
Citation: Sarker, P.; Akhtar, E.;

Kuddusi, R.U.; Alam, M.M.; Haq,

M.A.; Hosen, M.B.; Chanda, B.C.;

Haque, F.; Alam, M.; Razzaque,

A.; et al. Comparison of the Immune

Responses to COVID-19 Vaccines in

Bangladeshi Population. Vaccines

2022, 10, 1498. https://doi.org/

10.3390/vaccines10091498

Academic Editor: François Meurens

Received: 28 July 2022

Accepted: 5 September 2022

Published: 8 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Communication

Comparison of the Immune Responses to COVID-19 Vaccines
in Bangladeshi Population
Protim Sarker 1, Evana Akhtar 1, Rakib Ullah Kuddusi 1 , Mohammed Mamun Alam 1 , Md. Ahsanul Haq 1,
Md. Biplob Hosen 1 , Bikash Chandra Chanda 2, Farjana Haque 1 , Muntasir Alam 1, Abdur Razzaque 3,
Mustafizur Rahman 1, Faruque Ahmed 4, Md. Golam Kibria 4, Mohammed Zahirul Islam 5, Shehlina Ahmed 6

and Rubhana Raqib 1,*

1 Infectious Diseases Division, International Centre for Diarrhoeal Disease Research (icddr,b),
Dhaka 1212, Bangladesh

2 Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research (icddr,b),
Dhaka 1212, Bangladesh

3 Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease
Research (icddr,b), Dhaka 1212, Bangladesh

4 Sheikh Russel Gastroliver Institute & Hospital, Dhaka 1212, Bangladesh
5 Embassy of Sweden in Dhaka, Dhaka 1212, Bangladesh
6 Foreign Commonwealth & Development Office (Bangladesh), Dhaka 1212, Bangladesh
* Correspondence: rubhana@icddrb.org

Abstract: Background: The adaptive immune response is a crucial component of the protective
immunity against SARS-CoV-2, generated after infection or vaccination. Methods: We studied
antibody titers, neutralizing antibodies and cellular immune responses to four different COVID-19
vaccines, namely Pfizer-BioNTech, Moderna Spikevax, AstraZeneca and Sinopharm vaccines in the
Bangladeshi population (n = 1780). Results: mRNA vaccines Moderna (14,655 ± 11.3) and Pfizer
(13,772 ± 11.5) elicited significantly higher anti-Spike (S) antibody titers compared to the Adenovector
vaccine AstraZeneca (2443 ± 12.8) and inactivated vaccine Sinopharm (1150 ± 11.2). SARS-CoV-
2-specific neutralizing antibodies as well as IFN-γ-secreting lymphocytes were more abundant in
Pfizer and Moderna vaccine recipients compared to AstraZeneca and Sinopharm vaccine recipients.
Participants previously infected with SARS-CoV-2 exhibited higher post-vaccine immune responses
(S-specific and neutralizing antibodies, IFN-γ-secreting cells) compared to uninfected participants.
Memory B (BMEM), total CD8+T, CD4+ central memory (CD4+

CM) and T-regulatory (TREG) cells were
more numerous in AstraZeneca vaccine recipients compared to other vaccine recipients. Plasmablasts,
B-regulatory (BREG) and CD4+ effector (CD4+

EFF) cells were more numerous in mRNA vaccine
recipients. Conclusions: mRNA vaccines generated a higher antibody response, while a differential
cellular response was observed for different vaccine types, suggesting that both cellular and humoral
responses are important in immune monitoring of different types of vaccines.

Keywords: B cell; T cell; cellular immunity; humoral immunity; neutralizing antibodies; SARS-CoV-2

