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In Lysinuric Protein Intolerance system y+L
activity is defective in monocytes and in
GM-CSF-differentiated macrophages
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Abstract

Background: In the recessive aminoaciduria Lysinuric Protein Intolerance (LPI), mutations of SLC7A7/y+LAT1 impair
system y+L transport activity for cationic amino acids. A severe complication of LPI is a form of Pulmonary Alveolar
Proteinosis (PAP), in which alveolar spaces are filled with lipoproteinaceous material because of the impaired
surfactant clearance by resident macrophages. The pathogenesis of LPI-associated PAP remains still obscure. The
present study investigates for the first time the expression and function of y+LAT1 in monocytes and macrophages
isolated from a patient affected by LPI-associated PAP. A comparison with mesenchymal cells from the same
subject has been also performed.

Methods: Monocytes from peripheral blood were isolated from a 21-year-old patient with LPI. Alveolar
macrophages and fibroblastic-like mesenchymal cells were obtained from a whole lung lavage (WLL) performed on
the same patient. System y+L activity was determined measuring the 1-min uptake of [3H]-arginine under
discriminating conditions. Gene expression was evaluated through qRT-PCR.

Results: We have found that: 1) system y+L activity is markedly lowered in monocytes and alveolar macrophages
from the LPI patient, because of the prevailing expression of SLC7A7/y+LAT1 in these cells; 2) on the contrary,
fibroblasts isolated from the same patient do not display the transport defect due to compensation by the SLC7A6/
y+LAT2 isoform; 3) in both normal and LPI monocytes, GM-CSF induces the expression of SLC7A7, suggesting that
the gene is a target of the cytokine; 4) GM-CSF-induced differentiation of LPI monocytes is comparable to that of
normal cells, demonstrating that GM-CSF signalling is unaltered; 5) general and respiratory conditions of the
patient, along with PAP-associated parameters, markedly improved after GM-CSF therapy through aerosolization.

Conclusions: Monocytes and macrophages, but not fibroblasts, derived from a LPI patient clearly display the
defect in system y+L-mediated arginine transport. The different transport phenotypes are referable to the relative
levels of expression of SLC7A7 and SLC7A6. Moreover, the expression of SLC7A7 is regulated by GM-CSF in
monocytes, pointing to a role of y+LAT1 in the pathogenesis of LPI associated PAP.

Background
Lysinuric Protein Intolerance (LPI, MIM 222700) is an
autosomic, recessive, hyperdibasic aminoaciduria caused
by defective cationic amino acid (CAA; L-arginine,
L-lysine, L-ornithine) transport at the basolateral mem-
brane of epithelial cells in the intestine and kidney [1].

The defect affects transport system y+L, a member of
the large group of heterodimeric amino acid transpor-
ters formed by a light subunit, which may be either
y+LAT1 (encoded by the SLC7A7 gene) or y+LAT2
(SLC7A6 gene), and a glycoprotein (4F2 hc/CD98 hc)
that is necessary for the correct expression of the trans-
porter in the plasma membrane [2]. Two groups inde-
pendently identified SLC7A7 as the gene mutated in LPI
[3,4]. Because of the transport defect, LPI patients have
high renal clearance and low intestinal absorption of
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CAA and, as a consequence, their CAA plasma levels
are usually low [5].
The clinical presentation of the disease is character-

ized by hyperammonemia, gastrointestinal symptoms,
failure to thrive, renal disease, and osteoporosis [5].
Additional features, which are not obviously related to
the transport derangement, include hematopoietic
abnormalities, chronic renal disease, and lung involve-
ment [6]. Pulmonary manifestations are variable and
range from subclinical interstitial lung disease to severe
complications, eventually leading to fatal Pulmonary
Alveolar Proteinosis [7-9].
Pulmonary Alveolar Proteinosis (PAP) is a rare disor-

