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Background: Complex clusters of rearrangements are a challenge in interpretation of cancer genomes. Some clusters of
rearrangements demarcate clear amplifications of driver oncogenes but others are less well understood. A detailed analysis of
rearrangements within these complex clusters could reveal new insights into selection and underlying mutational mechanisms.

Patients and methods: Here, we systematically investigate rearrangements that are densely clustered in individual tumours in
a cohort of 560 breast cancers. Applying an agnostic approach, we identify 21 hotspots where clustered rearrangements recur
across cancers.

Results: Some hotspots coincide with known oncogene loci including CCND1, ERBB2, ZNF217, chr8:ZNF703/FGFR1, IGF1R, and MYC.
Others contain cancer genes not typically associated with breast cancer: MCL1, PTP4A1, and MYB. Intriguingly, we identify clustered
rearrangements that physically connect distant hotspots. In particular, we observe simultaneous amplification of chr8:ZNF703/
FGFR1 and chr11:CCND1 where deep analysis reveals that a chr8–chr11 translocation is likely to be an early, critical, initiating event.

Conclusions: We present an overview of complex rearrangements in breast cancer, highlighting a potential new way for
detecting drivers and revealing novel mechanistic insights into the formation of two common amplicons.
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Background

Extensive copy number characterisation using comparative gen-

omic hybridisation (CGH) technology has led to remarkable

insights into the somatic genetics of breast cancer, including

identification of recurrent whole arm gains and losses, homozy-

gous deletions (e.g. CDKN2A/B, PTEN) and large, common, re-

current driver amplifications (e.g. ERRB2, CCND1) [1–4].

Despite the increasing resolution provided by CGH technology,

there remains a limit to the resolution of detection of copy num-

ber aberrations (CNAs) of several hundred kilobases (kb) (sup-

plementary Figure S1, available at Annals of Oncology online) [5].

However, CNAs are demarcated by rearrangements that can be

detected from whole-genome sequences even when the size of the

abnormal copy number segment is as small as 1 kb.

Somatic rearrangements are extremely diverse. Inter-patient vari-

ation exists in the quantity, type and distribution of somatic rear-

rangements even in cancers of the same tissue type [6, 7] and the

consequences of rearrangements can also vary considerably. Solitary

or low numbers of rearrangement breakpoints may directly confer

selective advantage; for example breakpoints that transect tumour

suppressor genes or that generate in-frame gene fusion events, such

as ETV6-NTRK3 in breast cancer and TMPRSS-ERG fusions in

prostate cancer [8, 9]. Collections of breakpoints can reflect driver

amplifications. They can also be markers of complex, stochastic

chromosomal events (e.g. chromoplexy, chromothripsis) [7, 10, 11]

and provide increased resolution in studying mechanisms under-

pinning CNAs, for example, revealing that breakage-fusion bridge

sometimes underpins the formation of the ERBB2 amplicon [12].
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Methods

Recently, 560 whole-genome sequenced breast cancers were expansively
curated for somatic mutations, including rearrangements [5]. We previ-
ously defined ‘clustered’ rearrangements as clusters of breakpoints that
occurred at high density in individual cancer genomes (see supplementary
Methods, available at Annals of Oncology online). In the current study, we
focus on characteristics of clustered rearrangements in 560 breast cancers
that so far remained unexplored. In order to assess the impact of clustered
rearrangements on breast cancer, we identified chromosomal hotspots
where clustered rearrangements recurred in samples from different
patients. Using the Piecewise-Constant-Fitting (PCF) algorithm [13] (see
supplementary Methods, available at Annals of Oncology online), we sought
genomic segments where groups of rearrangements exhibited short inter-
mutation distances, indicative of ‘hotspots’ that are more frequently rear-
ranged than the background rate. Using this method, we identified highly
rearranged genomic loci that recurred in breast cancers. These sites make
important contributions to tumorigenesis and reveal mechanisms under-
pinning chromosomal instability.

Results

PCF-based method identifies 21 hotspots of
clustered rearrangements across 560 breast
cancers

There were 624 clusters of rearrangements in individual breast

cancer genomes, comprising 17 247 intra-chromosomal rear-

rangements, and 6509 inter-chromosomal translocations.