1. Introduction

Growing evidence suggests that the adaptive immune response is critical for the
development of protective immunity against SARS-CoV-2, including viral clearance and the
persistence of antiviral immunity [1]. Generation of neutralizing antibodies that specifically
target the receptor-binding domain (RBD) of the spike (S) protein is considered to be
essential in controlling SARS-CoV-2 infection [2,3]. A robust adaptive immune response
with the presence of RBD and S-specific neutralizing antibodies, memory B cells, and T-cell
response has been found in patients who have recovered from infection [4–7]. Although
circulating antibodies derived from plasma cells wane over time, long-lived immunological
memory can persist in expanded clones of memory B cells [5,7].
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The world responded rapidly by developing, evaluating and deploying multiple
COVID-19 vaccines, with 69% of the world population having received at least one dose
of a COVID-19 vaccine [8]. About 12.4 billion doses of COVID-19 vaccines have been
administered globally. Eight COVID-19 vaccines have so far been approved by the drug-
regulatory authority for use in Bangladesh. The Pfizer-BioNTech Comirnaty (BNT162b2)
and Moderna Spikevax (mRNA-1273) use spike-encoding mRNA in lipid nanoparticles.
AstraZeneca (ChAdOx1-S/Covishield), Johnson & Johnson/Janssen (Ad26.COV2.S) and
Gamaleya (Sputnik V) are adenovector vaccines. Novavax/COVOVAX (NVX-CoV2373) is
a protein subunit vaccine. All these vaccines use spike protein of the first emerged SARS-
CoV-2 in Wuhan, China, as the target immunogen to be presented in native conformation
for inducing high levels of neutralizing antibodies. The Sinopharm (BBIBP-CorV) and
Sinovac (CoronaVac) are inactivated whole-virus vaccines that contain diverse viral proteins
with theoretical potential to broaden immune protection against the variants of concern
(VOCs) beyond the spike-protein-specific immune response. Many of these vaccines have
been demonstrated to be successful in reducing severity of infections, hospitalization and
deaths [9–15]. Induction of neutralizing antibodies [16,17] and cellular immunity [18–22]
post-vaccination is likely to play an important role in the protective immunity. Limited
studies have compared humoral and/or cellular responses developed by some of these
COVID-19 vaccines showing variations in the generated immune responses [20,23–27].
There are no reports yet on the comparative immune responses to different COVID-19
vaccines in Bangladesh. Here, we aimed to study antibody titers, neutralizing capacities
of antibodies and cellular immune response after completion of two doses of COVID-19
vaccines in the Bangladeshi population.

2. Materials and Methods
2.1. Study Design and Participant Recruitment

Participants (n-1780, age range 17 to 88 years) were enrolled within 2–4 weeks after
receiving two doses of COVID-19 vaccines from the Sheikh Russel Gastroliver Institute
& Hospital (SRGIH) as well as from the urban communities of 5 major divisions from
November 2021 to May 2022. The vaccinees included in this study received one of the
four vaccine types: AstraZeneca (n = 350), Moderna Spikevax (n = 431), Pfizer-BioNTech
Comirnaty (n = 379) and Sinopharm (n = 620).

2.2. Data and Specimen Collection

A structured questionnaire was used to collect data on demography, monthly income,
history of previous SARS-CoV-2 infection, and COVID-19 vaccination status. Height and
weight were measured using the free-standing stadiometer (Seca 217, Hamburg, Germany)
and digital weighing scale (Camry-EB9063, China), respectively to calculate body mass index
(BMI). Blood samples (10 mL) were collected from the participants at the time of enrollment.
The study design is depicted in a flow chart showing details of sample collection, and analysis
by various methods in each vaccination arm (Supplementary Figure S1).

2.3. Specimen Processing

Plasma was separated from blood by centrifugation at 400× g and stored at −80 ◦C in
a freezer. Peripheral blood mononuclear cells (PBMCs) were isolated (only from blood of
SRGIH participants) by density gradient centrifugation at 500× g using Ficoll–Hypaque.
The separated PBMCs were washed and then frozen in 10% di-methyl sulfoxide (DMSO) in
fetal bovine serum (FBS) and preserved in liquid nitrogen until use.

2.4. Assessment of SARS-CoV-2-Specific Antibodies

Concentration of IgG antibodies directed to the SARS-CoV-2 spike (S) protein receptor
binding domain (RBD) was determined in plasma by Elecsys® Anti-SARS-CoV-2 S im-
munoassay (Roche Diagnostics GmbH, Mannheim). SARS-CoV-2 nucleocapsid (N)-specific
antibodies (both IgG and IgM) were determined in plasma using an Elecsys® Anti-SARS-
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CoV-2 N immunoassay (Roche), and categorized as seropositive and seronegative based
on the antibody cut-off index (COI ≥ 1.0, reactive; COI < 1.0, non-reactive). Participants
positive for N-specific antibodies in mRNA and adenovector vaccine groups were consid-
ered as individuals previously exposed to or infected with SARS-CoV-2. With inactivated
whole-virus vaccine, it is not possible to differentiate whether N-specific antibody was
generated due to vaccination or natural infection with SARS-CoV-2.

