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The human γ-herpesviruses Epstein–Barr virus (EBV or HHV4) and Kaposi sarcoma- 
associated herpesvirus (KSHV or HHV8) are each associated with around 2% of all 
tumors in humans worldwide. However, investigations into their infection, oncogenesis, 
and immune responses that protect from the associated tumors have been hampered 
by the exclusive tropism of these pathogens for humans. Mice with reconstituted 
human immune system components (HIS mice) provide the unique opportunity to study 
persistent infection, virus associated lymphoma formation, and cell-mediated immune 
control of EBV and KSHV. Moreover, since these pathogens are unique stimuli for 
cytotoxic human lymphocyte responses, they also allow us to characterize long-lasting 
cell-mediated immune control and the requirements for its initiation, which would also be 
desirable to achieve during antitumor vaccination in general. Thus, human γ-herpesvirus 
infection of HIS mice provides unique insights into the biology of these important human 
pathogens and human cell-mediated immune responses that are considered to be the 
main protective entity against tumors.

Keywords: epstein–Barr virus, Kaposi sarcoma-associated herpesvirus, natural killer cells, T  cells, primary 
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inTRODUCTiOn

The two human γ-herpesviruses Epstein–Barr virus (EBV or HHV4) and Kaposi sarcoma-associated 
herpesvirus (KSHV or HHV8) are WHO class I carcinogens and responsible for around 10% of the 
infection-associated tumors in humans (1, 2). Even so they belong to the same subfamily of herpesvi-
ruses, their penetration of the human population, oncogenicity, and tissue tropism is quite different. 
While EBV persistently infects more than 90% of the human adult population, KSHV seropositivity 
is quite rare in Europe and the USA (<10%), but approaches 50% in Africa (3). The endothelial 
cell-derived Kaposi sarcoma is the only malignancy that is consistently associated with KSHV alone. 
In addition, KSHV is found in the lymphoproliferation multicentric Castleman’s disease, which can 
progress to non-Hodgkin’s lymphoma in the minority of cases (4), and primary effusion lymphoma 
(PEL) which in 90% of cases also harbors EBV (5). In addition to PELs, EBV is also found in various 
lymphocyte and epithelial cell malignancies, including Burkitt’s lymphoma, Hodgkin’s lymphoma, 
diffuse large B  cell lymphoma (DLBCL), natural killer (NK)/T  cell lymphoma, nasopharyngeal 
carcinoma, and gastric carcinoma (5). As already suggested by the breadth of tumors that it is associ-
ated with, EBV is also the much more growth-transforming virus of the two, readily immortalizing 
human B cells into lymphoblastoid cell lines (LCLs) upon infection in vitro. Furthermore, EBV is 
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associated with so many different malignancies, because it adjusts 
its gene expression pattern to the differentiation stages of its main 
host cell, the human B cell, and thereby contributes to various 
degrees to the transformation in these different malignancies 
(6). The latent infection program with the largest number of 
expressed proteins is called latency III and is found in naïve B cells 
of healthy EBV carriers and DLBCL as well as LCL (7). During 
latency III, six nuclear proteins (EBNAs), two latent membrane 
proteins (LMPs), and non-translated miRNAs as well as EBERs 
are expressed. In latency II of Hodgkin’s lymphoma and germinal 
center B cells of healthy EBV carriers only EBNA1, the two LMPs 
and the non-translated RNAs are expressed. Finally, in latency 
I of Burkitt’s lymphoma and homeostatically dividing memory 
B cells, only EBNA1 and the non-translated RNAs are expressed. 
EBV is thought to persist in resting memory B cells without latent 
protein expression, only transcribing the non-translated RNAs 
from episomal viral DNA (8). Cognate antigen recognition by the 
B cell receptor is then able to reactivate EBV from this memory 
pool, and plasma cell differentiation is associated with lytic infec-
tious virus production (9). Such lytic EBV infection in mucosal 
epithelia amplifies viral titers once more for shedding into saliva 
and transmission (10). In contrast to these distinct EBV infection 
programs, KSHV gene expression does not seem to be primarily 
restricted to the latency gene products latency-associated nuclear 
antigen, viral FLICE inhibitory protein (vFLIP), and viral D-type 
cyclin (vCyclin) in tumor tissues (5). Instead, expression of the 
lytic gene products K1, K2, and K15 seem to support the anti-
apoptotic function of vFLIP to ensure survival of KSHV-associated 
tumor cells, which proliferate in part due to vCyclin expression 
(11). KSHV is thought to persist in long-lived plasma cells (12). 
How these patterns of viral oncogene expression are coordinated 
to cause KSHV- and EBV-associated pathogenesis and which 
immune compartments prevent them in healthy carriers of these 
human γ-herpesviruses has been difficult to study due to the 
exclusive tropism of these viruses for humans. With the advent 
of mice with reconstituted human immune system components 
(HIS mice), some of these questions can be addressed, and this 
review summarizes the insights into the fascinating biology of 
these human tumor viruses that could be gained so far.

