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Abstract

Macrophages are versatile immune cells that can detect a variety of pathogen-associated molecular patterns through their
Toll-like receptors (TLRs). In response to microbial challenge, the TLR-stimulated macrophage undergoes an activation
program controlled by a dynamically inducible transcriptional regulatory network. Mapping a complex mammalian
transcriptional network poses significant challenges and requires the integration of multiple experimental data types. In this
work, we inferred a transcriptional network underlying TLR-stimulated murine macrophage activation. Microarray-based
expression profiling and transcription factor binding site motif scanning were used to infer a network of associations
between transcription factor genes and clusters of co-expressed target genes. The time-lagged correlation was used to
analyze temporal expression data in order to identify potential causal influences in the network. A novel statistical test was
developed to assess the significance of the time-lagged correlation. Several associations in the resulting inferred network
were validated using targeted ChIP-on-chip experiments. The network incorporates known regulators and gives insight into
the transcriptional control of macrophage activation. Our analysis identified a novel regulator (TGIF1) that may have a role in
macrophage activation.
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Introduction

Dynamic cellular processes, such as the response to a signaling

event, are governed by complex transcriptional regulatory

networks. These networks typically involve a large number of

transcription factors (TFs) that are activated in different combi-

nations in order to produce a particular cellular response. The

macrophage, a vital cell type of the mammalian immune system,

marshals a variety of phenotypic responses to pathogenic

challenge, such as secretion of pro-inflammatory mediators,

phagocytosis and antigen presentation, stimulation of mucus

production, and adherence. In the innate immune system, the

first line of defense against infection, the macrophage’s Toll-like

receptors (TLRs) play a crucial role by recognizing distinct

pathogen-associated molecular patterns (PAMPs), such as flagellin,

lipopeptides, or double-stranded RNA [1,2]. TLR signals are first

channeled through adapter molecules (e.g., TICAM1/TRIF [3,4]

and MyD88 [5]) and then through parallel cross-talking signal

pathways. These activated pathways initiate a transcriptional

program in which over 1,000 genes [6] and hundreds of TF genes

[7] can be differentially expressed, and which is tailored to the type

of infection [8,9]. The transcriptional network underlying

macrophage activation can exhibit many distinct steady-states

which are associated with tissue- and infection-specific macro-

phage functions [10]. The transcriptional response is also dynamic

and characterized by temporal waves of gene activation [6,7,9],

each enriched for distinct sets of gene functions [7,9] and likely to

be controlled by different combinations of transcriptional

regulators [6,7]. Long-term, elucidating the transcriptional

network underlying TLR-stimulated macrophage activation, and

identifying key regulators and their functions, would greatly

enhance our understanding of the innate immune response to

infection and potentially yield new ideas for vaccine development.

Computational analysis of high-throughput experimental data is

proving increasingly useful in the inference of transcriptional

regulatory interaction networks [11–15] and in the identification

and prioritization of potential regulators for targeted experimental

validation [6,7]. Time-course microarray expression measure-

ments have been used to infer dynamic transcriptional networks in

yeast [14,15] and static ‘‘influence’’ networks in mammalian cell

lines [11]. In the context of primary macrophages, expression-

based computational reconstruction of the transcriptional control

logic underlying the activation program is not straightforward and

progress is difficult to measure, for several reasons. First,

transcriptional control within mammalian networks in general

[16], and for key TLR-responsive genes in particular [7], is

combinatorial. Second, many induced TFs are subject to post-

translational activation [17] and dynamic control of nuclear
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localization [6]. Third, targeted genetic perturbations are

presently infeasible to perform on a large scale in a mammalian

animal model, and expression knockdown (RNAi) is difficult in

macrophages due to the tendency of the vector to stimulate TLRs.

Finally, the few transcriptional regulatory interactions that have

been validated through targeted experiments in TLR-stimulated

primary macrophages are not available in a single ‘‘gold standard’’

dataset. Therefore, in the context of transcriptional regulation in

the mammalian macrophage, with presently accessible expression

data sets, large-scale computational inference is primarily useful

for statistically identifying potential regulatory interactions, rather

than as an inference tool for predicting the transcriptional control

logic for specific target genes.

For the reasons described above, in order to computationally

infer transcriptional regulatory interactions in a mammalian

system, it is necessary to include additional sources of evidence

(beyond expression data) to constrain or inform the transcriptional

network model selection. Computational scanning of the promoter

sequences of clusters of co-expressed genes for known transcription

factor binding site (TFBS) motifs has proved particularly valuable

when combined with global expression data [6,18,19]. Recently,

Nilsson et al. [7] used a combination of expression clustering and

promoter sequence scanning for TFBS motifs to construct an

initial transcriptional network of the macrophage stimulated with

the TLR4 stimulus lipopolysaccharide (LPS). Their work identified

two novel regulators, but the clustering was based on an expression

dataset with a single stimulus, limited biological replicates, and few

time points. Moreover, TFBS motif scanning of co-expressed

clusters, without utilizing expression dynamics, provides only a

limited and static picture of the underlying transcriptional

network. Many TFBS motifs are often recognized by multiple

TFs, making difficult the unambiguous identification of the

regulating TF from TFBS enrichment alone. Furthermore,

because of the tendency of TFBS motifs to co-occur [20], it is

difficult to determine from among a set of co-occurring motifs

which associated TF is the most relevant to the condition-specific

regulation of the target cluster. In the TLR-stimulated macro-

phage, core transcription factors already expressed in the cell (e.g.,

NFkB, AP1, and CREB) are rapidly activated and initiate

transcriptional regulation of ‘‘second wave’’ TF genes [6]. Such

transcriptionally regulated TF genes are key candidates for an

integrated analysis combining TF-specific dynamic expression

data and sequence-based motif scanning data.

