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Scale ambiguities in material recognition

Jacob R. Cheeseman,1,3,* Roland W. Fleming,1,2 and Filipp Schmidt1

SUMMARY

Many natural materials have complex, multi-scale structures. Consequently, the
inferred identity of a surface can vary with the assumed spatial scale of the
scene: a plowed field seen from afar can resemble corduroy seen up close.
We investigated this ‘material-scale ambiguity’ using 87 photographs of diverse
materials (e.g., water, sand, stone, metal, and wood). Across two experiments,
separate groups of participants (N = 72 adults) provided judgements of the ma-
terial category depicted in each image, either with or without manipulations of
apparent distance (by verbal instructions, or adding objects of familiar size).
Our results demonstrate that these manipulations can cause identical images
to be assigned to completely different material categories, depending on
the assumed scale. Under challenging conditions, therefore, the categorization
of materials is susceptible to simple manipulations of apparent distance,
revealing a striking example of top-down effects in the interpretation of image
features.

INTRODUCTION

In most circumstances, observers can reliably and efficiently recognize the materials that surfaces are made

of (Sharan et al., 2014). However, here we find that under certain viewing conditions, surfaces made of

entirely different materials can produce similar image features, leading to confusions. For example, the

mottled surfaces in Figure 1 are photographs of (A) sea water and (B) marble. When asked to estimate

the distances in these images, we are likely to guess that the sea water is much farther from the camera

than the marble surface. If we instead imagine that (B) is sea water and (A) is marble, this reverses the dif-

ference in assumed distance; that is, sea water only appears this way from a relatively large distance. This

‘material-scale ambiguity’ suggests that our knowledge of the typical appearance of materials can be used

to constrain the range of plausible viewing distances that could produce these images (Fleming, 2014),

much like objects of familiar size can indicate depth and distance (Hubbard et al., 1989; Konkle and Oliva,

2011, 2012a, 2012b). Conversely, if material identity and spatial scale are mutually constraining, this also

raises the possibility that judgments of material identity may be influenced in a top-down way by the

assumed viewing distance to objects and surfaces.

Material appearance is intimately connected to the spatial scale of geometrical and optical processes at

which light interacts with surfaces (Pont and Koenderink, 2002, 2005). A given material can change in

appearance dramatically depending on the viewing distance. Individual water droplets seen close-up

are visibly transparent with small punctate highlights, yet when seen en masse from afar, droplets blur

together into a white haze. Tiny scratches on the surface of brushed metal appear crisp and mirror-like

when viewed through a microscope, yet the ensemble appearance at normal view distances is of a silky,

anisotropic gloss (Raymond et al., 2016). We reasoned that given the complex, multi-scale nature of

many materials, image features that emerge at a particular scale or viewing distance can sometimes be

deceptive about material properties. For example, anyone who has touched the stems and spikelets of

barley knows that they are harsh to touch, yet when seen from afar, a field of barley can have a distinctly

‘soft’ appearance. This opens the possibility of mis-categorizing materials as a function of the interpreted

or assumed viewing distance.

Here, we investigated how contextual information about viewing distance influences material recognition.

We did not seek to test the claim that all images of materials suffer from material-scale ambiguities, but

rather the more restricted claim that there are certain categories of materials that are confusable when

imaged from different viewing distances—and thus that certain images can exhibit this effect. We explicitly

set out to find such images and investigate the patterns of confusions they cause. If the same image can be
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interpreted as completely different material categories depending on the viewer’s assumptions about

viewing distance, this has important implications for theories of visual categorization, which typically as-

sume a mapping between particular image features and material categories (Bell et al., 2015; Fleming

et al., 2013; Sharan et al., 2013).

RESULTS

Experiment 1: unbiased judgements of distance and material

We first sought to measure baseline judgements of distance andmaterial for our stimulus set in the absence of

explicit distance or scale information. Participants were presented with a series of potentially ambiguous pho-

tographs (Figure 2A; see STARMethods: Stimuli) and asked to estimate the distance between the camera and

depicted surface plane, and to identify the material category. The unbiased responses from this experiment

served as a baseline of comparison with Experiment 2, in which judgements of distance and material were

manipulated with contextual information.

