
from seemingly different areas of graph theory, many top fea-

tures are highly correlated (Figure S2) and provide similar

predictive power. This observation reflects the mathematical re-

lationships, sometimes not explicitly recognized, between many

graph features, which can still afford complementary descrip-

tions of the data. These results highlight the need to consider a

broad range of features in the analysis of networks, rather than

relying on a narrow set of properties.

Unsupervised clustering: Mapping morphological
neuron types onto cell types based on network features
To go beyond supervised classification of benchmark datasets,

we used HCGA to analyze a dataset of 444 neuronal cells from 6

layers (L1 to L6) in the rat somatosensory cortex belonging to 24

different morphological types (m-types).39,40 The neurons are

also labeled independently as belonging to three different cell

types: pyramidal neurons, interneurons, and Martinotti cells.

We represent the morphology of each neuron as a rooted tree,

with the soma as the root and basal dendrites and axons as

branches extending from the soma (Figure 2A(i)). A graph is

then constructed for each neuron by assigning a node to each

section between two branching points of the morphology.

Each node is also assigned features: path length, mean diameter

of each branch, and an annotation to differentiate the soma from

other nodes. See ‘‘Neuronal morphology dataset’’ in the experi-

mental procedures for more details.

Using HCGA, we extracted 2,112 features from the graph of

each neuron. Our aim is to compare the similarities between

neuron morphological types and their correspondence with cell

types. To do so, we construct a similarity matrix between

m-types by computing the mean 10-fold classification accuracy

between each pair of m-types: low classification accuracy be-

tween m-types indicates high pairwise similarity (Figure 2A(ii)

and ‘‘Neuronal morphology dataset’’ in the experimental proced-

ures). Applying a simple hierarchical clustering with Ward’s link-

age41 to this similarity matrix, we find clusters of m-types that

map well to cell types. In particular, a robust clustering into

four clusters naturally recovers biologically meaningful group-

ings of m-types into cell types: pyramidal, Martinotti, other inter-

neurons, as well as a group of the three most common pyramidal

m-types (L5_TTPC1, L5_TTPC2, and L23_PC). At a finer resolu-

tion, we note that clusters consist of pairs or triplets of the same

m-types belonging to different cortical layers. A deeper analysis

of feature importance in this dataset may reveal further morpho-

logical characteristics that define cell types across layers, but

such detailed study is beyond the scope of this initial illustrative

analysis.

Regressing graph features of helicene structures
against their electronic transport
As a second example of a task in scientific discovery, we apply

HCGA to predict the electronic properties of helicenes from their

structure. Helicenes are graphene-type spiral molecules with

promising optical and electronic applications due to their axial

chirality.42 We use a recently curated dataset composed of

1,344 helicene dimers (i.e., pairs of helicenes in the same trans-

lational-motif orientation),6 see Figure 2B(i). For each helicene

dimer, we create a simple molecular graph representing atoms

and their van der Waals interactions: an edge is present if the
Patterns 2, 100227, April 9, 2021 3



Table 2. Classification results on social benchmark datasets obtained by HCGA using the XGBoost classifier and compared against

other methodologies

Method

Datasets (social networks–benchmarks)

Collab IMDB-B IMDB-M REDDIT-B REDDIT-5K REDDIT-12K

Multi-Hop (RF)34 78:2± 1:5 71:6±4:4 45:2±3:5 88:9± 2:2 51:3±1:9 43:5± 1:0

DGCNN35 71:2± 1:9 69:2±3:0 45:6±3:4 87:8± 2:5 49:2±1:2 –

GIN36 75:6± 2:3 71:2±3:9 48:5±3:3 89:9± 1:9 56:1±1:7 –

ECC37 – 67:7±2:8 43:5±3:1 – – –

DiffPool38 68:9± 2:0 68:4±3:3 45:6±3:4 89:1± 1:6 53:8±1:4 –

HCGA 82:9± 1:5 74:2±4:2 47:3±3:5 91:5± 2:1 54:9±2:1 49:6± 0:8

HCGA* 83:0± 1:6 75:5±4:1 51:0±4:5 93:5± 1:9 57:9±1:5 –

The classification accuracies for REDDIT-12K are not available for most methods due to long computation times; however, we retain this example to