der in which alveolar spaces of the lungs are excessively
filled with lipoproteinaceous material (surfactant) leading
to progressive respiratory insufficiency [10]. Alveolar
macrophages (AM) appear foamy, lipid-filled because of
the impaired surfactant clearance in these cells. Multiple
clinical forms of PAP have been described according to
the presumed aetiology [11]: (1) idiopathic (primary)
PAP, the most common form diagnosed in adults, which
may be either congenital (mutations of a or b chains of
the receptor for GM-CSF) or acquired (autoimmune PAP
with autoantibodies targeting GM-CSF); (2) secondary
PAP, resulting from conditions in which AM function is
suppressed, such as immunodeficiency states, hematolo-
gic malignancies, exposure to inorganic dusts (eg, silica),
or pharmacologically induced. Among the secondary
forms, LPI-associated PAP resembles clinically autoim-
mune PAP with accumulation of surfactant lipids and
proteins in the airspaces and enlarged AM that contain
numerous phospholipids inclusions [12].
Despite all the progresses in the elucidation of PAP

pathogenesis [13], the molecular mechanisms underlying
LPI-associated PAP remain enigmatic and the reason
why SLC7A7 mutations lead to lung involvement in LPI
patients is still obscure. A hypothesis is that PAP sec-
ondary to LPI might be due to a disorder of bone
marrow-derived monocytes that differentiate into dys-
functional alveolar macrophages. Indeed, a LPI patient
relapsed after heart-lung transplantation for severe,
PAP-associated respiratory insufficiency and died of
respiratory failure after a period of clinical remission
[14]. This evidence suggests that circulating cells of the
patient, such as monocytes/macrophages, colonize the
lung after the transplant and reproduce the pathological
condition. Consistently, we demonstrated high expres-
sion of SLC7A7 in human peripheral monocytes and in
human alveolar macrophages (AM), as well as system y
+L as the only functional transport activity for CAA in
these cell models [15,16]. The high level of SLC7A7
expression found in these cells strengthens the hypoth-
esis that y+LAT1 defect in macrophages plays an impor-
tant role in the pathogenesis of LPI-associated PAP.

In the present study, we compare the activity of sys-
tem y+L and the expression of CAA transporters in per-
ipheral blood monocytes, AM and fibroblasts isolated
from a young man affected by LPI, who developed PAP
eleven years ago, and in control cells. The effect of GM-
CSF on the differentiation of monocytes has been also
addressed and found comparable in control and LPI
cells, providing a rationale for GM-CSF therapy in LPI-
associated PAP.

Methods
Isolation of the cells
Isolation of monocytes
Two different isolations of peripheral monocytes were
performed from the LPI patient at a distance of 3
months. Nine normal healthy donors were used as con-
trols. 20 ml of heparinized blood, diluted with PBS,
were layered on Lympholyte gradient medium (Cedar-
lane Laboratories, Celbio, Italy) and centrifuged at 800 g
for 15 min at 20°C. Peripheral blood mononuclear cells
(PBMC) from the interface were collected and washed
in RPMI medium by centrifugation at 200 g for 7 min at
20°C. Cells were suspended in RPMI containing 10%
endotoxin-free Fetal Bovine Serum (FBS) and seeded on
plastic-ware appropriate for the various determinations.
After a 90-min incubation at 37°C in an atmosphere at
5% CO2, non-adherent cells were removed with vigorous
washes in pre-warmed RPMI medium. Adherent mono-
cytes were employed immediately, for the characteriza-
tion of arginine transport and the analysis of CAA
transporters expression, or cultured to obtain monocyte-
derived macrophages (MDM). These cells were obtained
by culturing monocytes for 5 days in RPMI with 10%
FBS, supplemented with 10 ng/ml of recombinant
human Granulocyte Mj-Colony Stimulating Factor
(rGM-CSF).
Isolation of alveolar macrophages
Alveolar macrophages (AM) were isolated from Whole
Lung Lavage (WLL) of the LPI patient. The lavage fluid
obtained from the clinical procedure was centrifuged for
10 minutes at 400 g. The supernatant was discarded,
while the pellet, containing large amounts of amorphous
lipoproteinaceous material, was diluted with RPMI and
seeded in 24-well trays or 3-cm diameter dishes (Fal-
con). After 2 h, the excess fluid was discarded through
several washes with medium and adherent cells, mainly
foamy macrophages, were used immediately for the
characterization of arginine transport and the analysis of
CAA transporters expression.
AM from normal healthy subjects (n = 3) were