Clusters of rearrangements were common: 372 of 560 samples

had at least one and were almost as frequent in triple-negative

breast cancers (0.96 rearrangement clusters per sample) as in

oestrogen receptor (ER)-positive breast cancers (1.00 rearrange-

ment clusters per sample). Among PAM50 subtypes, luminal A

cancers had fewest rearrangement clusters per sample (0.6, 95%

Poisson CI 0.5–0.9) compared with other subtypes (luminal B

1.2, CI 1.0–1.5 and basal 1.2, CI 1.0–1.5).

To identify loci where clusters of rearrangements recur across

multiple independent tumour samples, we pooled all breakpoints

in the ‘clustered’ category and sorted them according to position

in the reference genome. PCF was applied to find hotspot regions

in the genome that are recurrently affected by clusters of break-

points in multiple patients (Figure 1A and B for workflow).

In all, 21 such hotspots of clustered rearrangements were identified

(Figure 1C, supplementary Table S1 and Figures S2 and S3, available

at Annals of Oncology online), encompassing 8% of the genome, but

involving 46% of all breakpoints of clustered rearrangements.

Recurrent clustered rearrangements identify
common, large driver amplicons as well as rare,
smaller amplicons

Breakpoint densities for each of the 21 hotspots of clustered rear-

rangements identified in chromosomes 1, 6, 8, 11, 12, 15, 17, 19,

20 and 21 ranged between 35 and 165 breakpoints per Mb. We

expected to find common driver amplification regions such as

CCND1, ERBB2, ZNF217, chr8:ZNF703/FGFR1, IGF1R, and

MYC as sites of clustered rearrangements recurring across many

patients (Figure 1C). These were identified without exception.

Hotspots were also identified at GNAS, RUNX1, and MDM2, all

recognised as breast cancer genes, even if less frequent.

Interestingly, several hotspots of clustered rearrangements were

found near oncogenes that are not typically associated with breast

cancer. Curation revealed that a subset had focal copy number

gains typical of driver amplicons, albeit on a smaller scale (supple-

mentary Figure S4, available at Annals of Oncology online). These

hotspots at or near MCL1 (5.7% samples, 2.7% resulting in MCL1

amplification), PTP4A1 (4.5% samples, 1.25% PTP4A1 amplifica-

tion) and MYB (6.3%, 1.4% MYB amplification) occurred at lower

frequencies than that of common breast cancer amplicons (supple-

mentary Figures S5 and S6 and Note 1, available at Annals of

Oncology online for gene expression analysis). Further experiments

will be required to verify whether these rarer, smaller and more

modest amplicons are indeed driver events.

Co-occurring hotspots: Inferring co-evolution
through detailed breakpoint analyses

Apart from an increased resolution in identifying copy number

changes, whole-genome sequencing provides information to

base-pair level about direct, physical connections between dispar-

ate genomic locations. Each of the 21 hotspots was identified in-

dependently through an agnostic approach. If we find that

different hotspots are co-occurring at a higher frequency than

would be expected, and further are physically connected to each

other, this would suggest co-evolution of those allegedly

independent hotspots, regardless of their original location on

chromosomes. Below we report on two observations—an intra-

chromosomal and an inter-chromosomal example—that provide

insights into putative drivers and mutational mechanisms.

Co-evolving clusters on chromosome 6: possible
driver loci?

Four distinct hotspots of clustered rearrangements were identified

on chromosome 6; the small amplicon attributed to PTP4A1

(chr6: 63.3Mb) and three larger hotspots at chr6: 96.6Mb, chr6:

117.6Mb and chr6: 128.5Mb (Figure 2A, supplementary Figure S6,

available at Annals of Oncology online). Although they are inde-

pendently identified loci, first we found that the four hotspots

occurred together in different combinations in 10 samples (1.7%

of cohort, Figure 2C). Second, they were also frequently physically

linked through intra-chromosomal rearrangements indicating that

they arose or evolved together during tumorigenesis (Figure 2B).

If recurrence of rearrangement clusters is an indicator of putative

driver events, then co-occurrence of such hotspots would further

contribute to the possibility that they are under selective pressure.

Co-evolving chr8:ZNF703/FGFR1 and CCND1
amplicons reveal two chromosome fusions
underpinning amplicon formation

The chr8:ZNF703/FGFR1 and chr11:CCND1 amplifications are

amongst the most frequent in breast cancer, particularly in ER-

positive breast tumours (19% and 28%, respectively, of amplifi-

cations in ER-positive tumours; 11% and 16%, respectively, of

total cohort). These amplifications have been described before to

occur more frequently together in breast cancers, than expected

[14]. However, the mechanism underlying these co-occurring

amplifications remains uncertain with diverse structural out-

comes reported previously [15].
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Here, in agreement with previous reports [14], we find co-

occurrence of the amplifications of chr8:ZNF703/FGFR1 and

chr11:CCND1 in 26 patients (5% of total cohort), a frequency

higher than expected than if they were independent events

(Fisher’s exact test, P¼ 1.9e�5, supplementary Table S2, available

at Annals of Oncology online).