eBv AnD KSHv inFeCTiOn

Epstein–Barr virus was one of the first pathogens that HIS mice 
were challenged with (13–17). All programs of EBV infection in 
B cells were found after intraperitoneal infection of reconstituted 
NOD-scid γc− −/  (NSG), NOD-scid γctruncated  (NOG), BALB/c Rag2−/− 
γc− −/  (BRG), and human fetal liver plus human fetal thymus 
transplanted NOD-scid (BLT) mice, but latency III predominates  
(18, 19). Most of these studies found persistence of EBV in HIS 
mice for several months with circulating total viral loads in the 
blood of 104 and 103/ml in the serum after 4–5 weeks of infection 
with 105 viral particles (20, 21). At this time point, total viral loads 
reach 107 viral DNA copies/g in secondary lymphoid tissues like 
spleen and lymph nodes. These viral loads are comparable to blood 
viral loads in patients with symptomatic primary EBV infection, 
called infectious mononucleosis (IM) (22) that surprisingly do not 
differ very much from overall blood viral loads of asymptomatic 

primary infection (23, 24). In most of these studies, the B95-8 
EBV strain was used, which reactivates only very weakly into 
lytic replication and was originally isolated from an American 
IM patient (25, 26). Indeed, in a direct comparison of wild-type 
(wt) and BZLF1-deficient (ZKO) EBV viruses on the B95-8 back-
ground viral titer differences were only observed at week three 
after infection (20). At this time point, some wt EBV-infected HIS 
mice reached already 104 DNA copies/ml in the blood, while ZKO 
EBV-infected mice have 103. These characteristics can be altered 
by using different viral strains for HIS mouse infection. Infection 
with 105 B cell infectious particles of the M81 EBV strain, which 
was isolated from a Chinese nasopharyngeal carcinoma patient, 
leads to 105–106 DNA copies/ml in the peripheral blood of HIS 
mice after 4–5  weeks of infection (27), and other EBV strains 
fall in between the two extremes of B95-8 and M81 (28). Thus, 
EBV infection with 105 infectious viral particles causes a primary 
EBV infection in HIS mice with similar viral loads that have been 
reported in human symptomatic and asymptomatic primary 
infections that can persist for months, even so many HIS mice 
with such high-persistent viral loads succumb to EBV-induced 
lymphoproliferations, as discussed below.

Kaposi sarcoma-associated herpesvirus infection of HIS mice 
on its own is a transient phenomenon with less than 20% of 
mice maintaining KSHV after infection with 105–107 infectious 
particles at 5 weeks post infection (29). However, repeated infec-
tions can maintain KSHV for several months in BLT mice on 
the NSG mouse background, as assessed by expression of KSHV 
gene products and KSHV-encoded GFP 2 weeks after the final 
inoculation (30). However, co-infection with EBV maintains 
KSHV in the majority of infected HIS mice of the NSG mouse 
background after single infection (29). During both transient 
and persistent KSHV infections, the virus can be found in human 
B cells (29, 30), and after 5 weeks of double-infection of KSHV 
with EBV, KSHV is primarily observed in EBV-infected B cells 
(29). Double-infection leads to 25% mortality of HIS mice after 
5  weeks of infection, while single EBV infection causes much 
less pathology (29). These findings suggest that HIS mice can 
serve as in  vivo infection models for both of these oncogenic 
γ-herpesviruses and that KSHV, surprisingly, relies on EBV for 
persistence in this model.