Our first main finding is that, overall, participants were quite good at identifying the correct categories of

materials. All participants achieved categorization accuracies (Mdn = 33%) that exceeded chance-level ac-

curacy (4%). According to the 95% confidence interval (CI) obtained from a one sample binomial test, the

probability that the observed median categorization accuracy exceeds chance-level is between 96% and

100%, p < 0.001, g = 0.29. In addition, there was a strong rank correlation between the frequency of com-

mon terms represented in the free-response and multiple-choice data (rs = 0.76, p < 0.001; see Free-

Response Transformations in the STARMethods for details). These findings show that although the images

were selected for their ambiguity, participants’ responses were systematic and consistent across tasks.

Thus, deviations from ground truth were likely purposeful. We next sought to answer whether such errors

were systematically related to the assumed scale (or distance) of the scene.

To assess this, we divided the multiple-choice responses for each image into two distance groups: (i) re-

sponses from participants who selected distance units indicating a relatively small scale (near group: micro-

meter, millimeter, or centimeter), and (ii) responses from participants who selected distance units that indi-

cated a relatively large scale (far group: meter or kilometer). Material category confusions can occur in two

directions (near/ far vs. far/ near). Some confusions between categories are likely to be distance-inde-

pendent simply because the materials are similar in appearance (e.g., confusing stone and concrete irre-

spective of distance), and will therefore tend to be symmetrical in each direction. Instead, we focus on

asymmetrical patterns of confusion that reflect a distance-dependentmaterial ambiguity. That is, are there

images that are assigned to one material (e.g., bark) when seen as close-up, which are assigned to another

material (e.g., stone) when seen as far away, but not vice versa?

Figure 1. Demonstration of material and scale dependency

When viewing distance is ambiguous, the material properties depicted in these photographs of (A) sea water and (B)

marble are confusable. Note that the relative difference in assumed viewing distance (i.e., the ocean water is farther than

the marble surface) reverses if one imagines that the labels are switched.
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The relative frequency of directional category confusions is indicated by shaded lines in Figure 3A. The

observed asymmetry between the pattern of blue lines (near / far confusions) and red lines (far / near

confusions) illustrates that material category confusions vary systematically with assumed viewing distance.

For clarity, cases where the two distance groups selected the same category are omitted, and only cate-

gories corresponding to ground truth image labels are shown (for details, see Relative Frequencies in

the STAR Methods).

Figure 3B displays the same relative frequencies (here normalized between 0 and 1) plotted as cells in a

matrix, with responses of the near and far groups represented on separate axes. Category confusions

that occur in the near / far direction are located in the lower triangle of the matrix (blue-shaded cells),

and confusions in the far / near direction are located in the upper triangle (red-shaded cells). Instances

where the two distance groups selected the same category are plotted on the diagonal of the matrix

(purple-shaded cells). Directional asymmetries can be compared by examining category pairs on oppo-

site sides of the diagonal. For example, we find that surfaces identified as bark at smaller apparent dis-

tances tend to be confused with stone at larger apparent distances (frequency = 0.4; blue square in Fig-

ure 3B). However, the reverse is not true: when a surface is seen as bark at larger apparent distances, it is

less often confused with stone at smaller apparent distances (frequency = 0.1; yellow square in Fig-

ure 3B). Figure 3C shows one such image, and for comparison Figure 3D shows an image with a

distance-dependent ambiguity in the opposite direction (water seen from far looks like plastic seen

from near).

Figure 2. Stimuli for Experiments 1 and 2

The full set of 87 images (A) is arranged by approximate visual similarity. Similar image features (e.g., color, texture) can

arise from different material categories (B), especially when spatial scale is ambiguous.
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The matrix representation of category confusions also provided a simple way to quantify material-scale

ambiguity for these images. We did this by calculating the Root Mean Squared Error (RMSE) between

corresponding frequencies in the lower and upper triangles of the matrix (e.g., blue cells vs. red cells in

Figure 3B, excluding the diagonal). This metric, which we call the Material-Scale Ambiguity (MSA), rep-

resents the amount of directional asymmetry in category confusions. MSA can also be calculated for in-

dividual images, which allows us to identify the subset of images that were particularly effective in pro-

ducing distance-dependent category confusions. MSA for individual images was then compared with

asymmetries that occur by chance, by calculating the mean MSA across 1000 random permutations

of the distance units associated with each response (i.e., category confusions are shuffled in each

direction). Figure 4A shows images ranked by MSA, with the corresponding chance-level MSA drawn

in lilac. Sixty-one (out of 87) images produced MSA values above chance. Figure 4B shows that the

Figure 3. Material category confusions exhibiting material-scale ambiguity

The relative frequency of confusions between pairs of categories is indicated by shaded connecting lines in (A). Categories selected with smaller distance

units (micrometer, millimeter, or centimeter) are defined as near, whereas categories selected with larger distance units (meter or kilometer) are defined as

far. Confusions in the near/ far direction (blue-shaded lines) differ systematically from confusions in the far/ near direction (red-shaded lines). The same

asymmetry can be seen when (normalized) relative frequencies are plotted in a matrix format (B), with distance-dependent responses on separate axes.