This work is concerned with using computational data

integration to identify a set of core differentially expressed

transcriptional regulators in the TLR-stimulated macrophage

and, in the form of statistical associations, the clusters of co-

expressed genes that they may regulate. The clusters are

differentiated based on temporal and stimulus-specific activation,

and in this sense, the inferred associations constitute a preliminary

dynamic transcriptional network for the TLR-stimulated macro-

phage. To achieve this, we used a novel computational approach

incorporating TFBS motif scanning and statistical inference based

on time-course expression data across a diverse array of stimuli.

Our approach involved four steps. (i) A set of genes was identified

that were differentially expressed by wild-type macrophages under

at least one TLR stimulation experiment. (ii) These genes were

clustered based on their expression profiles across a wide range of

conditions and strains, grouping genes based on the similarity of

the timing and stimulus-dependence of their induction. Gene

Ontology annotations were used to identify functional categories

enriched within the gene clusters. (iii) Promoter sequences

upstream of the genes within each cluster were scanned for a

library of TFBS motifs, each recognized by at least one

differentially expressed TF, to identify possible associations

between TFs and gene clusters. (iv) Across eleven different time-

course studies, dynamic expression profiles of TF genes and target

genes were compared in order to identify possible causal influences

between differentially expressed TF genes and clusters.

Several techniques have been developed specifically for model

inference from time-course expression data, notably dynamic

Bayesian networks (DBN) [21] and ODE-based model selection

[12]. However, the parametric complexity of these model classes

makes it difficult to apply them to infer a network underlying a

specific cellular perturbation (e.g., TLR activation in the

macrophage) with a limited expression dataset. Here, potential

transcriptional regulatory influence is inferred from time-course

expression data using the time-lagged correlation (TLC) statistic,

which has been used to infer biochemical interaction networks

[22] as well as transcriptional networks [23–29]. The TLC has the

advantage that it accounts for the time delay between differential

expression of an induced TF and differential expression of a target

gene. In contrast to standard correlation-based methods that

identify co-expressed genes, the TLC method uses temporal

ordering of expression to determine whether the time lag between

two correlated genes is consistent with a causal interaction. We

developed a novel method to identify the optimal time lag for each

gene pair, and used a prior probability distribution of transcrip-

tional time delays to score possible interactions.

By combining the promoter scanning-based evidence with the

evidence obtained by the time-lagged correlation analysis of the

expression data, we were able to identify a network of statistically

significant associations between 36 TF genes and 27 co-expressed

clusters. Overall, 63% of differentially expressed genes are

included in the network. The network provided insights into the

temporal organization of the transcriptional response and into

Author Summary

Macrophages play a vital role in host defense against
infection by recognizing pathogens through pattern
recognition receptors, such as the Toll-like receptors
(TLRs), and mounting an immune response. Stimulation
of TLRs initiates a complex transcriptional program in
which induced transcription factor genes dynamically
regulate downstream genes. Microarray-based transcrip-
tional profiling has proved useful for mapping such
transcriptional programs in simpler model organisms;
however, mammalian systems present difficulties such as
post-translational regulation of transcription factors, com-
binatorial gene regulation, and a paucity of available gene-
knockout expression data. Additional evidence sources,
such as DNA sequence-based identification of transcription
factor binding sites, are needed. In this work, we
computationally inferred a transcriptional network for
TLR-stimulated murine macrophages. Our approach com-
bined sequence scanning with time-course expression
data in a probabilistic framework. Expression data were
analyzed using the time-lagged correlation. A novel,
unbiased method was developed to assess the significance
of the time-lagged correlation. The inferred network of
associations between transcription factor genes and co-
expressed gene clusters was validated with targeted ChIP-
on-chip experiments, and yielded insights into the
macrophage activation program, including a potential
novel regulator. Our general approach could be used to
analyze other complex mammalian systems for which
time-course expression data are available.

Macrophage Program via Scanning and Dynamics
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combinations of TFs that may act as key regulators of macrophage

activation. Finally, the analysis identified a potential transcrip-

tional regulator, TGIF1 (Tgif1), which was not previously known

to play a role in macrophage activation. As a targeted

experimental validation of the inferred network, two transcrip-

tional regulators, p50 (a component of NFkB) and IRF1, were

assayed for binding to cis-regulatory elements in LPS-stimulated

macrophages using ChIP-on-chip, and were confirmed to bind the

promoters of genes in four out of five predicted target clusters at

significantly higher proportions than expected for a random set of

TLR-responsive genes.