eBv AnD KSHv TUMORiGeneSiS

The above-discussed mortality is probably in part connected to 
the lymphomagenesis that can be observed in HIS mice after 
single EBV and EBV plus KSHV co-infection. After 5–6 weeks of 
infection with 105 infectious particles of the B95-8 EBV, 20–30% 
of mice develop macroscopically visible tumors in various organs, 
including spleen, pancreas, kidney, liver, and lymph nodes  
(16, 20, 21). Tumor incidence does not seem to be significantly 
different in EBV-infected BLT mice (18). These are EBV latency 
III B cell tumors, which can be grown as EBV-transformed B cell 
lines in vitro after dissociation of the visible tumors (Figure 1) 
(16, 29, 31). The ability of HIS mice to develop B cell lymphomas 
has been used to query the role of different latent EBV antigens 
and lytic EBV replication in EBV-associated lymphomagenesis. 
Along these lines, the nuclear antigen 3B of EBV (EBNA3B) has 
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FiGURe 1 | Tumorigenesis and immune control of Epstein–Barr virus (EBV) 
with and without Kaposi sarcoma-associated herpesvirus (KSHV) co-infection 
in mice with human immune system components (HIS mice). KSHV 
co-infection converts EBV-induced immunoblastic lymphoma into primary 
effusion lymphoma (PEL)-like tumors. EBV-associated immunoblastic 
lymphomas are restricted by cytotoxic lymphocytes in humanized mice, 
including CD4+ and CD8+ T cells, natural killer (NK) cells, NKT cells, and 
Vγ9Vδ2 T cells.
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been found to be deleted in a subset of EBV-associated DLBCLs 
in patients (31, 32). Accordingly, EBNA3B-deficient B95-8 EBV 
causes macroscopically visible tumors in 50% of HIS mice after 
4 weeks of infection (31). These tumors are, interestingly, devoid 
of T  cell infiltrates and transcriptome analysis of EBNA3B-
deficient EBV-transformed B  cell lines that were derived from 
tumors in HIS mice, and DLBCL patients demonstrated a loss 
of pro-inflammatory chemokine production (31). Restoration 
of CXCL10 expression in EBNA3A-deficient tumor cell lines 
resulted in T cell-mediated immune control in vivo. In addition, 
the transcriptome analysis revealed that EBNA3B-deficient EBV-
transformed B cells of HIS mice were more similar to patient-
derived DLBCL cell lines in their gene expression than LCLs that 
had been transformed with EBNA3B-deficient EBV in vitro (31). 
These findings established EBNA3B as a viral tumor suppressor 
by its control over pro-inflammatory chemokines.

Furthermore, it was noted that loss of lytic EBV replication 
decreased the ability of infection to cause lymphomagenesis 
(18). This at first sight counterintuitive behavior, namely that 
cell-destructive lytic EBV infection should benefit B cell trans-
formation and lymphoma growth, was suggested to result from 
a pro-inflammatory environment upon early, possibly abortive 
lytic EBV replication, but the responsible pro-inflammatory com-
ponents have not been identified so far. Nevertheless, decreased 
lymphomagenesis by the B95-8 EBV virus that lacks the immedi-
ate early lytic transactivator BZLF1 was also observed in a second 
study (20), and the BZLF1 overexpressing virus induced the same 
amount of lymphomas, but these contained up to 30% of early, 
but not late lytic EBV antigen expression (33), confirming a possi-
ble role of abortive lytic replication in lymphomagenesis by EBV.

In the same way, KSHV co-infection with EBV increases 
lytic EBV replication and EBV-associated tumorigenesis (29). 
Interestingly, in this first small animal in vivo model of KSHV 

persistence, the developing tumors carry KSHV in one-third of 
EBV-infected lymphoma cells. This leads to an upregulation of 
gene expression that is associated with plasma cell differentia-
tion, including the plasma cell fingerprint that is characteristic 
for PELs (Figure 1) (34). About 39% of KSHV and EBV double-
infected mice with PEL-like tumors succumb to their disease after 
1 month (29), while 25% of patients with PEL succumb to tumor 
progression within 4  months (35). Therefore, KSHV and EBV 
double-infection that leads to PEL formation causes significant 
mortality. Interestingly, double-infection of KSHV with the 
lytic EBV replication-deficient BZLF1 knockout strain of B95-8 
abolishes the gain of lymphomagenesis upon infection with both 
viruses (29). Furthermore, early and late lytic EBV gene expression 
were observed at higher frequencies in KSHV and EBV double-
infected lymphomas of patients than in a heterogenous groups of 
EBV single-infected lymphomas. In good agreement, lytic EBV 
replication inhibition with ganciclovir caused complete sustained 
PEL remission in a patient with EBV and KSHV double-positive 
lymphoma (36), but only transient improvement in a patient with 
KSHV single-positive PEL (37). Thus, HIS mice infections with 
EBV alone and KSHV co-infection have revealed an unexpected 
role for lytic EBV replication during virus-associated lymphom-
agenesis, which might be even diagnostically useful to predict the 
risk of EBV-associated malignancy development during immune 
suppression (38).

eBv- AnD KSHv-SPeCiFiC iMMUne 
COnTROL

Primary immunodeficiencies that predispose for EBV-associated 
pathologies point toward an essential role for cytotoxic lympho-
cytes in the immune control of this oncogenic γ-herpesvirus  
(39, 40). The respective mutations affect the perforin degranulation 
machinery, co-stimulatory receptors on cytotoxic lymphocytes 
and DNA binding proteins that are required for the differentiation 
of NK, NKT, γδT, and CD8+ αβ T cells. Much less is known about 
the protective immune responses against KSHV in humans, but 
the available information points to similar requirements as in the 
immune control of EBV (41).