Category pairs above and below the negative diagonal indicate the relative frequency of distance-dependent confusions; distance-independent responses

are shown on the diagonal. The top-ranked images for the most frequent near/ far confusion (C) and the most frequent far/ near confusion (D) illustrate

different material-scale ambiguities
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mean MSA across all images (teal; M = 1.4, 95% CI [1.3, 1.51]) was significantly greater than chance-level

MSA (lilac; M = 0.95, 95% CI [0.88, 1.02]; Wilcoxon T = 850, p < 0.001, d = 0.52). This result indicates

that, as a whole, the image set produces systematic distance-dependent category confusions, but

also that there is a subset of images that are particularly ambiguous. For example, the image shown

in Figure 4C was reliably seen as bark regardless of apparent distance, whereas the image shown in Fig-

ure 4D produced confusions between plant (seen from a relatively large distance) and carpet (seen from

a relatively small distance). The material categories associated with relatively small or large assumed

distances are shown in word clouds below each image, where category frequency is indicated by

word size.

Taken together, the results of this experiment show that, without contextual information to specify viewing

distance, certain images exhibit a striking distance-dependent ambiguity about the category of material.

The material category labels assigned to these images covary with whether the surfaces are interpreted as

near to or far from the camera. To test whether the assumed viewing distance plays a causal role in driving

this effect, we next sought to directly manipulate assumed viewing distance.

Experiment 2: biased judgements of distance and material

To test whether manipulating assumed viewing distance influences judgements of material, we presented

the same stimuli to four additional groups of naive participants. Assumed viewing distance was manipu-

lated by instructing each group to imagine a small or large distance to the surface plane (Experiment

Figure 4. Material-Scale Ambiguity (MSA) calculated for individual images

Images can be ranked byMSA (A) along with themeanMSA resulting from random permutation of distance units drawn in

lilac. The mean MSA across images (B) for the original responses (teal) and random permutation of distance units (lilac). A

Wilcoxon signed-rank test indicated that the observed difference in MSA is significant. Error bars represent 95% CIs. An

image with low MSA (C) is reliably seen as one material (bark) regardless of assumed distance. Word clouds of responses

(size weighted by frequency) associated with different distance assumptions are shown below. An image with high MSA

(D) is reliably seen as different materials (carpet vs. plant) depending on the assumed distance (far vs. near).

ll
OPEN ACCESS

iScience 25, 103970, March 18, 2022 5

iScience
Article



2A), or by presenting modified images that featured two different familiar objects to indicate different

spatial scales (Experiment 2B). Material-Scale Ambiguity (MSA) was calculated separately for Experiment

2A and Experiment 2B. To test whether the observed asymmetries in category confusions were statistically

significant, we compared them to chance-level MSA calculated from 1000 random permutations of group

membership in each experiment. Images ranked by MSA for all experiments are shown in Figure 5A, along

with chance-level MSA in lilac. Figure 5B shows the mean MSA across images for the original responses

(teal) and chance-level MSA (lilac) separately for all experiments.

In Experiment 2A, MSA values for the original responses (M = 1.48, 95% CI [1.37, 1.6]) were significantly

greater than chance (M = 1.15, 95% CI [1.07, 1.25]; Wilcoxon T = 799, p < 0.001, d = 0.49), and compa-

rable to the unbiased judgements of material and distance in Experiment 1. Although familiar objects

produced above-chance MSA in 46 images (Experiment 2B), this manipulation was less effective overall

(Wilcoxon T = 1812, p = 0.80, d = 0.07). Interestingly, confidence ratings in Experiment 2B (M = 4.8, SD =

0.71) were significantly lower than those in Experiment 2A (M = 4.98, SD = 0.5; Mann-Whitney U = 192.5,

p = 0.025, d = 0.25). It is also noteworthy that in general, the same images produced high MSA across

experiments. MSA values in Experiment 1 are significantly correlated in rank with those obtained in

Experiment 2A (rs = 0.43, p < 0.001) and Experiment 2B (rs = 0.28, p = 0.009); the rank correlation be-

tween Experiment 2A and 2B was not significant. These results suggest that, compared to instructions,

the effectiveness of familiar objects is more dependent on whether the objects appear plausible within a

given scene (e.g., whether the lighting of the virtual objects was congruent with the lighting of the real

scene).