Furthermore, we detect translocation breakpoints connecting

the chr8:ZNF703/FGFR1 and chr11:CCND1 amplicons in 11 out

of 26 patients with co-occurring amplifications (42%; Figure 3

for a detailed analysis of a single sample), showing that these

amplicons are often physically connected. This phenomenon of

co-localising chr8:ZNF703/FGFR1 and chr11:CCND1 amplicons

tends to be seen in ER-positive tumours, among patients diag-

nosed at an older age (Figure 4).

To confirm physical proximity of the chr8:ZNF703/FGFR1 and

chr11:CCND1 amplicons, FISH analysis was carried out on four

samples. Nuclear co-localisation of the chr8:ZNF703/FGFR1 and

chr11:CCND1 amplicons was observed. In three samples, the

counts of co-amplified signals were sufficient to confidently es-

tablish co-localisation of the amplicons in nuclei (Figure 3D, sup-

plementary Figure S7, available at Annals of Oncology online).

The co-localisation of the amplified sequences confirms linked

co-evolution of amplicons that were originally located on separ-

ate chromosomes.

In 10 samples, the translocations only connect chromosomes 8

and 11 (Figure 5), while in the remaining sample PD13608a, five

other chromosomes were also involved (supplementary Figure

S8, available at Annals of Oncology online). In 7 out of the 10 sam-

ples where only chromosomes 8 and 11 are involved, there is a

translocation which joins the lower-most coordinate of the

chr8:ZNF703/FGFR1 amplicon, located on 8p, to the higher-most

coordinate of the chr11:CCND1 amplicon, located on 11q

(marked with asterisks in Figure 5). The translocations are associ-

ated with chromosomal copy number loss terminal to the break-

points (seen as 8p and 11q loss-of-heterozygosity respectively

marked in pale red in Figure 5). This observation implies that a

chr8–chr11 translocation with associated loss of portions of the

chromosome terminal to the breakpoint is likely to be an early,

critical, initiating event in the tumours where they were found.

Moreover, in the 10 samples, there are many additional chr8/

chr11 translocations in each patient, and these additional translo-

cations are distant from the predicted driver amplifications

(ZNF703/FGFR1 and CCND1, respectively). Additionally, some

intervening sequences were lost. The translocations demarcate

borders of chromosomal segments where the difference in total

copy number is particularly marked: Figure 3C depicts ‘copy

number steps’ at rearrangement breakpoints which are calculated

as the absolute difference in total copy number between 5-kb

Figure 1. Identification of hotspots of clustered rearrangements in breast cancers. (A) Workflow. (B) Schematic of clusters of rearrangements
in individual samples, some of which form hotspots (grey shading). (C) Chromosomal localisation of breakpoints of rearrangements across
560 breast cancer genomes shown as counts (1 Mb bins). Chromosomes are depicted around the outside of the circle. Twenty-one hotspots
of clustered rearrangements are shown in red. Positions of genes within each hotspot are indicated. Supplementary Figure S2, available at
Annals of Oncology online shows a weighted histogram which is robust with respect to extremely rearranged individual samples.
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Figure 2. Clustered rearrangements on chromosome 6. (A) Four hotspots identified on chromosome 6 are indicated by the black lines and
grey shading. (B) Examples of samples with clustered rearrangements affecting multiple hotspots on chromosome 6: PD13425a, PD4847a,
PD6422a. Copy number (y-axis) depicted as black dots (10-kb bins, see online methods for details of copy number estimation). Lines repre-
sent rearrangements breakpoints (green ¼ tandem duplications, red ¼ deletions, blue ¼ inversions, pink ¼ inter-chromosomal transloca-
tions). Pink numbers above breakpoints indicate chromosome where second breakpoint of translocations were found. (C) Matrix indicating
samples with clustered rearrangements (in black) focusing on the four hotspots, with samples rearranged in multiple hotspots to the right—
samples shown in detail in (B) are highlighted with asterisks.
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Figure 3. Analysis of FGFR1 and CCND1 co-amplification in sample PD4965a. (A) Circos plot showing rearrangements, loss of heterozygosity
(LOH) (red) and copy number gain (green). Chromosomal ideogram depicted on outermost circle. Lines in the centre of the circle show rear-
rangements (colours described in Figure 2). (B) Representation of two chromosomes connected by translocations. Copy number (y-axis) and
lines represent rearrangements breakpoints described as in Figure 2. (C) Copy number changes at rearrangement breakpoints (dot ¼ rear-
rangements breakpoint, colours as described in Figure 2), with biggest differences at translocation breakpoints. (D) FISH analysis of the same
tumour (bottom): frozen sections of tumour were probed for CCND1 (red) and FGFR1 (green) and the respective chromosome centromeres.
Subset (i) shows a normal cell nucleus with a single copy of both genes. Subset (ii) shows a tumour cell nucleus with multiple FGFR1 (green)
signals (average 14.9/nucleus when counting 60 nuclei) and two chromosome 8 centromere (red) signals. Subset (iii) shows two tumour cell
nuclei with multiple CCND1 (red) signals (average 10.4/nucleus when counting 60 nuclei) and two chromosome 11 centromere (green) sig-
nals. Main FISH image shows combination of CCND1 (red) and FGFR1 (green) probes across multiple tumour cell nuclei. Note significant co-
amplification of both genes and clustering of signals indicating co-evolving of the amplification/translocation in this case.
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regions to the left and to the right of a breakpoint in the reference