obtained from bronchoalveolar lavage (BAL) after
written informed consent. Bronchoalveolar lavage
(BAL) and AM isolation were performed as previously
described [16].
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Isolation of fibroblastic-like mesenchymal cells
The lavage fluid obtained from WLL was processed as
described above, with the sole difference that, after dilu-
tion with RPMI, the pellet was seeded in 10-cm dia-
meter dishes (Falcon) and incubated at 37°C, 5% CO2.
for 24 h. After this period, the incubation medium was
discarded and, after several washes with RPMI, substi-
tuted with fresh complete RPMI medium. Adherent
cells, which appeared mostly as foamy macrophages,
were left at 37°C, 5% CO2 for one week. At this time, a
heterogeneous population consisting primarily of macro-
phages and fibroblast-like cells was evident. After 2-3
passages of routinely culture growing, the culture
appeared homogeneously composed by fibroblastic cells
(Figure 1). Normal human fibroblasts were isolated from
skin biopsies of 3 healthy donors as already described
[17]. Normal and LPI fibroblasts were routinely cultured
in RPMI supplemented with 10% FBS, streptomycin
(100 μg/ml) and penicillin (100 U/ml) in a humidified
atmosphere of 5% CO2 in air.

L-Arginine Influx
For transport studies, cells were seeded on 24-well (AM)
or 96-well (monocytes and fibroblasts) dishes. Cells,
washed once with a modified bicarbonate-free Earle’s
Balanced Salt Solution (EBSS), buffered at pH 7.4 with
20 mM Tris/HCl, were incubated for 1 min in the same
solution containing [3H]-arginine (4 μCi/ml, 50 μM). In

this interval of time arginine uptake approached linearity
(results not shown). The experiment was terminated by
two rapid washes (< 10 sec) in ice-cold PBS and cell
monolayers were extracted in ethanol. The radioactivity
in cell extracts was determined with Microbeta Trilux
(Wallac). Extracted cells were then dissolved with 0.5%
sodium deoxycholate in 1 M NaOH and protein content
was determined directly in the well using a modified
Lowry procedure, as previously described [15]. Arginine
influx is expressed as nmol/mg of protein/min.

qRT-Polymerase Chain Reaction
1 μg of total RNA, isolated with GenElute™ Mammalian
Total RNA Miniprep Kit (Sigma, Milano, Italy), was
reverse transcribed and 40 ng of cDNA were amplified
as described previously [18]. The following forward and
reverse primers (5 pmol each) were used: 5’ GAA GGA
GGA GCA TCA GAC CA 3’ and 5’ CCC AGT TCC
GCA TAA CAA AG 3’ for y+LAT1/SLC7A7; 5’ CTT
TCT ACT TCA TGG GTG TTT ACC TG 3’ and 5’
ATC CTG AGT CTC CTA TAG CTT ACC AA 3’ for y
+LAT2/SLC7A6; 5’ TTT GAT GCT CGC TCA ATG
ACA 3’ and 5’ CTT GAA GGG AAG GGC TGT TTT
3’ for CD204; 5’ CTG CTG GAT TGA CAA TAT CAG
GC 3’ and 5’ CCC GTT TTC ATT TGG GGC TC 3’
for LPLA2; 5’ GAC AGG AAA GAC AAC AGA CAA
ATC 3’ and 5’ TGT GTA AAT GAT CTC GTG
GACTC 3’ for PPARg; 5’ TGC CTC CAG TAC CCA

Figure 1 Phase contrast image of fibroblast-like mesenchymal cells obtained from the LPI subject. Cells were isolated from WLL fluid, as
described in Methods. × 100
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TCC C 3’ and 5’ CCA CCC ACC AGA TGC TGT C 3’
for PU.1; 5’ GCA GCC ATC AGG TAA GCC AAG 3’
and 5’ AGC GGA CCC TCA GAA GAA AGC 3’ for
RPL15. Primers for SLC7A7 were designed so as to
elude the known mutation site.
The expression of the gene of interest was normalized

to that of the housekeeping gene RPL15. SLC7A6,
SLC7A7 and RPL15 expression levels are given as num-
bers of mRNA molecules [19]. CD204, LPLA2, PPARg
and PU.1 are indexed to the housekeeping gene using
the formula [16]:

1 2 Ct, *000 Δ (1)

where ΔCt = CtRPL15 - Ctproband gene.