Ranking our images by the mean MSA across experiments provides the clearest summary of our findings

(Figure 6). Images with low MSA (bottom row) are immune to manipulations of viewing distance. Yet,

when MSA is high (top row), the assumed distance between the camera and the surface plane determines

which categories are selected.

DISCUSSION

Surface material appearance is characterized by complex physical and optical structures at multiple spatial

scales. As materials can have strikingly different appearances at different viewing distances, we reasoned

that for certain images, the appearance of a material at one distance could potentially resemble the

Figure 5. Material-Scale Ambiguity (MSA) calculated separately for each experiment

(A) Images ranked by MSA. The mean MSA resulting from random permutation of distance units is drawn in orange.

(B) Mean MSA across images for the original responses is shown in blue, whereas mean MSA obtained from

random permutation of distance units (Experiment 1) or group membership (Experiment 2) is shown in orange.

The observed difference in MSA is significant for Experiments 1 (unbiased) and 2A (instructions). Error bars represent

95% CIs
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appearance of another material at a different distance, leading to different category assignments. Here, we

have established that such images exist and shown how the assumed view distance can radically alter how

they are interpreted.

In Experiment 1, we found spontaneous confusions about material category co-occurring with the assumed

viewing distance. In Experiment 2, we showed that both instructions and the insertion of familiar objects indi-

cating different physical scales can alter material classification in a subset of images. An important caveat is

that our conclusions are necessarily dependent on the images in our stimulus set. Our goal was to identify

specific images that are susceptible to such manipulations, rather than to draw conclusions about the fre-

quency of such ambiguities across all natural images. Althoughwe rarely make such confusions aboutmaterial

categories in everyday life, the very existence of such images demonstrates a substantial top-down effect in

visual recognition, in which context can radically alter the interpretation of identical images.

Our finding that distance assumptions can bias material categorization supports the notion that materials

have canonical scales that constrain diagnostic image cues. Much as certain viewpoints and sizes of objects

can be considered canonical (Konkle and Oliva, 2011; Palmer et al., 1981), image cues associated with partic-

ular material categories may be more likely to arise at typical viewing distances (Fleming, 2014). Conversely,

when a material is viewed from an atypical distance (e.g., in macro or aerial photography; see De Giuli, 2018),

the cues may resemble other materials, resulting in material-scale ambiguities. To date, theories of material

perception and appearance have tended to ignore their scale-specificity; future work on material recognition

should consider how material appearance and relevant image features vary with distance.

Image cues and material-scale ambiguity

Which image characteristics cause material-scale ambiguity, rather than the general kind of ambiguity that

is unrelated to apparent scale? Are there any features that predict the ambiguity across classes, or is the

phenomenon driven by different cues for different materials? The images in Figure 6 hint at some

Figure 6. Images from our set with the highest and lowest MSA across experiments

Word clouds below each image show the distinct material categories (size weighted by frequency) selected by

participants who assume relatively small or large distances to the surface plane (blue and orange data, respectively).
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compositional elements that might contribute. When the camera is (approximately) perpendicular to the

surface plane, this limits depth cues (e.g., texture and optical blur gradients; Cutting and Vishton, 1995;

Hafri et al., 2021; Sedgwick, 2005; Vishwanath, 2010), presumably increasing their ambiguity. The absence

of visible object boundaries likely also plays an important role, although many such unbounded texture

images are unambiguous (Fleming et al., 2013; Wiebel et al., 2013). Moreover, if an image contains

scale-invariant structure (e.g., fractal or self-similar texture; see Brachmann and Redies, 2017), such image

features provide little information about viewing distance, whereas image features that do vary with

viewing distance may be more diagnostic of certain material categories.

If there are certain cues whose presence or absence tends to increase material-scale ambiguity, then it

should be possible to predict the degree of ambiguity across material classes based on these features.