Results

Gene selection and clustering
To probe a diverse set of transcriptional responses of Toll-like

receptor (TLR)-stimulated macrophages, primary bone marrow-

derived macrophages (BMMs) from five mouse strains (wild-type

and four mutant strains; see Table S1) were stimulated with six

purified TLR agonists representing various pathogen-associated

molecular patterns (PAMPs). The TLR agonists include bacterial-

associated (lipopolysaccharide, Pam2CSK4, Pam3CSK4, CpG),

viral-associated (poly I:C), and anti-viral (R848) stimuli, and are

listed in Table S2. The mutant strains, which were included to

increase the diversity of the TLR-stimulated gene expression

dataset and to increase the number of time-course measurements

used, consisted of null mutations of the two key adapter molecules

for the TLR signaling pathway (TRIF [3] and MyD88 [5]) and

two TFs predicted to be involved in TLR activation (ATF3 [30]

and CREM [31]). Genome-wide expression measurements of

45,037 probesets, representing 23,259 annotated genes, were

made for time courses of up to 48 hours post-stimulation, using

oligonucleotide microarrays (see Materials and Methods). In all,

expression measurements were made for 95 distinct combinations

of strain, stimulus, and elapsed time (hereafter, ‘‘experiments’’; see

Table S3). Using a spline-based multivariate regression method

specifically adapted for significance testing of temporal expression

datasets [32], annotated probesets were analyzed for differential

expression across seven TLR-stimulated wild-type expression

time-courses. After filtering for minimum absolute expression

intensity and differential expression under at least one TLR-

stimulation experiment (see Materials and Methods), 1,960

probesets were identified as significantly differentially expressed,

with each probeset mapped to a unique gene (see Table S4). Of

these, 44% were found to be upregulated in LPS-stimulated wild-

type macrophages. Additionally, a set of 80 TF genes (for which

corresponding position-weight matrices are available in the

TRANSFAC database [33]) were found to be differentially

expressed in the TLR-stimulated wild-type macrophage (Table

S5). Those of TF families with established relevance in

macrophage activation included two NFkB [34] component genes

(Rel, Nfkb1), three AP1 [35] components (Jun, Junb, Fos), two ATF

family genes [6] (Atf1, Atf3), six IRF family TF genes (Irf1/2/3/5/

7/9) [17], and four STAT family TF genes [36] (Stat1/3/4/5a).

The 80 TF genes were taken to constitute the set of potential

regulators in the TLR-stimulated macrophage network.

Clustering was used to identify cohorts of genes that were co-

expressed across the diverse set of TLR-stimulation experiments,

based on the assumption that genes within a cluster are likely to

share common cis-regulatory elements such as TF binding sites

[18]. In order to focus on TF control of the timing and stimulus

specificity of gene expression, genes were clustered based on the

normalized profile of expression, rather than based on the fold-

change. Expression measurements were transformed based on a

single universal reference experiment (wild-type unstimulated

macrophages) so that the transformed measurements would all

lie between 21 and 1, with zero indicating the intensity in the

reference experiment. This technique, which we call the signed

difference ratio (SDR), has previously proved useful in clustering

genes based on temporal expression in a mammalian system [37].

Each log2 intensity measurement ypj for probeset p and non-

reference experiment j, was transformed to an SDR value xpj by

xpj~
ypj{ypjR

max
j0

ypj0{ypjR

�� ��� � ð1Þ

where jR is the index of the global reference experiment (j9 has the

same range of values as j). By construction, 21#xpj#1 for all p and

j. A positive SDR value indicates higher expression than in the

reference experiment, and a negative value indicates lower

expression. The SDR-transformed log2 intensities of all 1,960

target genes across all 94 non-reference experiments were

clustered using an unsupervised algorithm (K-means with Euclid-

ean distance), with the number of clusters chosen using the

Bayesian information criterion (BIC) [38] (see Materials and

Methods, and Figure S1). The target genes were partitioned into

32 clusters (see Table S4, column 5). The differences in temporal

and stimulus-specific expression between the clusters are clearly

visible in a heat-map representation of the SDR-transformed

expression data (hereafter, ‘‘expression data’’) (Figure 1; see also

Figure S2 for the cluster-median expression heat-map).

The clusters (Table S6), which ranged in size from 18 to 113

genes, exhibit a significant diversity of timing and TLR-specificity

of response. The wild-type LPS time-course was used to

characterize the time scale for each cluster to respond transcrip-

tionally (see Materials and Methods, and Table S6 columns 3–4).

A small number of clusters reach peak induction within the first

hour (C28, C27, C25, C26), but the majority of clusters

(representing 55% of genes) respond between 2–4 hours. The

temporal profiles of the clusters in wild-type BMMs under

stimulation by LPS, Pam3CSK4, poly I:C, and R848 are shown

in Figure S3, Figure S4, Figure S5, and Figure S6, respectively.

The clusters exhibit distinct temporal profiles of transcriptional

activation and repression that vary in the time of initial response

and the duration of differential expression. Across all four stimuli,

cluster C28 is induced first (and has sustained induction), followed

by cluster C27 (which undergoes transient (2–3 h) upregulation),

and then by induction of C25 and C26. Induction of C27 and C28

is delayed approximately 1 h under poly I:C stimulation, while

C26 fails to fully induce under poly I:C. A comparison of the

responses of clusters under 8 hours post-stimulation (LPS,

Pam3CSK4, poly I:C, and R848) enabled the segregation of these

clusters based on the signal transduction pathway through which

they are likely primarily regulated (Figure 2). Groups include those

primarily induced (C11, C12, C15, C17, C21, C26) and

downregulated (C7, C29) by the MyD88-dependent pathway,

and those primarily induced (C6, C8, C22, C24) and downreg-

ulated (C4, C5, C10, C20) by the TRIF-dependent pathway.

Although ‘‘core early response’’ clusters C27 and C28 appear to

be inducible through either signaling pathway, a comparison of

the wild-type LPS vs. poly I:C response and of the wild-type vs.