Statistics
Student t test for unpaired data was used for statistical
analysis of differences among treatments. Differences
were considered significant when p was less than 0.05.

Materials
Endotoxin-free fetal bovine serum (FBS), RPMI 1640
and Lympholyte (Cedarlane Laboratories) were pur-
chased from EuroClone (Milan, Italy). [L-2,3,4-3H]Argi-
nine (45-70 Ci/mmol) was obtained from Perkin-Elmer
(Monza, Italy). rGM-CSF for in vitro experiments (Relia-
Tech) was purchased from TebuBio (Milan, Italy).
Sigma-Aldrich (Milan, Italy) was the source of all the
other chemicals.

Results
Case history
The patient is an Italian male, currently aged 21. Only
one mutant allele of SLC7A7 gene was identified in the
patient: this mutation, p.M50K (c.149T > A), is located
in the TM domain I and causes the substitution of a
highly conserved amino acid. The p.M50K mutation was
inherited from the father [20]. Although several groups
have tried to identify the mutation inherited by the
mother, these attempts have been thus far unsuccessful.
The clinical history of the patient was already

described in two papers [21,22]. Briefly, in the eighth
month of life the baby was diagnosed as affected by LPI
and, at the age of 15, a PAP was diagnosed based on
Computed Tomography (CT) scan of a crazy paving
pattern and of a mild restrictive ventilatory impairment.
The patient was treated by whole lung lavage (WLL)
according to the current standard of care. At a control
chest CT scan performed 9 months after the WLL, the
crazy paving pattern was almost totally resolved, but the
lung density was slightly, diffusely increased with respect
to normal lungs. After 4 years, the patient was newly
admitted for fever and hypoxemia, and the lung CT

scan revealed the relapse of PAP (Figure 2A). On Janu-
ary 2009 he underwent a WLL which resulted in an
immediate improvement. The benefit this time was tran-
sient, and on March 2009 he was newly admitted to our
Intensive Care Unit (ICU) because of severe respiratory
failure. The third WLL, performed on March 2009, was
complicated by an acute alveolar haemorrhage with
acute anaemia, and the patient was treated with non-
invasive ventilation and red blood cell transfusion. The
persistence of respiratory failure suggested patient
refractoriness to WLL and induced to consider a treat-
ment with inhaled rGM-CSF (Sargramostim, Leukine,
Bayer). The treatment was preceded by a bone marrow
biopsy, aimed at excluding the presence of a latent hae-
mophagocytic syndrome, a possible feature of LPI [23].
The rGM-CSF treatment was approved by the AIFA
(Italian Agency For Drugs) and by the Ethic Committee
of the San Matteo Hospital. The drug was nebulised
daily with the PARI Boy (kindly provided by dr Arienti,
Sapio Life Srl, Italy) at the dose of 250 μg daily for

A
A

B

Figure 2 Chest HRCT. Panel A. Lung CT scan obtained before WLL
(December 2008). Bilateral, diffuse ground glass of lower pulmonary
lobes, with thickening of intra- and inter-lobular septa (crazy paving
pattern). Panel B. Lung CT scan obtained after inhaled rGM-CSF trial
(April 2010), showing a marked bilateral improvement in lower lobe
involvement; nevertheless, lung density appears still increased.
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seven consecutive days, followed by 7 days off. This
strategy was adopted so as to minimize possible side
effects. rGM-CSF administration was repeated in 6
cycles, for a total of 42 vials (10,5 mg of rGM-CSF). The
treatment was well tolerated and no side effects
occurred. The respiratory conditions slightly improved
and the oxygen supplementation required at rest gradu-
ally decreased from 6 L/minute to 1 L/minute. 3 weeks
after the end of the rGM-CSF treatment, the patient
experienced an acute chest pain and a severe dyspnea,
and was admitted with a partial right pneumothorax,
treated with aspiration. A second episode occurred at
the end of August, and this time the complete pneu-
mothorax was treated with a chest tube. Because of the
difficult management of the pneumothorax, a second
tube was placed, and this procedure was complicated by
a severe pleural bleeding, requiring aspiration and red
blood cell transfusion. In spite of these complications,
the lung parenchyma progressively cleared, allowing the
withdrawn of oxygen supplementation. The patient was
discharged on September. In spite of three further epi-
sodes of partial apical pneumothorax, all spontaneously
resolved with rest, the actual general and respiratory
conditions of the patient are good and he is enjoying a
satisfactory lifestyle. At the last visit (April 2010) oxygen
saturation was 95% at rest and 87% after a 6 minutes
walking test. At the same time, also the CT scan showed