In a first attempt to test this, we identified five appearance characteristics that could plausibly be relevant

to material-scale ambiguity (atmospheric blue tint, blurriness, direct lighting, surface gloss, and surface

slant) and obtained human ratings for all images in our dataset, along with one image metric (self-similar-

ity). However, a classifier based on these feature values failed to accurately classify high-MSA vs. low-MSA

images, although we did find that slanted surfaces and natural materials were associated with larger

apparent distances (for details, see STAR Methods: Exploratory analyses). These results suggest that the

image statistics that would predict MSA for a given pair of categories (e.g., bark and stone) likely differ

from those needed for another pair of categories (e.g., water and plastic).

Considering the great diversity of appearances associated with different material classes, it is unlikely that a

single image characteristic exists that can determine whether a given image exhibits material-scale ambi-

guity across all possible category confusions. Yet, for a given material category, there may be certain cues

Figure 7. Material ambiguity might be created with the aid of deep neural networks

(A) An original image from our set can be modified to mimic the image statistics of other exemplars from the same

material category.

(B) Original images from different material categories (water and leather) can be used to create a synthetic image that

inherits the statistics of both images. These techniques could be used to aid the discovery or invention of images that

possess specific kinds of material ambiguity
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that are particularly important. For example, Sawayama et al., 2017 have shown that participants can judge

the fineness of fibrous textures (like human hair), even when individual texture elements are smaller than the

resolution of the imaging system. Themain cue driving the super-resolution judgments in their displays was

contrast: lower contrast patterns appeared to contain finer elements because of averaging of texture

elements within each pixel. If the visual system relies on such inferences beyond the image data to infer

specific material properties, it is necessarily open to scale-related ambiguities. Our results demonstrate

that material recognition can depend on the ‘beholder’s share’ rather than image statistics per se

(Gombrich, 1961).

Limitations of the study

The conclusions we can draw from this study are necessarily limited to specific images that exhibit material-

scale ambiguity. Further investigation of this effect—and how it relates to material perception in general—

will require innovations that lower the difficulty of creating or discovering such images. One approach to

probing the characteristics of such images is to blend the statistics of different images that produce the

same class confusions. For example, Figure 7A displays an image of bark that was often confused with

stone, together with two synthetic ‘lookalikes’ generated by a deep convolutional neural network used

for image style transfer (Gatys et al., 2016). In this example, the ‘styles’ are other images of bark that

were often confused with stone (i.e., the ground truth category is the same in the style and transfer images).

A variation of this approach could involve mixing images that differ in ground truth category, but which pro-

duce the same kind of material-scale ambiguity (e.g., the images of water and leather in Figure 7B). An

intriguing alternative approach would be to ask artists to create ambiguous images and analyze the tech-

niques they use to depict material appearance (Di Cicco et al., 2021; Lin et al., 2021). Such methods may

make it possible to identify key features that alter perceived scale or material appearance.
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Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Jacob R. Cheeseman (jacob.cheeseman@psychol.uni-giessen.de).

Materials availability

All materials are included in the text and Supplemental information.

Data and code availability

d De-identified data for both experiments have been deposited at Open Science Framework and is pub-

licly available as of the date of publication. The DOI is listed in the key resources table.

d Analysis code for both experiments have been deposited at Open Science Framework and is publicly

available as of the date of publication. The DOI is listed in the key resources table.

d Stimulus images are provided except when copyright permission could not be obtained. Any additional infor-

mation required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

In Experiment 1, a convenience sample of 24 students (14 women, 10 men; Mage = 24.3 years, SDage = 3.3

years) participated. In Experiment 2, four groups of 12 students (48 total) participated. Group 1 (9 women,
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data, and analysis code

Open Science Foundation https://doi.org/10.17605/OSF.IO/UKQ95
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seaborn v0.11.1 https://github.com/mwaskom/seaborn/tree/v0.11.1 RRID:SCR_018132

Statannotations v0.4.3 https://github.com/trevismd/statannotations N/A

spacy v3.1.2 https://github.com/explosion/spaCy/tree/v3.1.2 N/A

tensorflow v2.0.0 https://github.com/tensorflow/tensorflow/tree/v2.0.0 RRID:SCR_016345

tensorflow_hub v0.10.0 https://github.com/tensorflow/hub/tree/v0.10.0 N/A

R v4.0.2 https://cloud.r-project.org/bin/macosx/base/ RRID:SCR_001905

rpy2 v3.4.5 https://rpy2.github.io/doc/v3.4.x/html/index.html N/A

MATLAB R2021a https://www.mathworks.com/downloads/ RRID:SCR_001622

MATLAB Engine API for Python https://www.mathworks.com/help/matlab/matlab_external/

install-the-matlab-engine-for-python.html

N/A

Other
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3 men;Mage = 24.5 years, SDage = 3.01 years) and Group 2 (9 women, 3 men;Mage = 22.5 years, SDage = 3.64

years) participated in Experiment 2A. Group 3 (4 males and 8 females;Mage = 24.5 years, SDage= 4.01 years)

and Group 4 (4 males and 8 females;Mage = 22.83 years, SDage = 2.37 years) participated in Experiment 2B.