Ticam1(Lps2/Lps2) and Myd88(2/2) responses under LPS (see Table

S7) together indicate that the MyD88-dependent pathway is

responsible for the early response (within the first hour), and the

TRIF-dependent pathway is responsible for sustaining the

induction of these clusters. Early induced TF genes (Egr1/2/3,

Junb, Rel, Irf1) also appear to be inducible through either pathway,

Macrophage Program via Scanning and Dynamics
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Figure 1. Global heat-map of differential gene expression in TLR-stimulated murine macrophages, organized by clusters of co-
expressed genes. Each row is one of the 1,960 genes that are differentially expressed in macrophages under TLR stimulation, and each column is a
replicate-combined microarray experiment. Red/green coloring indicates the differential expression level (SDR-normalized, see Equation 1). Red
indicates upregulation relative to wild-type unstimulated macrophages. Green indicates downregulation relative to wild-type unstimulated
macrophages. Genotypes are indicated along the bottom edge. Clusters are indicated along the left edge. Stimuli are indicated along the top edge,
with the color scheme given in the lower right corner. Clusters have been ordered based on pairwise similarity, as described in Materials and
Methods, Expression Clustering.
doi:10.1371/journal.pcbi.1000021.g001

Macrophage Program via Scanning and Dynamics
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from analysis of the LPS response in Ticam1(Lps2/Lps2) and

Myd88(2/2) macrophages.

To characterize the functional role of each gene cluster in

macrophage activation, gene ontology (GO) information was used

to identify GO term enrichments within the gene clusters (see

Materials and Methods). The 460 GO term enrichments identified

within the 32 gene clusters are listed in Table S8. Many of the

downregulated gene clusters are enriched for cell cycle related

genes (C1, C3, C7). Clusters C15, C25, and C28 appear to be

enriched for cytokines–C28 includes the pro-inflammatory

cytokine Tnf (TNFa) as well as Ccl3, Ccl4, Cxcl1, and Cxcl2; C25

includes the cytokines Cxcl10 and Il10; and C15 includes the

interleukin cytokine genes Il1b, Il6, and Il12b. Cluster C24,

enriched for signal transduction genes, also includes the important

cytokine Ifnb1 (IFNb). The early-unregulated clusters, C24–28,

show a high proportion of induced TFs and are enriched for TFs

relative to the genome (see Table S6 and Materials and methods).

Across clusters, the fraction of TFs was generally found to decrease

with increasing induction time (Figure 3). Subsequent analysis

focused on identifying statistically significant associations between

the 80 differentially expressed TF genes and the 32 co-expressed

clusters.

Expression dynamics analysis
Noting the high proportion of induced TFs in early-upregulated

clusters, we chose a signal processing technique, the time-lagged

correlation (TLC), to assess potential transcriptional regulatory

interactions using the time-course expression data [22,23,25–28].

The approach is based on the observation that when an induced

TF affects a target gene’s expression through its own differentially

Figure 2. Hierarchical organization of differentially expressed gene clusters from TLR-stimulated macrophages reveals pathway-
specific transcriptional responses. The color of a rectangle in the heat-map shows the cluster-median differential expression (relative to wild-
type unstimulated macrophages) under stimulation with the TLR agonist indicated by the column label (bottom of figure), for the cluster indicated by
the row label (right-hand side). The column label Pam3 denotes the TLR agonist Pam3CSK4. The differential gene expression level is computed using
the signed difference ratio (SDR, see Equation 1). Clusters (rows) have been ordered for display based on similarity of overall transcriptional response
to the four indicated TLR agonists (see Materials and Methods, Expression Clustering). In the heat-map, green indicates downregulation, and red
indicates upregulation. Colored subtrees of the dendrogram indicate specific inferences that can be made about the likely signaling pathway
(MyD88-dependent, TRIF-dependent, or a combination) on which the transcriptional regulation of the cluster depends. The legend in the lower-left
corner explains the color scheme for denoting the inferred signaling pathway-dependence of the clusters. Clusters without a color bar on the right
appear to respond through either signaling pathway. The regulation of clusters C7, C11, C12, C15, C17, C21, C26, and C29 appears to be primarily
MyD88-dependent; regulation of clusters C4, C5, C6, C8, C10, C20, C22, and C24 appears to be primarily TRIF-dependent; and clusters C23, C30, and
C32 appear to be regulated oppositely by the two signaling pathways. This plot shows only the extremal differential response to TLR agonists; the
clusters also differ in temporal expression (see Figure S3, Figure S4, Figure S5, and Figure S6).
doi:10.1371/journal.pcbi.1000021.g002
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regulated mRNA level (and through its own differential protein

expression), the induction of the target gene’s mRNA expression

will occur with a time lag relative to the induction of the regulator

[39–42]. This time lag is due to the combined effects of the

translation, folding, nuclear translocation, and turnover time-

scales for the regulatory protein, and the time scale for elongation

of the target gene mRNA. In our application of the TLC method,

both the correlation magnitude and the time lag are used to assess

significance, as we describe below.