2.5. Pseudovirus Neutralization Assay (PNA)

Neutralizing potential of plasma antibodies against SARS-CoV-2 was determined
using pseudovirus neutralization assay (PNA) in a subset of 40 participants (n = 10 from
each vaccine group). Participants in mRNA and adenovector vaccine groups were se-
lected based on N-specific antibody positivity and negativity (5 positives and 5 negatives
from each group). From the inactivated vaccine group, participants with high (titers
above 75% percentile) and low (titers below 25% percentile) S-antibody titers were selected
(Supplementary Figure S1). Pseudoviruses expressing the codon-optimized Wuhan refer-
ence strain’s spike protein and containing luciferase reporter were added sequentially to the
heat-inactivated diluted plasma to prepare plasma–virus complexes. The complexes were
then transferred onto plates, previously seeded with Vero E6 cells. Following incubation
at 37◦ and 5% CO2, the luciferase substrate was added to the cells, and the luminescence
intensity was measured on a luminescence plate reader. Obtained relative luminescence
units (RLUs) were inversely proportional to the level of neutralizing antibodies present
in the plasma. The reciprocal dilution of plasma required to inhibit pseudovirus infec-
tion by 50% (NT50) was used as a measure of neutralization potential of antibodies in
each specimen.

2.6. Flow Cytometry of PBMC

Immune cell profiling of frozen PBMC was performed by flow cytometry in the
same 40 participants as analyzed for the PNA assay. Cryopreserved PBMCs were thawed,
washed, counted and stained using a cocktail of monoclonal antibodies conjugated to
different fluorochromes (BD Biosciences, San Jose, CA, USA) for specific cell surface mark-
ers (Supplementary Table S1). At least 500,000 events per sample were acquired on a BD
FACSCanto™ (BD Biosciences, San Jose, CA, USA). Acquired data were analyzed using
FACS DIVA software (Tree Star, Inc., Ashland, OR, USA). The different cell populations
were identified based on forward- and side-scatter characteristics and cell-specific surface
receptors. At least 50,000 lymphocyte-gated cells were analyzed for T- and B-cell assess-
ment. Supplementary Figure S2 shows the process of gating and obtaining profiles of
immune cells.

2.7. ELISPOT Assay

Functional T-cell response was assessed in the PBMCs from 108 participants (27 partic-
ipants from each vaccine group, selected following the same strategy as for PNA and FACS
analysis) by determining SARS-CoV-2-peptide-specific interferon gamma (IFN-γ) secreting
T cells using Human IFN-γ/IL-5 Double-Color ELISPOT kits (Cellular Technology Ltd.,
Shaker Height, OH, USA). PepMix™ SARS-CoV-2 (Spike Glycoprotein) was used as the
stimulating antigen (JPT Peptide Technologies, Berlin, Germany).

2.8. Statistical Analysis Plan

Data are presented as geometric mean with standard deviation (SD) or number as a
percent or median with interquartile range. To estimate the difference in antibody titers,
neutralizing antibodies and IFN-γ-secreting T cells between the vaccine groups were
analyzed with 2-way ANCOVA. ANCOVA was also used to determine the difference in
S-specific antibody titers between RT-PCR and N-antibody-positive and -negative cases
in each vaccine group. The model was adjusted for age, sex, BMI and family income. The
difference was considered statistically significant when p < 0.05. Spearman correlation was
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used to assess the correlation between S-specific IgG titers, PNA titers and cell response.
Statistical analysis was performed in STATA-15, and graphs were prepared in GraphPad
Prism 8.3.1.

3. Results
3.1. Participants

About 52.0% of the participants were male. Post-vaccination symptoms were observed
mostly in the Moderna- and Pfizer-vaccinated individuals after getting the first or second
dose of vaccines. Common symptoms included fever, tiredness, muscle pain, headache and
body ache. Out of 399 participants who went for RT-PCR testing, only 178 participants (54,
64, 39 and 21 in the AstraZeneca, Moderna, Pfizer and Sinopharm groups, respectively)
tested positive for SARS-CoV-2 infection by RT-PCR.