Participants were paid an hourly rate of 8V. All experimental procedures were approved by the Justus

Liebig University Giessen Psychology Department Ethics Board and conformed with the guidelines of

the American Psychological Association (Version 2017) and the Declaration of Helsinki (Version 2013,

excluding pre-registration). Informed consent was obtained from all subjects.

METHOD DETAILS

Sample size

Only one previous study (Wiebel et al., 2013;N = 18) has estimated material categorization accuracy under

conditions similar to the current study, that is, with unlimited stimulus presentation time and no instruction

to respond rapidly. All of the participants in that study achieved categorization accuracies (Mdn = 87%) that

exceeded chance-level accuracy (25%). A one sample binomial test is needed to determine whether the set

of observed values, which are not normally distributed, are significantly different from a fixed value. Accord-

ing to the 95% confidence interval (CI) obtained from a one sample binomial test, the probability that the

observed median categorization accuracy exceeds chance-level is between 85% and 100%, p < 0.001, g =

0.62. Although this indicates that material categorization is quite robust under normal conditions, given

that our stimuli were selected for ambiguity, a larger sample (N = 24) was preferred for Experiment 1.

This sample size was also used for Experiments 2A and 2B.

Stimuli

Potentially ambiguous photographs were collected from various internet sources. The selection criteria

were as follows: (i) they did not contain objects, but clearly depicted a surface or scene, (ii) they were deter-

mined by the experimenter to be potentially ambiguous in the sense that at least two distinct material cat-

egories could describe the surface or scene, and (iii) these material categories could be associated with

different spatial scales. Three observers (including two authors) screened hundreds of images on the

internet and selected those that met the criteria, resulting in 87 images (Figure 2A). Ground truth category

labels and copyright information for these images are listed in the Supplemental information (Figure S1

and Table S1). Ground truth category labels for these images were determined by the original publisher.

Images for which print copyright permissions could not be obtained are here replaced by synthetic textures

derived from the originals (see Risser, 2020). All images were rescaled to 600 3 600 pixels.

The same set of images presented in Experiment 1 was shown to each group of participants in Experiment

2A. For Experiment 2B, we created two sets of images from the original set, each of which featured a large

or small familiar object (3D models of an airplane or a hornet) that provided contextual information

about the spatial scale of the scene. The objects were digitally inserted into the images with 3D modelling

software that simulated lighting direction and cast shadows. The 3D models (‘‘Boeing 787 8(1)’’ by turbos-

quid.com/companion_3d, published under Editorial Use license; ‘‘Hornet’’ by blendswap.com/Misfit410,

published under CC-BY license), were inserted into the original images using Blender 2.79 (Stichting

Blender Foundation, Amsterdam, NL). In these virtual scenes, the original images were arranged parallel

to the ground plane, while the objects were positioned slightly above. The camera was positioned perpen-

dicular to the ground plane with a point light source slightly offset from the center of the ground plane,

casting a shadow of the object onto the ground plane image.

Equipment

The experiment was controlled by a Dell Precision T3500 desktop computer runningWindows 10 andQual-

trics software (v02.2019). Stimulus images were displayed using an Eizo ColorEdge CG277 self-calibrating

LCD monitor (68.4 cm diagonal; 2560 3 1440 resolution). Participants were seated in a dark room approx-

imately 50 cm from the monitor, which displayed the images against a uniform grey background. At this

viewing distance, the 600 3 600 pixel images subtended approximately 16 degrees of visual angle.