Let g1 denote a differentially expressed TF gene, and let g2

denote a differentially expressed gene. We wish to estimate our

degree of confidence in the null hypothesis, that g1 does not

transcriptionally regulate g2, given time-course expression data for

both genes. In the simplest case, the alternative hypothesis could

be that g1 codes for a TF protein that binds the promoter of g2,

thereby regulating its transcriptional activity. Let t be a fixed time

lag for which the TLC between g1 and g2 is to be computed. Let T

denote a set of discrete time points at which gene expression is

measured, and let T9 denote the set of time points T+t. Let XT(g1)

denote the vector of expression measurements of g1 at the time

points T, and let XT9(g1) denote the measurements of g2 at times T9

(which can be estimated by interpolation). The time-lagged

correlation (TLC) coefficient between g1 and g2 with time lag t is

defined as

rt(g1,g2):
cov(XT (g1),XT 0 (g2))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cov(XT (g1),XT (g1))cov(XT 0 (g2),XT 0 (g2))
p ð2Þ

where ‘‘cov’’ is the standard covariance. As with the standard

correlation, a TLC that is close to 1 represents a perfect

correlation, and a TLC that is close to 21 represents a perfect

anti-correlation. This definition is easily extended to multiple time-

courses (see Materials and Methods). We note that although

Equation 2 is defined in terms of g1 being a TF, it can be applied to

any gene pair, for example, to obtain a background distribution of

TLC coefficients of gene pairs satisfying the null hypothesis. Two

examples of a TF exhibiting a high time-lagged correlation with a

target gene are shown in Figure 4. Both interactions (RelRNfkb1

[43] and Irf7RStat1 [44]) correspond to known transcriptional

regulatory interactions, and in both cases, the correlation with zero

time lag is poorer than the correlation obtained with a time lag.

Assessing the significance of an observed sequence of time-

lagged correlations between two genes (as a function of the time

lag) as an indicator of possible transcriptional regulation

necessitates formulating our prior expectation (i.e., prior proba-

bility distribution) for the time lag of a true transcriptional

regulatory interaction. For a TF gene g1 and a target gene g2, the

overall transcriptional regulatory time delay tc (where ‘‘c’’ stands

for the combined gene-gene delay) can be decomposed as a sum of

two contributions, one for translation of the TF and post-

translational processing/translocation (,10.564 min [41,45]),

and one for transcription and post-transcriptional processing of

the target gene (,20–40 min [41,42]). The total delay tc was

modeled using the gamma distribution with a mean value of

45 min and a variance of ,250 min2 (see Text S1, Section 3).

Because it is conditioned on the existence of a transcriptional

regulatory interaction (TRI) between g1 and g2, we denote this

probability distribution by P(tc|H̄0) (the symbol H̄0 means that the

null hypothesis, i.e., that there is no TRI, is false). This distribution

was discretized to the set of time lags for which the TLC was

computed, to obtain an estimate of the discrete probability for

observing a given optimal time lag, P(t|H̄0) (see Figure S7). These

probabilities were then combined with the P value for the squared

time-lagged correlation coefficient, rt
2(g1, g2), whose derivation we

describe next.

For each pair (g1,g2) for which the TLC approach was to be

applied, an ‘‘optimal time lag’’ h(g1,g2) was selected, so that a single

representative TLC could be obtained for the pair. The set of time

lags and the set of time-course experiments to use were selected

according to a constraint (imposed to minimize interpolation error)

that the target gene expression at maximum time lag must be

interpolated from at least three measurements. Based on this

constraint, and taking into account the expected precision at

which the optimal time lag can be estimated (65 min, based on

the replicate variability in the expression data–see Materials and

Methods), the set of time lags was chosen to be t M {0, 10, 20, 30,

40, 50, 60, 70, 80 min}. Eleven time-course experiments satisfied

the criteria (combining six stimuli and three genotypes, see Table

S9). The TLC rt
2(g1, g2) was computed for each of the t values, for

each pair of genes, using data from all eleven time-course

experiments combined (see Materials and Methods). The next

step was to determine the optimal time lag for (g1,g2) from the

squared TLC coefficient rt
2(g1, g2). It is not ideal to simply select

the t at which rt
2(g1, g2) is maximal, as some studies have done

[23,26,46], because of two competing bias effects, as we now

explain. Consider a pair of genes (h1,h2) satisfying the null

hypothesis, and let tmax;max(T), where T is the set of time points

for a single time-course. In practice the expression of h2 cannot be

extrapolated beyond tmax, so the effective number of data points

for computing the TLC rt
2(h1, h2) is limited to the number of time

points within T that are less than tmax2t. Thus, the number of

measurements that can be used to compute the TLC is t-

dependent, and the distribution of TLCs for pairs of genes

satisfying the null hypothesis depends on t. Therefore, one will

more frequently observe (by chance) a TLC exceeding a given

value (say, 0.9), by selecting the largest possible t. In addition, the

high degree of synchronization within the transcriptional response,

as well as the fact that all the SDR-transformed expression levels

are zero at the initial time point, result in a second bias towards

Figure 3. Early induced gene clusters are enriched for
transcription factors. Each circular data point indicates a cluster.
The horizontal axis is the estimated time scale for the differential
expression level of the genes within the cluster to reach 25% of the
maximum absolute differential expression (the ‘‘response time’’). The
response time was computed under LPS stimulation of wild-type
macrophages (see Materials and Methods, Expression Clustering). The
horizontal dashed line indicates the average fraction of genes that are
known transcription factors, among all annotated genes in the mouse
genome (0.053, see Materials and Methods, Selection of Transcription
Factors). The slope of the best-fit line to the scatter plot is 23.84
(Pearson’s R = 20.74).
doi:10.1371/journal.pcbi.1000021.g003
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zero time lag. This effect is strengthened as the number of time

points in the data set (per time-course) decreases. Therefore,

selecting the optimal tto maximize rt
2(g1, g2) introduces an

unwanted bias towards the smallest and largest tvalues investigated

(see Figure S8), and against t values in the middle of the range of

time lags (i.e., 20–60 min).