a marked improvement of PAP appearance, although the
crazy paving pattern persisted (Figure 2B).

Activity of system y+L in monocytes, alveolar
macrophages and fibroblasts from the LPI patient
The transport of arginine (50 μM) in monocytes from
normal subjects (n = 9) or from the LPI patient was
determined under different experimental conditions
selected to discriminate the relative contribution of sys-
tems y+L and y+ [24](Figure 3). An excess of leucine (2
mM) was used to inhibit system y+L transport activity,
whereas leucine (2 mM) + lysine (2 mM) were employed
to inhibit the whole saturable component of arginine
transport. Therefore, the portion of arginine transport
inhibited by leucine can be ascribed to system y+L activ-
ity, while the quote of uptake further inhibited by lysine
corresponds to the contribution of system y+.
As expected for normal monocytes [15], leucine signif-

icantly inhibited arginine uptake and the addition of 2
mM lysine did not produce any further significant
decrease of arginine transport (Panel A). LPI monocytes
had a total arginine influx lower than normal monocytes
and the presence of leucine during the uptake assay did
not produce any significant inhibition of arginine trans-
port (Panel A); in these cells, however, lysine caused a
significant decrease of arginine uptake. The contribu-
tions of systems y+L and y+ to arginine uptake was

0.0

0.1

0.2

0.3

0.4

0.5

System y+L System y+

   LPI
  normal

normal LPI
0.0

0.2

0.4

0.6

total
+ leucine
+ leucine + lysine

*** NS #

ns

v,
 L

-A
rg

(n
m

ol
/m

go
f p

ro
te

in
/m

in
)

A B

Figure 3 Characterization of L-arginine influx in LPI monocytes. Normal and LPI monocytes, isolated as described in Methods, were washed
in EBSS. Panel A. Arginine uptake was assayed by 1 min incubation in EBSS supplemented with L-[3H]-arginine (50 μM; 4 μCi/ml) in the absence
(total uptake) or in the presence of leucine (2 mM) or leucine + lysine (both 2 mM) as indicated. For normal cells, data are means ± SEM of 9
independent experiments (n = 9 normal donors), each performed in quadruplicate. For the LPI patient, data are means ± SD of 4 determinations
obtained in a representative experiment, repeated twice with comparable results. *** p < 0.001 vs total; NS, Not Significant vs +Leucine; ns, not
significant vs total; # p < 0.05 vs +Leucine. Panel B. Arginine transport values of each subject (n = 9 normal donors; n = 2 determinations in the
LPI patient) were employed to calculate system y+L and system y+ transport activity. System y+L: difference between total uptake and the
uptake obtained in the presence of 2 mM leucine; system y+: difference between the influx measured in the presence of 2 mM leucine and that
measured in the presence of 2 mM leucine + 2 mM lysine
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calculated from the transport values obtained from
monocytes of the 9 normal subjects and of the patient
(Panel B). System y+L activity was markedly lower in
LPI monocytes (mean of two measurement 0.066 ±
0.051) than in cells from normal subjects (mean 0.35 ±
0.02; range 0.248 - 0.476). Conversely, system y+ activity
of LPI monocytes was in the upper range of transport
values obtained with normal monocytes (mean of two
measurement 0.135 ± 0.019 for LPI; mean 0.057 ±
0.013, range 0.009 - 0.126 for normal).
The same approach was adopted to measure arginine