Procedure

On each trial in Experiment 1, participants viewed a single, randomly-selected image and judged the de-

picted material, followed by the distance between the camera and surface plane. Different kinds of re-

sponses were collected in separate blocks of trials. In the first block (free-response), participants described
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the surface material as precisely as possible by typing a written response. In the second block (multiple-

choice), participants identified surface materials by selecting one category from 26 options (see

Multiple-Choice Instructions in the Supplemental information). Many of these 26 material categories

were featured in previous studies of material perception with natural images (Bell et al., 2015; Sharan

et al., 2014) while others were added by the authors to accommodate images that were not adequately

described by any of the preexisting categories. Participants also provided a confidence rating (from 1 to

7) for judgements of material. In the third block (distance estimation), participants estimated the distance

between the camera and surface plane by selecting an appropriate unit of measurement (micrometers,

millimeters, centimeters, meters, or kilometers) and metric value (e.g., 8 cm, or 1 km). Similarly, in

Experiment 2, participants identified the surface material (free-response and multiple-choice, in separate

blocks of trials) and indicated their confidence (1–7). In Experiment 2A, Group 1 was instructed to imagine

that the camera was ‘‘very far’’ from the surface plane, and Group 2 was instructed to imagine that the cam-

era was ‘‘very near’’ to the surface plane. These instructions were intended to ensure that the imagined dis-

tance range could vary with the interpretations for each image. In Experiment 2B, Group 2 was presented

with images that featured a large familiar object (airplane), and Group 3 was presented with images that

featured a small familiar object (hornet). English translations of the original German instructions for all

experiments are provided in the Methods S1 Supplemental Data.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests

All statistical tests were two-sided, with statistical significance defined as p < 0.05. Data distributions were

checked for normality, and where this assumption was not met, non-parametric tests were used. One-sam-

ple binomial tests were used to determine whether mean categorization accuracies were significantly

different from fixed values. Spearman rank correlations were used to determine the extent of agreement

between free-response andmultiple-choice material category frequencies (Experiment 1), and to compare

results across Experiments 1 and 2. A novel statistic (Material-Scale Ambiguity, or MSA) was developed to

measure the extent to which specific images caused distance-dependent category confusions. Wilcoxon

signed rank tests were used to determine whether the observed MSA was significantly different from

that produced by randomization of distance estimates (Experiment 1) or group membership (Experiment

2). A Mann–Whitney U test was used to compare mean confidence ratings across experiments. Detailed

results, including specific values of statistical parameters, are reported in the Results section. Statistical cal-

culations were made with the following software packages: Python v3.7.6 (Python Software Foundation,

2019), Jupyter Notebook v6.4.2 (Executable Books Community, 2020), NumPy v1.20.3 (Harris et al.,

2020), Pandas v1.3.1 (Pandas Development Team, 2020), SciPy v1.6.2 (Virtanen et al., 2020), Scikit-learn

v0.24.2 (Pedregosa et al., 2011), R v4.0.2 (R Core Team, 2018), rpy2 v3.4.5 (Gautier, 2021). Figures were

created with the following software packages: Matplotlib v3.4.2 (Hunter, 2007), Seaborn v0.11.1 (Waskom,

2021), statannotations v0.4.3 (Charlier, 2021), spaCy v3.1.2 (Honnibal andMontani, 2021), TensorFlow v2.0.0

and TensorFlow Hub v0.10.0 (Abadi et al., 2015), MATLAB R2021a and MATLAB Engine API for Python

(MATLAB, 2021). All code and data necessary to reproduce these results and figures is available in the

public OSF repository listed in the key resources table.

Free-response transformation

Participants initially judged each image by providing a written description of the material, after which they

selected a single material category from a list of options. To determine the extent of agreement between

judgements of material in multiple-choice and free-response trials, the free-response data was manually

reduced to single-word descriptions, which included all but one of the material categories available during

the multiple-choice trials (‘‘hair’’), as well as the following 101 additional descriptors: aluminum, asphalt,

basalt, bast, bone, brick, bronze, cake, canvas, cardboard, cellulose, cement, chalk, chalk stone, chocolate,

cloud, coal, copper, coral, cord, cork, cotton, cotton candy, crystal, denim, detergent, dirt, dough, dust,

screed, felt, fleece, flour, foam, foil, fungus, gel, gem, glue, gold, granite, graphite, grass, hay, honeycomb,

iron, jade, jelly, jute, laminate, lead, lime, limestone, linen, meat, mirror, moss, mold, mud, none, nylon, oil,

pearl, peat, photopaper, plaster, plexiglass, powder, pumice, putty, PVC, quartz, resin, rock, root, rubber,

rust, salt, sandpaper, silicone, silk, silver, slate, slime, slom, smoke, soap, soil, sponge, steel, straw, styro-

foam, sugar, sulfur, talcum, tar, velvet, vinyl, wheat, wool, hair

The free-response data was manually transformed using the following rules:
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1.Corrected typos and spelling errors

2.Nouns only

a.No adjectives (e.g., "scratched stone" = "stone")

b.No noun adjuncts (e.g., "desert sand" = "sand")

3.Specific materials/stuff only (e.g., "landscape", "material", "don’t know" = "none")

4.Translated to English

Resolve synonyms (e.g., "frozen water" = "ice")

The strong rank correlation between the frequency of common terms (rs = 0.74, p < 0.001) indicated that

multiple-choice responses capture the free-response ranking of material categories to a significant degree.