show that HCGA is also capable of analyzing large datasets. Results are presented as mean ± standard deviation.
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separation between two atoms is lower than the sum of their van

der Waals radii (plus a buffer of 2 Å), and the edge weight is given

by the inverse distance (more details are given in ‘‘Organic semi-

conductors dataset’’ in the experimental procedures ). The atom

types are included as one-hot encoded node features. For each

dimer, we aimed to predict the electronic transfer integral J, or J-

coupling, which describes the ease with which a charge carrier

(electron or hole) can hop from one molecule to another. The

J-couplings for each helicene dimer were previously calculated

using a hybrid DFT molecular pair calculation and the projective

method43 (see ‘‘Organic semiconductors dataset’’ in the exper-

imental procedures). The J-coupling depends on various factors,

such as the frontier orbitals of the molecule, the molecular pack-

ing (i.e., the relative orientations and distances between mole-

cules),44 as well as molecular vibrations.

Since the J-coupling is a continuous variable, we treat this

problem as a regression task. We used HCGA to extract 2,531

features from each molecular graph and regressed them against

the logarithm of the transfer integral logðJÞ. Using the full set of

features, we achieve a mean absolute error (MAE) of 0:355±

0:022 on our evaluation set. To put this into perspective, it is

generally expected that the shorter the distance between mole-

cules the higher the charge transfer between them. However, if

we use the distance between molecules in the dimer as the only

feature, we obtain an MAE of 1:58±0:08, an almost 5-fold

decrease in accuracywith respect to the regression against graph

features, thus indicating that orientation, atom types, and other

structural features of the molecular graphs play a critical role in

charge transfer. Furthermore, if we remove the edge-filtering

step and consider a fully connected weighted graph based on

edge distances (under the hypothesis that the transfer integral

should be a smooth function of the dimer configuration) our re-

sults slightly worsen, but not significantly (MAE = 0:362±0:030).

Graph-theoretical algorithms do not always incorporate edge

weights and thus these featureswould be redundant in a fully con-

nected weighted graph, alternatively longer-range interactions

may not be necessarily physically meaningful. In addition, if we

remove edge weights of the filtered network then our accuracy

decreases further (MAE = 0:375±0:028), highlighting the impor-

tance of edge weights in improving accuracy, but also showing

that edge weights are not critical in attaining a predictive model.

To facilitate our understanding of the factors affecting electron

transfer, we reduced the feature set to the top 10 uncorrelated
4 Patterns 2, 100227, April 9, 2021
features (%0:7 correlation, see ‘‘Reduction of the feature set’’

in the experimental procedures), and we achieved an MAE of

0:361±0:02, indicating that the majority of important information

is captured by a small set of features (Figure 2B(ii)).

We used SHAP,30 a game-theoretic framework that computes

the contribution of each feature to the prediction of each sample

(Figure 2B(ii)). Features with large absolute SHAP values have an

overall large impact on prediction, while the sign of the SHAP

values indicates a positive or negative effect of that feature on

the prediction of the sample. The sum of absolute SHAP values

across all samples for each feature allows us to assess their rela-

tive impact on the prediction task.30 As seen in Figure 2B(ii), the

top feature is the variation in the edge betweenness centrality

(VEBC) of the molecular graph, and Figure 2B(iii) shows that an

increase in VEBC correlates strongly with a decrease in J-

coupling. Indeed, regressing against VEBC alone already gives

an MAE of 1:032±0:08, which is substantially lower than re-

gressing against the distance between the molecules in the

dimer. Edge betweenness is a graph property that measures

the importance of an edge for mediating the shortest paths be-

tween nodes; hence, a low variation in edge betweenness sug-

gests a balanced spread of communication in the dimer, with

no single atomic interaction acting as a critical funnel for the

shortest paths. Another interesting graph feature in the top set

is the maximum rich club coefficient (MRCC). As shown in Fig-

ure 2B(iii), a large MRCC is linked to large J-coupling. A large

MRCC means that the hubs are well connected, and that the

global connectivity is resilient to hub removal. In our molecular

graphs, such robustness to the removal of particular atoms indi-

cates the existence of alternative paths in the structure that may

facilitate charge transfer between the molecules in the dimer.