transport in alveolar macrophages (AM) and in fibro-
blast-like mesenchymal cells isolated from the LPI
patient (see Methods). As demonstrated in a previous
study [16], arginine transport in AM from healthy sub-
jects is fully attributable to the activity of system y+L
(Figure 4, Panel A). Similarly to what was observed in
monocytes, system y+L activity was largely reduced in
AM isolated from the LPI patient. Conversely, the activ-
ity of system y+L was readily detectable in LPI fibro-
blast-like mesenchymal cells and comparable to that
observed in normal human fibroblasts. This result,
besides confirming previous data obtained in a panel of
LPI fibroblasts [25], suggests that mesenchymal cells do
not express the transport defect referable to the muta-
tion of SLC7A7.

Expression of mRNA for system y+L transporters in
monocytes, alveolar macrophages and fibroblasts of the
LPI patient
To assess if a different pattern of expression of SLC7A7/
y+LAT1 and SLC7A6/y+LAT2 in LPI monocytes,
macrophages and fibroblasts may justify the different

transport phenotype of these cells, the expression of
both genes was evaluated as number of mRNA mole-
cules. This approach allows, indeed, the precise quantifi-
cation of SLC7A7 and SLC7A6 mRNAs within a single
cell model and quantitatively compares their expression
among different cell types. As shown in Figure 5,
SLC7A7 mRNA was highly expressed in monocytes and
even more in AM, both from normal donors and from
the LPI patient, while it appears extremely low in fibro-
blasts. On the contrary, SLC7A6 gene displayed a well
evident expression in AM and fibroblasts, both from
controls and LPI, and a very low expression in mono-
cytes. The comparison between SLC7A7 and SLC7A6
expression levels indicated that in normal monocytes
SLC7A7 mRNA was 30-fold more expressed than
SLC7A6 (0.021 ± 0.005 molecules SLC7A7/RPL15 vs
0.0007 ± 0.00004 molecules SLC7A6/RPL15). On the
contrary, in mesenchymal cells SLC7A6 mRNAs were
about 20-fold more numerous than SLC7A7 mRNAs
(0.004 ± 0.002 molecules SLC7A6/RPL15 vs 0.00019 ±
0.00002 molecules SLC7A7/RPL15). Comparable conclu-
sions were reached for LPI cells. These data suggest that
in LPI monocytes and AM the mutation in SLC7A7 can-
not be complemented by the low relative expression of
SLC7A6. On the contrary, LPI fibroblasts appear func-
tionally comparable to normal cells because of the large
excess of SLC7A6/y+LAT2..

GM-CSF treatment in normal and LPI monocytes
In order to assess if LPI monocytes undergo an altered
differentiated phenotype, normal and LPI monocytes
were cultured in the presence of rGM-CSF (10 ng/ml)
so as to obtain Monocyte-Derived Macrophages
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Figure 4 System y+L and y+ activities in alveolar macrophages (AM) and in fibroblasts obtained from the LPI subject. Arginine uptake
was assayed in AM or fibroblasts from different healthy donors (n = 3) or from the LPI patient (2 experiments on AM and 3 on fibroblasts) and
system y+L and system y+ transport activities were determined as described in Figure 3..
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(MDM). Light microscopy revealed that, after rGM-CSF
exposure, the majority of LPI MDM (Figure 6, Panel B)
exhibited the classical adherent “fried egg” morphology,
typical of normal MDM (Figure 6, Panel A). The differ-
entiation into mature macrophages was also evaluated
through gene expression analysis. In particular we stu-
died CD204 (Scavenger Receptor A, SR-A), a protein
involved in cholesterol uptake [26]; PPARg (Peroxisome
Proliferator-Activated Receptor-g), a key mediator of
surfactant catabolism by alveolar macrophages [27,28];
LPLA2 (Lysosomal PhosphoLipase A2), the enzyme
selectively expressed in alveolar macrophages responsi-
ble for phospholipid homeostasis [29,30]; and PU.1, a
transcription factor that promotes AM maturation, dif-
ferentiation, and surfactant catabolism [31]. As shown in
Figure 6, Panel C, the treatment with rGM-CSF induced
a marked expression of all these markers, both in nor-
mal and LPI cells, thus demonstrating that LPI mono-
cytes undergo a macrophage differentiation comparable
to that of normal cells.
The effects of rGM-CSF on the activity of arginine