genome. In 7 out of the 10 samples, we found that the largest

copy number steps were observed at breakpoints of these add-

itional chr8/chr11 inter-chromosomal translocations as com-

pared with intra-chromosomal rearrangements (supplementary

Table S3, available at Annals of Oncology online). In all 10 sam-

ples, there are examples of inter-chromosomal breakpoints with

copy number steps of 3 or more. Amplifications of translocation

breakpoints are therefore frequent.

To confirm this analytical observation, FISH analysis was car-

ried out on ancillary translocation breakpoints that are distant

from the target driver gene in sample PD18733a. The FISH ana-

lysis confirmed high amplification of translocation breakpoints

and their co-localisation in the nuclei (supplementary Methods

and Figure S9, available at Annals of Oncology online). In terms of

the chronology of events, the amplification of these loci must

have occurred after the formation of the multiple translocations

between the pairs of same two chromosomes.

We propose the following model: the formation of the

chr8:ZNF703/FGFR1 and chr11:CCND1 amplicons is initiated by

a translocation between 8p and 11q resulting in copy number

losses terminal to the translocation breakpoints (Figure 6). A di-

centric chromosome is formed that likely shatters during cell div-

ision, creating multiple opportunities for further translocation

rearrangements to form between pieces of chr8 and chr11. Some

intervening genomic pieces may be lost, while some retained and

then amplified, producing the patterns of high-level

amplification delimited by translocations that we observe to be

interspersed by copy number loss/neutral regions in these breast

cancers.

Chromosome arm loss and amplicon formation

According to the model, losses of chromosome arms 8p and 11q

precede formation of the amplicons. To further evaluate this hy-

pothesis, we assessed the frequency of 8p and 11q losses across

the cohort. Eleven out of thirteen samples with independent

amplifications of both, but without rearrangements between the

two chromosomes also display loss of 8p and 11q (supplementary

Figures S10 and S11, available at Annals of Oncology online). Arm

losses are often associated with amplifications: out of 274 samples

with 8p loss, 168 (61.3%) displayed amplicons elsewhere on the

chromosome. Out of 237 samples with 11q loss, 97 (40.9%) dis-

played chr11:CCND1 gain. The majority of amplifications are

accompanied by adjacent chromosome arm losses, but not all

chromosomes with arms losses developed amplifications.

Is the mutational process unique to
co-amplifications of chr8:ZNF703/FGFR1
and chr11:CCND1?

The mechanistic steps underpinning the co-amplifications be-

tween chromosomes 8 and 11 could be specific to the two sites or

may be a more generalised phenomenon.