Further examination of the molecular features related to high

charge transfer in helicenes lie beyond the aims of this work.

However, further research could pose an associated classifica-

tion task to identity graph features that lead to very high or

very low J-couplings with the aim to guide the design of more

efficient helicene compounds.

DISCUSSION

We have introduced HCGA, a high-throughput computational

graph feature analysis package that leverages the giant corpus

of graph theory literature. The software package distills a large
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(A) Neuronal morphologies. (i) Three examples of

neuron morphologies for three different cell types

which can be further distinguished by the cortical

layer from which they were extracted (in this case

from L4). (ii) The inverse classification accuracies

between m-type pairs using the HCGA features was

used to produce a similarity matrix. Clustering of

this similarity matrix recovers the three main

morphological cell types (pyramidal, Martinotti, and

interneurons) and reveals a new cluster consisting

of the most common pyramidal cells. Finer clusters

group pairs or triplets of the same m-types from

different layers.

(B) Helicene dimers. (i) Four examples of helicene

dimers at different magnitudes of J-coupling,

colored by atom type. (ii) The SHAP value for each

individual sample for the top 10 features listed in

descending order. Each sample is colored by their

relative feature value normalized between 0 and 1.

The sum of absolute SHAP values for individual

samples defines the total feature importance SHAP value. (iii) The relationship between logðJÞ and the top two features are illustrated in a scatter diagram; we

notice a strong negative trend with the variation of edge betweenness centrality and a positive non-linear trend with the maximum rich club coefficient.
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set of graph-theoretical algorithms making them easily acces-

sible and simple to interpret for a given research problem.

Beyond the massive feature extraction, HCGA includes a suite

of statistical prediction tools for classification and regression to

help researchers analyze their datasets. The highly comparative

nature of HCGA provides a framework to identify individual fea-

tures that play an important role in prediction and reveal scientific

insights into their systems.

The use of network data in statistical learning is a current area

of intense work.45 For instance, researchers have turned to

graph neural networks to learn structural features through mes-

sage-passing and non-linear interactions.46,47 However, such

methods lack the interpretability necessary to facilitate discov-

ery science48 and can be fraught with inaccuracies and inflated

performance due to over-engineering.33 The area closest in

essence to HCGA is that of graph embeddings, in which the

graph is reduced to a vector that aims to effectively incorporate

the structural features.49 However, the inherent choice of

network properties that provide a ‘‘good’’ vector representation

of the graph is not known and may differ between scientific do-

mains and the type of statistical learning task. HCGA thus cir-

cumvents this critical step in the embedding process through

indiscriminate massive feature extraction.

To apply HCGA to a given research problem, a graph dataset

must be first constructed which is not always a trivial task. For a

social network the structure can be simply built using the exact

relationships between individuals; however, as we saw in the

previous section with the helicene molecules, there can be

various different ways to construct the graphs with differing per-

formances. While the graph construction is outside the scope of

this paper, there are a number of studies that examine the

optimal construction of graphs for graph learning.50–54 We

advise researchers to think carefully about the meaningful con-

struction of graphs in respect to their data and research.
We have illustrated the use of HCGA on a variety of examples

drawn from different scientific domains performing different

learning tasks (supervised classification, unsupervised clus-

tering, regression). The framework is highly predictive and pro-

vides interpretable insights. HCGA has general utility and can

be applied to a variety of fields where network datasets consti-

tute the core of experimental outcomes, including applications

to functional or structural connectivity networks in brains,

revealing properties of computer networks that make them

weak to outside attacks, the analysis of the structure of ecolog-

ical networks and their fragility, the interdependencies in social

and economic networks, and many other problems across sci-

entific domains.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Mauricio Barahona (m.barahona@imperial.

ac.uk).

Data and code availability

The authors declare that the code supporting the findings of this study are

available within the paper and its supplemental information files. The code is

shared under the GNU General Public License v.3.0.
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Materials availability

The authors declare that no materials were generated or used during

this study.