transport systems (Figure 7, Panel A) were also
addressed. A marked stimulation of system y+L activity
by rGM-CSF was observed in normal but not in LPI
monocytes, where the low system y+L activity was unaf-
fected by the treatment. In both normal and LPI cells
system y+ activity remained substantially unchanged.
In normal cells the stimulation of system y+L activity

upon incubation with rGM-CSF was fully attributable to
the induction of SLC7A7 gene (Figure 7, Panel B), thus
identifying this gene as a cytokine target. However, also
the monocytes from the LPI subject responded to rGM-
CSF with a 2-fold increase in SLC7A7 mRNA level,
although system y+L transport activity remained unaf-
fected. Under the same conditions, the expression of
SLC7A6 did not exhibit any significant change, both in
normal and in LPI cells.

Discussion
To our knowledge, this is the first comparative study on
the functional analysis of system y+L in cells isolated
from different tissues of a patient affected by Lysinuric
Protein Intolerance (LPI). We have found that: 1) in
AM isolated from the WLL fluid of the LPI patient and
in peripheral blood monocytes from the same subject
system y+L activity is markedly reduced compared to
controls; 2) conversely, mesenchymal cells, isolated from
the same patient, do not display the transport defect,
consistently with our previous results [25]; 3) in both
normal and LPI monocytes the expression of SLC7A7 is
induced by GM-CSF, suggesting that the transporter
gene is a target of the cytokine; 4) GM-CSF induces
genes coding for specialized macrophage functions in
both normal and LPI monocytes.
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Figure 5 Expression of SLC7A6 and SLC7A7 in monocytes,
alveolar macrophages (AM) and fibroblasts obtained from the
LPI subject. After RNA extraction and reverse transcription, cDNA
was employed as template for qPCR with SLC7A6/y+LAT2 and
SLC7A7/y+LAT1 primers. mRNA level, normalized for RPL15 gene, is
expressed as number of molecules (see Methods). For normal cells,
data are means ± SEM of 9 (monocytes) or 3 (AM and fibroblasts)
independent experiments. For the LPI patient, bars are means ± SD
of 6 (monocytes and fibroblasts) or 4 (AM) determinations.
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As far as system y+L activity is concerned, the differ-
ent phenotype displayed by LPI monocytes/macrophages
and fibroblasts can be explained by the relative level of
expression of SLC7A7 and SLC7A6 in these models.
Indeed, the number of molecules of SLC7A7 mRNA in
monocytes is markedly higher than that of SLC7A6
mRNA, while the opposite is true for mesenchymal
cells. Hence, whereas a normal expression of SLC7A6/y
+LAT2 can compensate for the mutation of SLC7A7/y
+LAT1 in LPI fibroblasts, the prevailing expression of y
+LAT1 in monocytes and AM explains the typical LPI
tissue-specific transport defect in these cells.
Operatively, system y+L mediates the efflux of cationic

amino acids, as demonstrated in both epithelial [32] and
non epithelial models [24], including the monocytic cell
line THP-1 (results not shown). Because of the genetic
defect of SLC7A7/y+LAT1, the intracellular concentra-
tion of arginine is expected to be higher in LPI mono-
cytes than in normal cells, although the scarce
availability of the pathological samples prevents the
quantification of arginine content in LPI monocytes/
macrophages. Arginine metabolism in myeloid cells is
emerging as a crucial determinant of local immune