To avoid the above-described bias, a background cumulative

distribution of squared time-lagged correlation coefficient values,

denoted by F pt
(where pt is the squared correlation rt

2) was

computed separately for each time lag t, using a large set H of gene

pairs such that there is no direct transcriptional regulatory

interaction (TRI) for each gene pair in the set (see Materials and

Methods). The functions F pt
f g were used to select the optimal

time lag h(g1,g2),

h(g1,g2)~ arg max
t[L

F pt
r2

t(g1,g2)
� �� �

ð3Þ

and the fractional significance of the lag-specific squared

correlation coefficient j(g1,g2),

j(g1,g2)~1{ max
t[L
F pt

r2
t(g1,g2)

� �� �
ð4Þ

Making use of the discretized distribution P(t|H̄0) defined above, a

probability ratio R(t) was computed as the ratio of the probability

of the null hypothesis (that there is no direct TRI between g1 and

g2) given the measured optimal time lag, to the marginal

probability of the null hypothesis,

R(t)~
P(H0jh~t)

P(H0)
~

1

P(H0)
1{

(1{P(H0))P(tjHH0)

P(t)

� �
ð5Þ

It should be noted that the uncertainty in q due to the

discretization of time lags (a practical necessity in the context of

microarray-derived expression data) leads to uncertainty in the

estimation of R(t). However, the effect of this uncertainty on the

cluster-combined P value (see Equation 10 below) is small, due to

the fact that time lag estimation errors for genes in a cluster are not

strongly correlated. The marginal probability P(t) was estimated

from the optimal time lags of all gene pairs, and the marginal

probability P(H0) was estimated from data in the literature (see

Materials and Methods). Using this probability ratio, and in

analogy with Fisher’s method, a combined score for the gene pair

(g1,g2) was constructed, taking into account both the optimal time

lag h(g1,g2) and the fractional lag-specific significance j(g1,g2),

s(g1,g2)~ ln j(g1,g2):R h(g1,g2)ð Þð Þ ð6Þ

Using the cumulative distribution F sjH0
of s scores for gene pairs

satisfying the null hypothesis, the significance of the association

between g1 and g2 based on expression data can be computed,

Ptlc(g1,g2)~F sjH0
s(g1,g2)ð Þ ð7Þ

This formula was applied for all pairs (g1,g2) where g1 ranged over

the set of 80 TFs, g2 ranged over the set of all 1,960 differentially

expressed genes, and g1?g2 (see Materials and Methods). The

expression data for the TFs are provided in Table S10 and the

expression data for all 1,960 differentially expressed genes are

provided in Table S4.

To estimate the overall significance (based on time-course

expression data) of the association between a TF gene f and a

cluster C, the P values Ptlc(f,g) were combined into a P value for the

cluster, Pexp(f,C). For each pair (f,C), a Fisher score Fexp(f,C) was

computed,

F exp(f ,C)~{2 ln P
g[C\ ff g

Ptlc(f ,g) ð8Þ

where C\{f} means that if the TF gene f was a member of cluster

Figure 4. Two validated transcriptional regulatory interactions exhibiting high time-lagged correlations. (A) Rel and Nfkb1. The solid
line shows the expression of Rel (c-REL), and the dotted line shows the expression of Nfkb1 (p50/p105) in LPS-stimulated wild-type macrophages, over
eight hours. The genes exhibit a high time-lagged correlation with a time delay of 60 minutes (across the eleven time-course experiments listed in
Table S9, rt = 0.91 and P = 0.011; see Materials and Methods, Time-lagged Correlation, for an explanation of the statistical test). The NFkB
heterodimers c-REL-p50 and c-REL-p65 are known to regulate expression of Nfkb1 [43]. The correlation at zero time lag is 0.81. (B) Irf7 and Stat1. The
solid line shows the expression of Irf7 (IRF7) and the dotted line shows the expression of Stat1 (STAT1) in LPS-stimulated Atf3(2/2) macrophages. The
genes exhibit a high time-lagged correlation with a time delay of 20 minutes (across the ten experiments, rt = 0.96 and P = 0.002). The transcription
factor IRF7 has been shown to regulate the Stat1 gene expression in the innate immune response to viral infection [44]. The correlation at zero time
lag is 0.95. (C) Time-lagged correlation coefficient and time-lagged correlation significance measure { log10 1{F pt

r2
t

� �� �
(see Equation 4) as a

function of the time lag t, for Irf7 and Stat1. The peak value of rt
2 occurs at t= 10, but the peak significance value (taking into account the lag-specific

null distribution) occurs at t= 20 min.
doi:10.1371/journal.pcbi.1000021.g004
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C, the self-association Ptlc(f,f) was excluded. For each cluster C, the

number of degrees of freedom, denoted by d(C), was estimated

using K-means clustering (see Materials and methods). The d(C)

values were used to obtain a TF-to-cluster P value, Pexp(f,C), using

a x2 test (see Materials and methods). The number of pairs for

which Pexp(f,C)#1023, was 23. The differential expression levels

for the strongest (TF,cluster) pairs in wild-type time-courses

following stimulation by LPS (one of the time-courses used for

the TLC analysis; see Table S9) are shown in Figure S9. They

show a high degree of correlation between the TF gene and target

cluster. The distribution of Pexp(f,C) over all TF-to-cluster pairs,

and the estimated false discovery rate (FDR), are shown in Figure

S10.