Benchmark datasets

Table S2 provides a high-level description of each dataset. The benchmark da-

tasets were taken from https://ls11-www.cs.tu-dortmund.de/staff/morris/

graphkerneldatasets.

Neuronal morphology dataset

The neuron dataset is constructed from the morphological reconstructions

used in the Blue Brain Project, freely available at http://microcircuits.epfl.ch/

#/article/article_3_mph. A neuron contains a soma in its center, from which

several types of branches emerge: axonal branches are carrying electrical sig-

nals away from the cells and basal or apical dendrites receive electrical signals

from pre-synaptic cells, which will eventually trigger action potentials (or

spikes) in the axon initial segment, near the soma. The shape of neurons is

thus important in the electrical properties of the cells as well as how and where

it connects to pre- and post-synaptic cells in a neuronal circuit. For this reason,

an accurate and meaningful classification of shape (m-types) and electrical

properties (e-types) of neurons is an active research topic in neuroscience;

see, for example, Gouwens et al.55 Here, we will only consider morphological

types, represented as graphs.

Most commonly, morphologies are classified by the reconstructors in

morphological types, which depend on the cortical layer (from 1 to 6) from

which they were extracted and a subjective interpretation of the shape of

the cell. There are two broad classes of cells, pyramidal cells or excitatory

cells, which contain apical trees and interneurons, or inhibitory cells, which

only have basal dendrites. We selected a subset of neuronal morphologies

such that each m-type consists of at least 10 associated morphologies, con-

sisting of 444morphologies classified in 24 different m-types across 6 layers of

the rat somatosensory cortex.

For each cell, we constructed a graph representation by extracting the

neuron connectivity between sections using the Python package MorphIO

(https://github.com/BlueBrain/MorphIO), where a section is defined as a list

of points along branches between two branching points. Each node of the con-

nectivity graph represents a section, and an edge is present between two sec-

tions if they are connected by a branching point. This representation allows us

to assign node attributes as the path length and the mean diameter of each

section. The path length is defined from the three-dimensional location of

the points along the section as the sum of the length of each interval. In addi-

tion, we added a node label to represent the soma, as ½1; 0� for the soma node,

and ½0; 1� for all other nodes.
To compute the pairwise classification accuracy between each pair of m-

types, we used a two-step procedure. We first used the entire feature set ex-

tracted with HCGA, secondly we chose a subset of the feature set containing

the top 10 features that were less than 0.7 Pearson correlated between them-

selves. This drastically reduced set of features and increased the classification

accuracy on each pair of m-types (likely by reducing over-fitting to a large

feature set).

Given thematrix of pairwise classification accuracies, we then applied a sig-

moid function fðxÞ= 1=ð1 +e�10ðx�0:8ÞÞ to make low and high accuracies more
6 Patterns 2, 100227, April 9, 2021
similar while retaining intermediate accuracies. This step was implemented

simply to enable a more robust clustering of the similarity matrix when using

the hierarchical clustering algorithm. The groupings of m-types were robust

across different parameters for feature extraction (e.g., using all features or

choosing only highly interpretable features to produce the similarity matrix),

suggesting that the results reflect real clusters of m-types and are not an arti-

fact of our feature choice.

Organic semiconductors dataset

The organic semiconductors (helicenes) dataset was taken from a recent

computational screening for high charge-carrier mobility study6 and it is avail-

able at https://doi.org/10.14469/hpc/7858. In the original study, a total of

1,344 potential [6]helicene molecules were screened for their suitability as po-

tential organic semiconductors. Here, we focus on the electronic transfer inte-

gral J (J-coupling). The electronic transfer integral J describes the hopping in-

tegral, i.e., the ease with which charge can hop frommolecule A to molecule B

of the same type. This integral is strongly dependent upon the frontier orbitals

of molecules and the spatial arrangement and orientation of molecules A and

B, and its prediction in new molecules is currently an open challenge. For

further details on the dataset, see Schmidt et al.6 and for access to the data

see experimental procedures.