regulation [33]. Indeed, T lymphocytes and NK cells are
severely impaired when the extracellular arginine con-
centration is low [34,35]. Interestingly, clinical outcomes
of LPI include immunological abnormalities [36], such
as impaired function of lymphocytes, the presence of
lupus erythematosus, and an increased susceptibility to
haemophagocytic lymphohistocytosis (HLH) [23]. HLH
is characterized by an uncontrolled proliferation of CD8
+ cells and macrophages, associated with the impaired
or absent cytotoxic activity of NK and CTL. Whereas no
information is yet available on SLC7A7 expression and
function in lymphoid populations, the high expression
and activity of SLC7A7 in normal macrophages and the
substantial defect in system y+L activity observed in LPI
macrophages support the hypothesis of a pathogenetic
role of these cells in the development of LPI-associated
immunological disorders. Loss of y+LAT1-mediated
arginine efflux from LPI macrophages may lead to
abnormal arginine availability in the microenvironment,
thus affecting CTL and NK functions. The excessive
accumulation of intracellular arginine in LPI macro-
phages may also lead to a deregulated production of
nitric oxide (NO) and, in turn, of peroxynitrites
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(ONOO-), which would act as cytotoxic agents for T
cells [37]. Although speculative, this hypothesis is con-
sistent with clinical findings showing increased levels of
nitrates, the stable metabolites of NO, in the plasma of
patients with LPI [38].
Our results demonstrate also, for the first time, that

SLC7A7 is downstream of GM-CSF signalling and is
specifically induced during the maturation of monocytes
to macrophages, along with other genes encoding for
proteins linked to macrophage functions. GM-CSF
induces comparable changes in gene expression also in
LPI macrophages, where, however, due to the SLC7A7
mutation, no increase in system y+L activity is observed.
The molecular mechanisms underlying the pathogenesis
of autoimmune or hereditary PAP consists of impaired
GM-CSF signalling because of neutralizing auto-

antibodies to the growth factor or mutations in genes
encoding the GM-CSF receptor, respectively [10]. How-
ever, we show here that GM-CSF induces comparable
morphological phenotypes and expression patterns of
differentiation markers in macrophages from LPI patient
and healthy subjects. These data demonstrate that the
presence of the mutated SLC7A7 does not interfere with
the GM-CSF-induced macrophage differentiation and
indicate that mechanisms other than impaired GM-CSF
signalling should be investigated to explain LPI-asso-
ciated PAP. The involvement of y+LAT1 protein in the
catabolism of surfactant also remains to be elucidated.
The progressive refractoriness to WLL and PAP

reoccurrence prompted us to consider GM-CSF ther-
apy in our patient, although this approach had been
never applied to LPI-associated PAP. On the other
hand, administration of the growth factor is a promis-
ing therapy for autoimmune PAP, notwithstanding the
presence of auto-antibodies anti-GM-CSF [39]. Since
our patient was negative for serum anti-GM-CSF auto-
antibodies [22], GM-CSF would be expected to main-
tain its biological effects (except the increase in system
y+L activity). We decided to administer the drug
through aerosolization, so as to act particularly on
macrophages within the airways and to avoid the trou-
blesome side effects of systemic administration [40].
During the treatment no severe side effects occurred,
platelet and red blood cell counts were unchanged and
leukocytosis did not develop. Moreover, 12 months
after the end of rGM-CSF administration no granulo-
matous disorder appeared, in contrast with findings by
Douda, who had showed that GM-CSF promoted the
spontaneous formation of granulomas by LPI alveolar
macrophages in vitro [41]. At present, general and
respiratory conditions of the patient are good and
PAP-related findings have markedly improved. If this
positive evolution were to be ascribed to GM-CSF, we
should assume that GM-CSF therapy increases also in
vivo the expression of genes, other than SLC7A7,
involved in surfactant catabolism. Alternatively, GM-
CSF-dependent increase of SLC7A7 mRNA may lead
to an enhanced synthesis of y+LAT1 protein that ame-
liorates macrophage function. This hypothesis, how-
ever, implies that i) y+LAT1 has also some activities
other than arginine efflux; ii) the mutations carried by
the patient do not interfere with these putative func-
tions and iii) y+LAT-1-mediated arginine transport is
not directly implicated in surfactant catabolism. Never-
theless, the link between GM-CSF, impaired y+LAT1
expression and surfactant accumulation in LPI remains
to be elucidated, and our report is not conclusive, tak-
ing into consideration the single case and the possibi-
lity, although rare, of a spontaneous remission of PAP.
Therefore, the establishment of efficacy and safety of
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rGM-CSF in LPI-associated PAP must await other
data.
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