3.2. Vaccine-Specific Antibody Response

Anti-S-IgG antibodies were highest in the participants vaccinated with Pfizer, followed
by Moderna, AstraZeneca and Sinopharm vaccinees (Figure 1A). Participants previously
infected with RT-PCR-confirmed SARS-CoV-2 before the first dose of the COVID-19 vaccine
showed significantly higher post-vaccination antibody responses compared to uninfected
individuals in the overall study population (beta(β) = 9547, 95% CI = 7268, 12,398) and in
individual vaccine groups (Figure 1B). Similarly, participants seropositive for N-antigen
showed higher anti-S-IgG antibody responses compared to those who were seronegative
in the overall study population (β = 6772, 95% CI = 6412, 7009) and in Pfizer, Moderna
and AstraZeneca vaccine groups (Figure 1C). Individuals who developed symptoms post-
vaccination showed more anti-S-IgG antibodies compared to those who did not (Table 1).
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Figure 1. SARS-CoV-2 S-protein-specific antibody levels in study participants after two doses of vac-
cination. (A) Comparison of antibody levels between different SARS-CoV-2 vaccines; (B) differences
in antibody titer between RT-PCR positive and negative participants; (C) comparison of antibody
levels between participants positive and negative for SARS-CoV-2 N-protein-specific antibody. A
2-way ANCOVA model was used to estimate the p-value, and the model was adjusted for age, sex,
income and BMI.
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Table 1. Differences in antibody titers between participants with and without COVID-like symptoms
after getting 1st and 2nd doses of COVID-19 vaccines.

Symptoms After 1st Vaccination After 2nd Vaccination
β-Coff (95% CI) p-Value β-Coff (95% CI) p-Value

Fever 2.69 (1.86, 3.80) <0.001 2.88 (2.04, 4.07) <0.001
Tiredness 1.91 (1.23, 2.98) 0.004 1.86 (1.17, 2.95) 0.008
Muscle pain 1.70 (1.17, 2.45) 0.006 1.29 (0.91, 1.82) 0.149
Headache 2.04 (1.20, 3.47) 0.009 2.75 (1.62, 4.79) <0.001
Whole body pain 1.17 (0.85, 1.62) 0.332 1.27 (0.91, 1.78) 0.159

Multivariate regression model was used to calculate the mean difference (β-coefficient) between participants
having each symptom and asymptomatic participants and to estimate the p-value. Log-transformed data were
used for the calculation. The regression model was adjusted by age, sex, history of SARS-CoV-2 infection (RT-PCR
confirmed) and household income.

3.3. Neutralizing Antibodies

The level of neutralizing antibodies (NT50) against pseudoviruses was significantly
higher in Moderna- and Pfizer-vaccinated groups compared to the AstraZeneca and
Sinopharm groups (Figure 2). Neutralization titers were found to be positively associ-
ated with anti-S antibodies (β = 1.29, 95% CI = 1.20, 1.38) and history of RT-PCR positivity
(β = 2.57, 95% CI = 0.95, 6.92).
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Figure 2. Neutralizing antibody titers in different vaccine groups. A 2-way ANCOVA was used to
estimate the p-value, and the model was adjusted for age, sex, income and BMI.

3.4. Immune Cell Profile

Participants vaccinated with AstraZeneca showed fewer plasmablasts (CD19+CD27+

CD38+) and B-regulatory (Breg, CD19+CD24++CD27+) cells compared to the Pfizer and Mod-
erna groups, respectively, but more memory B (BMEM, CD19+CD27++) cells compared to
all three vaccine groups (Figure 3A). CD4+ effector (CD4+TEFF, CD45RA+CD45RO−CCR7−)
cells were highest in the Pfizer group, while CD4+ naive (CD4+

N, CD45RA+CD45RO−CCR7+)
cells were highest in the Sinopharm group. Both these cell types were significantly less
present in the AstraZeneca group compared to the Pfizer and Sinopharm group, respec-
tively (Figure 3B). On the other hand, AstraZeneca vaccine recipients exhibited signif-
icantly more CD4+ T-central-memory (CD4+TCM, CD45RA-CD45RO+CCR7+) cells and
CD8+ T cells compared to Pfizer and Sinopharm vaccinees, and more T-regulatory (Treg,
CD4+CD25++CD127low) cells compared to Moderna and Sinopharm vaccinees. CD4+TCM
was also significantly higher in Moderna vaccine recipients compared to Pfizer and
Sinopharm vaccinees (Figure 3B).
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3.5. T Cell Function