Subsequent analyses of material judgements therefore focused on multiple-choice responses.

Distance estimate analysis

Distance estimates involved selecting a unit of measurement (micrometers, millimeters, centimeters, me-

ters, or kilometers) before assigning a metric value (e.g., 8 cm, or 1 km). Although this task was designed to

allow participants to quickly estimate very small or very large distances, the variance associated with each

unit of measurement is unequal (e.g., distance estimates in kilometers will have a much larger variance

than estimates in micrometers). When converted to a common unit (centimeters), therefore, the distribu-

tion of these values is extremely skewed (see Figure S2) and spans several orders of magnitude (SD =

1063 106 cm). For this reason, subsequent analyses of distance estimates focused on the selected units

of measurement, which represent judgements of viewing distance on an ordinal scale.

Relative frequencies

Multiple-choice responses for each image were first divided into two groups based on the distance unit

selected with the material: responses selected with micrometer, millimeter, or centimeter defined the

near group, while those selected with meter or kilometer defined the far group. Responses of the near

group were then paired with responses of the far group, such that all pairwise permutations in both direc-

tions (near/ far vs. far/ near) were represented. This was done separately for each image (i.e., responses

associated with different images were never paired). The frequency of each unique pair of responses rep-

resents the relative frequency of directional category confusions. The relative frequencies shown in Figure 3

are calculated from response pairs for all images. Material-Scale Ambiguity (MSA) is calculated from

response pairs for individual images.

Exploratory analyses

In a separate pilot experiment, naive participants (4 women, 1 man; Mage = 24.4 years, SDage = 4.1 years)

rated five appearance attributes (atmospheric blue tint, blurriness, direct lighting, surface gloss, and sur-

face slant) on a continuous scale for the original set of 87 images. A self-similarity (i.e., scale-invariance)

metric was also calculated for each image (Brachmann and Redies, 2017). In order to assess whether this

data might predict Material-Scale Ambiguity (MSA), a Support Vector Machine (SVM) classifier (Pedregosa

et al., 2011) was trained on 1000 random splits of the data into training and test sets. The target variable for

classification was defined as a median split of MSA calculated from data in Experiment 1. A separate SVM

classifier (using a Radial Basis Function kernel) was trained for each set of training and test data. Optimal

parameters (C and Gamma) for this kernel function were obtained separately for each model using a grid

search method. The mean cross-validated classification accuracy across these 1000 models is 56%, which is

only marginally better than the accuracy that would be expected from a model that only learns the distri-

bution of the target variable. That is, if exactly half of the images produce MSA that is greater than the me-

dian MSA produced by the whole set of images, a classifier that guesses randomly would be expected to

have an accuracy of 50%. In order to understand this failure, the mean rating of each appearance attribute

was calculated separately for each image. The most frequent distance unit selected for each image was

then identified and grouped according to the near and far distance groups defined in Experiment 1. Finally,

the mean rating of each appearance attribute was calculated separately for each distance group. Figure S3

plots these distance-dependent attribute ratings, which reveals that four of the five attributes were not

significantly different between distance groups. The one exception is surface slant, which was much
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more highly rated for images that depicted relatively large distances (Mann–Whitney U = 297, p < 0.001,

d = 1.16).

Additionally, these participants rated the 26 material categories used in Experiment 1 along a continuous

scale from ‘‘inorganic’’ (man-made) to ‘‘organic’’ (natural). We calculated the mean rating for each material

category and created two groups from amedian split of these values; ‘‘organic’’ categories had a mean rat-

ing above the median and ‘‘inorganic’’ categories had amean rating below the median. We then calculated

the frequency of these two category groups within the near and far distance groups defined in Experiment

1. Notably, ‘‘organic’’ material categories made up 76% of responses when participants estimated surfaces

to be far from the camera, but only 45% when surfaces were estimated to be near to the camera (see Fig-

ure S3 in the Supplemental information). All data and code necessary to reproduce these analyses is

available in the public OSF repository listed in the key resources table.
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