Promoter scanning of co-expressed gene clusters
To provide an independent source of evidence for association

between a differentially expressed TF gene and a co-expressed

gene cluster, the promoters of differentially expressed genes were

scanned using position-weight matrices (PWMs) representing

motifs recognized by murine TFs. A motif was selected if it is

recognized by at least one TF of which at least one component

protein was differentially expressed in the expression dataset,

ensuring that the TF had at least one expression profile that could

be compared with (potential) target genes using the TLC. For each

PWM, the fraction of genes with at least one above-threshold

match within the promoter was computed, within a reference set

of all genes detected as expressed within the TLR-stimulated

macrophage, and within each co-expressed gene cluster. A total of

150 position-weight matrices were selected from the TRANSFAC

database [33] for motif scanning, corresponding to the 80

differentially expressed murine TF genes (see Table S5, and

Materials and Methods). Promoter sequences 2 kbp upstream of

the transcription start site were obtained for 1,713 out of the 1,960

differentially expressed genes, and for 7,492 out of 8,788 expressed

genes (used as a reference set; see Materials and Methods) from the

UCSC genome annotation database [47]. For each PWM, a

minimum match score was determined at which the PWM had a

match on average once per 10 kb, within a set of 7,503 promoter

sequences for genes not detectably expressed in the macrophage

(to avoid biasing the match score threshold calculation with true

TF targets; see Materials and Methods). Using these PWM match

score thresholds, promoters were scanned within the reference set

of genes, and within each co-expressed cluster of genes. The

distribution of distances of matches from the transcription start site

(Figure S11) has a median of 537 bp.

As a next step towards inferring a transcriptional network,

enrichments of TFBS motifs were computed for individual gene

clusters. For each cluster C and position-weight matrix m,

enrichment statistics were computed based on the fraction of

genes in C possessing at least one match for m. For each pair (m,C)

for which the fraction of genes containing a match for m within the

cluster C was greater than in the reference set of genes, a P value

was computed using Fisher’s exact test (see Materials and

Methods, and [48]) and denoted by Pscan(m,C). This P value

represented the significance of the enrichment of matrix m within

the promoters of cluster C, relative to the reference set of

promoters (expressed genes). A matrix representation of the

strongest motif enrichments (56 associations with Pscan(m,C)#1022)

with the clusters grouped by expression similarity (Figure 5) reveals

several associations between TF motifs and patterns of differential

expression. First, NFkB and IRF recognition elements are

associated with upregulated clusters, while E2F and MYCMAX

elements are associated with downregulated clusters. The IRF

element was strongly associated with TRIF-dependent cluster C6

and STAT1 was strongly associated with C22. Many TF motifs

were associated with the core early response cluster C27, including

AP1, CREB/ATF, EGR, PEBP, and PPARA. The quantitative

results of the cluster-wise statistical tests (numbers of matches and

P values) are provided in Table S11.

To enable integration of the promoter scanning evidence with

the time-lagged correlation evidence, PWMs that were enriched

for matches within gene clusters, were mapped to differentially

expressed TF genes as follows. For each PWM m, a list of genes

coding for TFs (or TF components) that bind the motif

corresponding to m were obtained from a TRANSFAC-derived

mapping (see Materials and Methods). For each TF gene f and

cluster C, a P value for the association between f and C based on

promoter scanning evidence, Pscan(f,C), was defined as the

minimum over all Pscan(m,C) for all matrices m that are associated

with the TF gene f. The distribution of the resulting P values and

the false discovery rate (as a function of P value) are shown in

Figure S12. A total of 31 factor-to-cluster associations were

identified with Pscan(f,C)#1023, indicating a statistical power that is

slightly higher than with the TLC-based evidence.

Data integration and network extraction
To identify the set of all possible TF gene-to-target interactions

consistent with motif scanning evidence, for each TFBS motif

match within the promoter of a target gene, the time-lagged

correlation was computed for all possible TF genes that map to the

TFBS motif. The resulting list of 54,253 pairs (f,g) of TF gene f and

target gene g, provided as Table S12, shows that many known

transcriptional regulatory interactions have high ranking based on

time-lagged correlation–for example, NFkB/Rel associated with

Icam1 [49] and Cebpd associated with Il6 [50]. Although the TLC-

ranked list of motif targets has some potential utility for identifying

specific transcriptional regulatory interactions, even the high-

ranking elements of the list will contain many false positives (and

will miss many true transcriptional regulatory interactions) due to

the uncertainty in motif PWMs and the prevalence of post-

translational regulation that may obscure the time-lagged

correlation. Therefore, further data reduction is necessary to gain

insight into the global transcriptional program of the TLR-

stimulated macrophage. By using a statistical test that compares

the relative frequency of motif occurrence within a cluster relative

to a background set of genes, a more reliable estimate of TF

association with a co-expressed cluster can be obtained.

To construct a combined transcriptional network of the TLR-

stimulated macrophage, P values for associations between TF

genes and co-expressed gene clusters based on expression

dynamics and promoter scanning were combined. For each pair

(f,C) where f is one of 80 TF genes and C is one of 32 gene clusters,

a combined P value Pcomb(f,C) was computed from the P values for

the scanning and expression evidences, Pscan(f,C) and Pexp(f,C). The

P values were combined using Fisher’s method (see Materials and

Methods), a standard tool for meta-analysis of independent tests of

a hypothesis [51]. TF-cluster pairs were then ordered by

increasing P value Pcomb(f,C), and a cutoff was selected so that

the estimated false discovery rate did not exceed 0.025 (resulting in

a cutoff Pcomb(f,C)#0.0248). Additionally, two filtering criteria

were imposed: (i) Pscan(f,C)#0.05, to ensure that there is a minimal

enrichment of TFBS; and (ii) a cluster-average optimal time lag

between f and C that was greater than 10 min, i.e., Æhæf,C$10 min

(see Materials and Methods). A scatter plot of the P values for the

two evidences is shown in Figure S13, and indicates that for the

data points that were rejected based on the Pcomb(f,C) cutoff, no

dependency between the evidences is evident. A total of 90

interactions involving 36 TF genes and 27 clusters (comprising
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86% differentially expressed genes), were accepted based on the