Both Moderna (178.7 ± 1.29)- and Pfizer (200.0 ± 1.31)-vaccinated individuals ex-
hibited significantly higher numbers of IFN-γ-secreting T cells/106 PBMC compared to
the AstraZeneca (36.8 ± 1.36) and Sinopharm groups (53.7 ± 1.32) (p < 0.001) (Figure 4).
N-antibody-positive participants had higher numbers of IFN-γ-secreting T cells compared
to N-antibody-negative individuals in the Pfizer (β = 0.64, 95% CI = 0.25, 1.02) and As-
traZeneca (β = 0.64, 95% CI = 0.27, 1.01) groups. No such significant difference was noted
in the Moderna group.
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3.6. Correlation between S-Specific IgG Antibodies, NT50 and Cell Response

S-IgG titers were highly correlated with NT50 (r = 0.913, p = 0.000) and moderately
correlated with Breg cells (r = 0.384, p = 0.008) and plasmablasts (r = 0.297, p = 0.045).
The neutralizing antibody NT50 was also positively correlated with Breg cells (r = 0.325,
p = 0.046) and plasmablasts (r = 0.379, p = 0.019). S-IgG and NT50 antibodies did not show
any correlation with other cell types.

4. Discussion

Here, we report humoral and cellular immune responses in individuals vaccinated
with four different COVID-19 vaccines . Moderna and Pfizer vaccine recipients showed
significantly higher S-specific IgG antibody titers, neutralizing antibodies and IFN-γ-
secreting T lymphocytes compared to AstraZeneca and Sinopharm vaccine recipients. On
the other hand, memory B- and T-cell responses were highest in the AstraZeneca group.
Participants previously infected with SARS-CoV-2 before the first dose of vaccines exhibited
higher S-specific and neutralizing antibody titers compared to those who were uninfected.

We have demonstrated higher binding and neutralizing antibody responses in mRNA
vaccine recipients compared to adenovector and killed whole-virus vaccine recipients.
These findings are supported by several other reports [24,27–30]. A strong association
between neutralizing antibodies and anti-S antibodies was also seen in this study as well as
in other populations, including vaccine recipients and convalescent patients [24,29,31]. In
invading host cells, the first and most crucial step for the virus is to bind to the angiotensin-
converting enzyme 2 (ACE2) receptor of the host cell with the help of spike (S) glycoprotein.
Pfizer, Moderna and AstraZeneca vaccines use this S protein as the immunogen with the
aim of producing anti-S antibodies that neutralize the receptor-binding domain of the S
protein [3,32,33]. While Pfizer and Moderna vaccines use codon-optimized sequences of
mRNA for efficient expression of the full-length S protein delivered to the host cell through
lipid nanoparticles (LNPs), the AstraZeneca vaccine utilizes DNA delivered through a
chimpanzee adenovirus vector [34]. The rapid delivery of the mRNA into the host cell
cytoplasm by LNP, direct translation into S protein, adjuvant properties of both mRNA
and LNP and stabilizing mutations preventing the conformational change from the pre-
fusion to the post-fusion structure of S protein [34–36] might explain the higher antibody
response and neutralization capacity of the mRNA vaccines compared to adenovector
vaccines. Again, formation of the post-fusion S and the concomitant dissociation of S1 due
to inactivation and purification processes could compromise the antibody response of the
Sinopharm vaccine [34]. The higher binding and neutralizing antibody response of mRNA
vaccines may reflect the better protection offered by these vaccines compared to inactivated-
and vector-based vaccines [37,38]. Elevated antibodies in participants previously exposed to
or infected with SARS-CoV-2 as supported by earlier studies would indicate the importance
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of the memory B-cell and probably also T-cell response in providing a substantial boost to
the humoral response [39,40].