Figure 4. Comparison of clinical data for groups of patients with chr8:ZNF703/FGFR1 and chr11:CCND1 amplifications. (A) Venn diagram for
groups of patients defined by amplifications and chr8/11 translocations. (B) Age, breast cancer subtype and PAM50 classification of the pa-
tient groups. (C) Relapse-free survival for the patient groups. Different age distributions and therapies between groups confound this
comparison.
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Figure 5. Representation of ten samples with FGFR1/CCND1 amplifications and translocations between the two amplicons. Copy number (y-
axis) and lines represent rearrangements as described in Figure 2. Translocations joining the lowest coordinates of chr8:ZNF703/FGFR1 ampli-
con to the highest coordinate of chr11:CCND1 amplicon highlighted with asterisks. Segments of LOH are marked in pale red colour.
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To explore this, we searched for other examples of co-occurring

driver amplifications and assessed the patterns of rearrangements

demarcating them. Co-amplifications of other driver loci in breast

cancer are observed, for example chr20:ZNF217 and chr8:MYC is

seen in 18 samples (P¼ 1e�04) and chr20:ZNF217 and

chr8:ZNF703 in 11 samples (P¼ 9e�03) (supplementary Table S1,

available at Annals of Oncology online). However, these co-

amplifications did not show enrichment of translocations between

affected chromosomes, nor did they exhibit simultaneous telomer-

ic loss beyond the translocation breakpoint. Thus, although other

co-occurring amplifications exist, they do not arise via the same

mechanism of fusion of two chromosomes that results in the

chr8:ZNF703/FGFR1 and chr11:CCND1 co-amplifications.

Finally, we conducted an exhaustive search for clustered rear-

rangements with similar genomic properties to the chr8–chr11 co-

amplifications. We identified six other samples with clustered rear-

rangements involving two chromosomes that had translocations

connecting the two chromosomes, and had adjacent losses of

chromosome arms (supplementary Figure S12 and S13, available at

Annals of Oncology online). Although chromosome 8 or 11 was

involved in five of the six identified events, no other chromosomal

pair was recurrent unlike in the chr8–chr11 co-amplifications.

Discussion

Alternative way of detecting drivers—recurrence
and co-occurrence

Traditionally, recurrence of exonic mutations has been used as evi-

dence for selection, particularly for single-base substitutions and

frameshifting insertions/deletions. The principle of recurrence has

also been used to detect selection for simple somatic rearrange-

ments [16]. Here, we describe recurrent clustered rearrangements

of a more complex nature; some of which span multiple regions on

single or multiple chromosomes. Detailed analyses of the rearrange-

ments forming these complex events suggest a role of selection in

their formation. We observed co-evolution of clustered rearrange-

ments recurrently affecting disparate hotspot regions on a single

chromosome (e.g. chromosome 6), as well as on different chromo-

somes (e.g. co-amplifications of chromosomes 8 and 11). We posit

that such chromosomal events are unlikely to occur by chance.

Rare amplicons detected by analysis of clustered
rearrangements

In addition to known driver amplicons, we identified novel

regions of the genome that are recurrently affected by clustered

rearrangements, albeit at moderate frequency. Some of these

events increase the number of copies of oncogenes, but further

functional work is required to demonstrate whether they are

driver events in breast cancer.

Deep analysis of co-occurrence reveals novel muta-
tional mechanisms

The processes that lead to co-occurring amplifications of the

chr8:ZNF703/FGFR1 and chr11:CCND1 loci are particularly intri-

guing, as we identified recurrent translocations between the two

regions suggesting co-evolution. Indeed, the fusion of two chromo-

somes appears to be the initiating mechanistic event in a substantial

proportion of these tumours. The co-evolution of the

chr8:ZNF703/FGFR1 and chr11:CCND1 amplicons has been subject

CCND1
1. initiating translocation

ZNF703 chr8

2. formation of dicentric chromosome with loss of terminal of 8p &11q

3. dicentric chromosome shatters during mitosis to generate fragments of chr8 & chr11

4. loss of some DNA fragments and suturing of others to form more 8;11 translocations

5. reassembly and amplification

potential for circular 
chromosomes (s)

potential for breakage-fusion-bridge

Figure 6. Proposed mechanism for FGFR1/CCND1 co-amplifications.
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of controversy in the literature [14, 15]. Among tumours with co-

amplifications in our cohort, there are examples of independent

evolution and of linked co-evolution. The novel mutational process

that is described here directly contributes towards the high fre-

quency of the co-amplifications observed in breast cancers.

Conclusions

Clustered rearrangements are common in breast cancer genomes,

and often associated with gene amplifications that drive oncogen-

esis. Understanding the process of amplicon formation, an ex-

ample of which we present here for the chr8:ZNF703/FGFR1 and

chr11:CCND1 co-amplifications, will be important for our

understanding of the origins of a subset of breast cancers.
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