Some of these cytotoxic lymphocyte compartments have 
been interrogated during EBV infection of HIS mice. These 
studies initially focused on T cell responses. In loss-of-function 
experiments, antibody-mediated depletion of all T cells or CD8+ 
and CD4+ T cells was found individually to increase EBV viral 
loads and associated lymphomagenesis upon infection (Figure 1)  
(16, 33, 42). Blocking of the co-stimulatory 2B4 receptor, which 
is compromised in one primary immunodeficiency (Duncan 
disease or XLP1) that predisposes for uncontrolled EBV infec-
tion, resulted in the loss of CD8+ T  cell-mediated immune 
control and elevated viral loads as well as increased tumor 
frequency (43). In gain-of-function experiments, adoptive 
transfer of lytic EBV antigen-specific CD8+ T  cells was able to 
further reduce the low level of lytic EBV replication upon B95-8 
infection of HIS mice (20). Furthermore, late lytic EBV antigen 
and LCL differentiation-specific CD4+ T cells were able to lower 
viral loads in EBV-infected HIS mice (44). If human immune 
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system reconstitution is performed by unseparated cord blood 
injection rather than differentiation from human hematopoietic 
progenitor cells, the established T cell compartment rather sup-
ports EBV-associated lymphomagenesis, even in the absence of 
viral oncogenes (45, 46). These cord blood T cells provide CD4+ 
T cell help for EBV-associated lymphomas (45). This T cell help 
can, however, be converted into immune control by antibody-
mediated blocking of the inhibitory receptors PD-1 and CTLA-4 
(47), presumably mimicking a T  cell compartment that might 
resemble EBV-associated Hodgkin’s lymphoma, a tumor entity 
that can be efficiently treated by check-point blockade immuno-
therapy (48). Thus, T cell-mediated immune control of EBV can 
be interrogated in HIS mice, and depending on the method of 
immune compartment reconstitution, immune compartments of 
healthy EBV carriers or patients with EBV-associated malignan-
cies can be modeled.

In addition, innate lymphocyte compartments have also 
been interrogated for their contribution to immune control of 
EBV. NK cell depletion leads to elevated viral loads and tumor 
formation in EBV-infected HIS mice (Figure 1) (21, 49). Lytic 
EBV infection is primarily controlled by the early-differentiated 
NK cells of HIS mice, because infection with BZLF1 knockout 
EBV is not affected by NK cell depletion. These early-differen-
tiated NK cells also expand in children with IM (22). It seems 
that further differentiated NK cells with HLA-haplotype-specific 
inhibitory receptors can be recruited to this response in mixed 
HLA-mismatched hematopoietic progenitor cell reconstitutions, 
which presumably allow allogeneic recognition of EBV-infected 
B cells of one donor by the further differentiation NK cells of the 
other donor (49). In addition to NK cells, adoptive transfer of 
CD8+ NKT and Vγ9Vδ2 T cells restricts EBV-associated lym-
phomas in HIS mice (Figure 1) (50, 51). Furthermore, Vγ9Vδ2 
T  cell activation with phosphoantigens results in improved 
immune control of successive EBV infection in HIS mice (52). 
Interestingly, innate and adaptive lymphocyte compartments 
seem to compensate each other, because loss of NK cell-mediated 
immune control leads to enhanced CD8+ T cell expansion dur-
ing EBV infection of HIS mice. It will be interesting to elucidate 

which EBV infection programs are controlled by these different 
lymphocyte populations and which receptors on NK, NKT, 
and γδ T cells mediate EBV restriction in vivo. Stimulation of 
these cytotoxic lymphocyte compartments by vaccination could 
correct loss of EBV-specific immune control in patients with 
EBV-associated malignancies, but also teach us how to induce 
comprehensive cell-mediated immune control against tumors in 
general.

COnCLUSiOn AnD OUTLOOK

While we are beginning to understand the protective lymphocyte 
compartments during EBV infection, their characterization for 
KSHV infection is in its infancy. Furthermore, we still have an 
incomplete understanding of how the comprehensive immune 
control by cytotoxic lymphocytes against EBV is initiated; even 
so, EBV is the prototypic viral pathogen that elicits CD8+ T cell 
lymphocytosis during symptomatic infection in IM patients.  
A detailed understanding of the characteristics of a comprehensive 
immune control by cytotoxic lymphocytes and the mechanisms 
that lead to its priming should guide us to develop vaccines to 
elicit such immune control, not only against EBV in patients with 
associated malignancies, but also tumors or badly controlled viral 
infections in general.
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