Rapidly expanding plasmablasts are the key to successful humoral immunity as they
produce high antibody titers in the initial phase of an infection or vaccination [41]. The
lower number of plasmablasts in the AstraZeneca vaccine recipients is aligned with the
lower production of antigen-specific antibodies compared to mRNA vaccine recipients.
On the other hand, the highest frequency of CD19+CD27++ BMEM cells that produce enor-
mous numbers of antibodies in response to re-infection may reflect longevity of immune
memory in the AstraZeneca group [42]. The longer duration of immunological memory in
AstraZeneca vaccine recipients was also reflected by the highest number of CD4+TCM cells.
Central memory T cells migrate to secondary lymphoid organs, where they proliferate
and differentiate into effector T cells upon exposure to antigenic stimulation [43]. Previous
studies have shown that transcriptionally active adenovirus vector genomes can persist
for months after inoculation, leading to continuous production of low amounts of anti-
gen, which has been proposed to contribute to expanding and maintaining memory cell
populations [44,45].

IFN-γ, a key moderator of cell-mediated immunity that is expressed by activated CD4+

and CD8+ T cells, can mediate direct antiviral function and enhance the antiviral effects of
CD8+ T cells [46–48]. Even though the proportion of total cytotoxic T cells was higher in
the AstraZeneca vaccine recipients, lower numbers of IFN-γ-secreting T cells in parallel to
the reduced proportion of CD4+ TEFF cells may indicate the somewhat diminished capacity
of the effector function of the cellular immune arm compared to mRNA vaccines.

Treg may protect the host from acute viral infections by downregulating immunopatho-
genic mechanisms of tissue damage [49,50]. Maintenance of immune homeostasis through
suppression of inflammatory responses is also evident for Breg cells [51]. SARS-CoV-
2 infection induces inflammatory pathogenesis during COVID-19 onset by downregulating
both Treg and Breg cells, especially in severe and critical patients [52,53]. A higher number
of CD19+CD24++CD27+ Breg cells after administration of mRNA-based vaccines and higher
numbers of CD4+CD25++CD127low Treg cells in AstraZeneca vaccine recipients suggest
that these two types of vaccines use different immunoregulatory pathways. Moderna
shots are known to produce more adverse effects than other vaccines, and this could be
partially explained by the lower frequency of Treg cells in these vaccine recipients. In
participants receiving the AstraZeneca vaccine, a higher number of Treg cells might control
the differentiation of CD4+ cells into the effector phenotype [54]. In fact, a favorable ratio of
effector to regulatory cells is needed to strike a balance in the immune response. S-specific
antibody titers as well as NT50 antibodies correlated with plasmablasts and Breg cells,
further highlighting the roles of B-cell lineage in producing functional antibodies against
SARS-CoV-2 among the vaccinees.

Individuals vaccinated with inactivated vaccines had a lower number of memory B
cells, CD4+ T-memory cells, CD8+ cells and Treg cells. Insufficient cellular responses along
with lower titers of S-specific and neutralization antibodies suggest lower protection as
well as a shorter duration of immunological memory offered by inactivated vaccine.

Limitations of this study include not collecting blood specimens before vaccination
as well as before infection in the individuals with PCR-confirmed SARS-CoV-2 infections.
However, we collected plasma from individuals within 2–4 weeks after the second dose
of vaccination to obtain peak antibody responses to SARS-CoV-2 antigens; the timing
was uniform across all vaccine groups. One limitation was that we did not determine
the antigen-specific phenotypic characterization of peripheral immune cells. Another
limitation was the small sample size of the participants in the PNA, IFN-γ-secreting T-cell
and phenotypic cell assessment components due to budget constraints. However, all the
results point to the same direction, supporting the antibody response findings and further
strengthening the data.
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5. Conclusions

In conclusion, the serological data from recipients vaccinated with the four vaccines
suggest that mRNA-vaccinated individuals had higher humoral immunity compared to
adenovector and inactivated vaccine recipients. However, total CD8+T cells, pools of central
memory CD4+T cells and memory B cells were higher in adenovector vaccine recipients.
Taken together, the findings of the study underscore the need for monitoring of both arms of
the immune system after vaccination. Long-term follow-up of vaccinated individuals will
show comparative data on sustaining or waning of humoral and cellular immune responses
generated from the different vaccination groups. Moreover, booster (third) dosing with the
heterologous vaccine in the same population would provide valuable information on whether
the combination of different humoral and cellular immune responses evoked by different
vaccines leads to higher and prolonged immunity compared to homologous vaccines.
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