For each dimer (pair of molecules) at its minimum energy separation dmin,

we computed the transfer integrals by projecting the computed orbitals of the

dimer onto the unperturbed localized orbitals of the individual molecules.43,56

All transfer integrals were computed with B3LYP/6-31G(d) using Gaussian16.57

In this dataset only one spatial arrangement was used, the so-called transla-

tional-dimer motif. The electronic transfer integral is believed to exponentially

decay with intermolecular distance, therefore the minimum energy distance dmin

at which the Jwas computed is used as a control with which to compare HCGA.

For graph construction, each node represents an atom and edges corre-

sponded to atom interactions. To define atomistic interactions we used the

relative spatial distances between them; if the separation of two atoms was

lower than the sum of their van der Waals radii plus 2 Å then we built an

edge between the two atoms. The weight of the edge was simply the inverse

of the Euclidean distance between the two atoms (calculated given their xyz

coordinates). Each node was also assigned features based on the atom type

using a one-hot encoded vector.

Method details

Software

Our entire pipeline is self-contained within a Python environment and only re-

quires the user to input their dataset in the appropriate format (format

described in the section entitled ‘‘inputs’’).

The pipeline can be implemented via two routes. The first is to use a shell

script that allows the continuous execution of the entire pipeline. To test the

benchmarks, we have included a script that automatically downloads and

pre-processes the necessary dataset. Python 3 scripts then execute the

feature extraction which relies on the NumPy, Pandas, NetworkX, and SciPy

environments. The post-processing and statistical analysis steps are imple-

mented using the sklearn and SHAP environments.

To enable continued preservation of the Python software package we have

designed a modular and robust framework. Features can be added and

removed easily and external users are able to make pull-requests to the

main repository on github. A series of examples are available and a short intro-

ductory tutorial are available in Video S1.

Run times

Computational efficiency is a key problem in deriving graph statistics, such as,

for example, features based on k-components or node-connectivity may take

on order of minutes to compute on a high-end computer. To mitigate these is-

sues we offer the user two options; (1) a time-out option where each feature is

given a time-limit (default 10 s) before not a number (NaN) is returned, and (2) a

feature speed ranking (‘‘slow,’’ ’’medium,’’ and ‘‘fast’’) allowing the computa-

tion of only a subset of faster features. Feature extraction for the benchmark

datasets is normally completed on the order minutes to hours on a local com-

puter. Most features are based on the Python package networkx, but faster im-

plementations of some features may be used. To allow for the use of other

network packages to extract features, the internal graph representation is

generic, and only at the level of feature extraction is a specific representation

used, such as, for example, with networkx graph.

https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
http://microcircuits.epfl.ch/#/article/article_3_mph
http://microcircuits.epfl.ch/#/article/article_3_mph
https://github.com/BlueBrain/MorphIO
https://doi.org/10.14469/hpc/7858
https://github.com/barahona-research-group/hcga/tree/master/examples
https://github.com/barahona-research-group/hcga/tree/master/examples
https://github.com/barahona-research-group/hcga/tree/master/examples
https://doi.org/10.14469/hpc/7858
https://doi.org/10.14469/hpc/7858
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
http://microcircuits.epfl.ch/#/article/article_3_mph
http://microcircuits.epfl.ch/#/article/article_3_mph
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Feature interpretability

A key aspect of HCGA is the feature interpretability that provides researchers

key insights. However, even classical graph-theoretic measures can be diffi-

cult to interpret in respect to most systems. Therefore, we have manually as-

signed an interpretability ranking (from most interpretable 5 to least interpret-

able 1) to each feature allowing users to implement statistical analysis with a

chosen level of interpretability.

Feature filtration and normalization

Depending on the dataset, some features may not be computable for partic-

ular graphs. These values need to be removed before statistical analyses.

Any features with infinity or NaN values and features with zero variance across

the dataset are removed from the feature matrix, resulting in a reduced feature

matrix. The quantity of removed features is dependent on the dataset, and

often small if the dataset is composed of relatively similar graphs. In some

cases, particular graphs can result in the removal of a large set of features,

therefore it is advised to explore anomalous samples. Finally, each remaining

feature is individually standardized to have zero mean and a unit variance to

guarantee stable convergence during statistical analysis.

Graph classification

Graph classification is the process of predicting the class for each graph by

mapping a function from the feature matrix to a vector of discrete output

variables. To use this functionality the user must have input a set of class

labels, one for each sample. The HCGA package allows the user to use

any classification algorithm; however, the default procedure (and the pro-

cedure used within this paper) is to use the XGBoost classification algo-

rithm with default parameters.58 XGBoost is a decision tree-based

ensemble machine-learning algorithm that uses a gradient boosting frame-

work, and is considered the optimal approach for small-to-medium struc-

tured/tabular data.

The classification procedure uses a 10-fold stratified cross-validation with

no hyper-parameter optimization. Our choice to not use hyper-parameter opti-

mization was to provide a use-case in which a non-machine learning expert

was using our software package. With careful tuning, a researcher will be

capable of improving their results. Quoted results in this paper are the average

across the 10-fold; this was used to prevent over-fitting leading to optimistic

performance estimates.

Graph regression

Graph regression is the process of predicting a continuous variable for each

graph by mapping a function from the feature matrix to a vector of continuous

output variables. To use this functionality the user must have input a contin-

uous output variable for each sample. The HCGA package allows the user to

use any regression algorithm; however, the default procedure (and the proced-

ure used within this paper) is to use the XGBoost regressor algorithm with

default parameters.58

Similarly to classification, no hyper-parameter optimization is implemented

and the results are averaged across a 10-fold stratified cross-validation.

Reduction of the feature set

Due to the large feature set, the training set may be overfitted, resulting in a

decrease in accuracy on the test set. To remedy to this problem, we imple-

mented a simple procedure for reducing the size of the feature set. From the first

classification/regression step with all the features, we computed the SHAP

importance value of each feature as well as the Pearson correlations between

all of them. We then chose the n most important features that are correlated

with a value less than c. These two numbers, n and c, are the only parameter

the user can modify to reduce the feature set. We have set as default n= 100

and c=0:8 for the results shown in Tables 1 and 2; however, these values can

be optimized with a validation set (see starred HCGA results in Tables 1 and 2).

Feature importance

HCGA implements state-of-the-art methods for investigating the contribu-

tion or importance of individual features toward the classification or regres-

sion problem. Specifically, we compute top features using the SHAP frame-

work, which computes optimal explanations based on game theory through

local feature interaction effects.30 We compute the SHAP values of every

feature for each fold in our cross-validation procedure and return an

average across the folds. We output a SHAP value for each feature given

its ability to separate each class individually. We also average SHAP values

for each class to return an overall feature importance measure across the

entire set of classes.
Inputs

The benchmarks can be automatically downloaded without any need to

provide custom input into HCGA. For custom data we have provided a

number of example notebooks to aid the user in their application. We

have built a generic Graph object which allows the user to pass their

graph to HCGA and be automatically converted to the appropriate graph

representation used by the feature extraction module. The user should

provide a graph, any node features and a graph label (or continuous

variable).

Outputs

The primary outputs from HCGA are the computed features for each input

graph. The list of master operations are detailed in Table S1. The secondary

outputs of HCGA are a result of the statistical analysis module. This includes

a comma-separated value file, that details the importance of each feature

(SHAP value) toward the statistical prediction task (classification or regres-

sion), and a results report which includes a series of plots to facilitate user in-

sights into their data. The plots include:

1. Bar plot detailing the mean absolute SHAP value for the top features. A

larger value indicates that the feature had a larger impact on the predic-

tion task.

2. A sample expanded feature summary. Detailing the impact of each

feature on individual samples.

3. A heatmap of absolute correlation coefficient between features. The

heatmap is ordered by the feature type. Green dots along the diagonal

indicate the top features.

4. A heatmap of absolute correlation coefficient between features. The

heatmap is clustered according to Euclidean distance within the space

of correlations (clustering applied using a Ward linkage algorithm).

Green dots along the diagonal indicate the top features.

5. Plots of individual features. In classification tasks, these appear as violin

plots for each class, and for regression tasks these appear as a scatter-

plot of dependent versus independent variable.

6. Feature summaries for each top feature. A violin plot is displayed for

each feature and representative sample networks are displayed along-

side representing different points in the feature distribution.
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2021.100227.
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