above criteria (see Table 1). If the TLC P values were not

included, and if the same rate of false discovery were imposed, the

network would be significantly less parsimonious (,150 interac-

tions), due to the large number of TF gene families that map to a

common motif. Overall network coverage was estimated by taking

the fraction of differentially expressed genes that (i) are members of

the 27 clusters in the network; and (ii) possess a match for a motif

Figure 5. Patterns of high-confidence motif enrichments within promoters of target clusters reveal associations between
regulatory elements and expression patterns. Each row in the matrix represents a TF binding element, and each column represents a cluster of
differentially expressed genes. Clusters are ordered as in Figure 2, and thus are grouped hierarchically by similarity of their extremal expression fold-
change under the four TLR agonists LPS, Pam3CSK4, poly I:C, and R848. Each motif (row) is associated with one or more position-weight matrices (the
V$ prefix and numeric suffixes are omitted, and results for multiple position-weight matrices representing the same motif were combined for each
column, by taking the matrix with the maximum number of matches within the indicated cluster). Each colored block in the matrix indicates pair of a
motif and target cluster for which the fraction of genes in the cluster with a motif match, is enriched relative to the overall fraction of genes
expressed in the macrophage that possess the motif (P#1022, Fisher’s exact test). The color of each matrix element (block) in the interior of the figure
indicates the fraction scanned of genes within the cluster containing at least one match for the indicated motif. The number of scanned genes within
the cluster that contained a match for the indicated motif is shown in yellow typeface. The red/green colored blocks above the top horizontal axis
shows whether each cluster is upregulated (red) or downregulated (green) at its most extremal fold-change under stimulation with the
aforementioned TLR agonists. The hatched green/red pattern indicates a cluster whose extremal fold-change direction (up/down) is stimulus-
dependent (see Figure 2). The colored (blue, cyan, orange, yellow, purple) blocks above the top of the matrix indicate the likely pathway through
which the cluster is differentially expressed; the color scheme corresponds to that shown in the dendrogram in Figure 2.
doi:10.1371/journal.pcbi.1000021.g005
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Table 1. Network of inferred transcription factor–cluster associations

Clust TF TF Clust -log10 Pscan
Position-Weight Matrix
Name FracBind Scan Hits -log10 Pexp ,h. Mean Corr

1 Cebpg 22 5.74 V$CEBPGAMMA_Q6 0.41 40 0.03 13.5 20.21

1 E2f1 2 2.84 V$E2F_02 0.44 43 0.82 75.4 0.72

1 E2f7 3 1.41 V$E2F1_Q4_01 0.41 40 4.42 73.4 0.86

1 Irf2 13 1.60 V$IRF_Q6_01 0.32 31 1.35 68.8 20.74

1 Irf7 6 1.60 V$IRF_Q6_01 0.32 31 3.26 68.7 20.83

1 Isgf3g 6 1.60 V$IRF_Q6_01 0.32 31 2.13 71.3 20.80

1 Mef2a 2 2.73 V$MEF2_Q6_01 0.33 32 1.50 75.0 0.78

1 Mef2c 16 2.73 V$MEF2_Q6_01 0.33 32 2.23 67.4 0.81

1 Nfyc 4 6.08 V$NFY_Q6 0.48 47 0.17 78.1 0.59

2 E2f1 2 3.68 V$E2F_02 0.46 46 3.16 34.2 0.85

2 E2f6 10 2.97 V$E2F_03 0.47 47 2.72 65.9 0.82

2 E2f7 3 2.97 V$E2F_03 0.47 47 3.62 33.1 0.85

2 Myc 20 1.95 V$MYCMAX_01 0.34 34 1.36 18.4 0.74

2 Rxra 14 2.55 V$LXR_DR4_Q3 0.38 38 1.61 57.6 0.77

3 E2f1 2 3.86 V$E2F_Q6_01 0.53 54 2.39 47.2 0.83

3 E2f6 10 3.86 V$E2F_Q6_01 0.53 54 2.26 69.0 0.81

3 E2f7 3 3.86 V$E2F_Q6_01 0.53 54 8.00 33.5 0.93

3 Myc 20 1.32 V$MYCMAX_03 0.32 33 1.62 16.1 0.78

3 Nfic 19 3.98 V$NF1_Q6 0.46 47 0.26 77.6 0.63

3 Nfyc 4 7.73 V$NFY_Q6_01 0.54 55 0.28 58.3 0.65

3 Rxra 14 1.36 V$LXR_DR4_Q3 0.33 34 1.24 64.0 0.77

3 Stat1 6 2.12 V$STAT1_03 0.41 42 2.95 12.1 20.86

4 Cebpa 19 2.05 V$CEBP_Q2 0.34 34 0.43 70.0 0.65

4 Foxm1 3 6.18 V$FOXM1_01 0.41 41 0.63 52.6 0.68

4 Mef2a 2 1.68 V$MEF2_04 0.30 30 1.56 40.2 0.79

4 Myc 20 1.99 V$MYCMAX_B 0.44 44 0.63 45.5 0.68

4 Nfyc 4 1.43 V$NFY_Q6_01 0.36 36 1.06 68.0 0.74

4 Tgif1 27 3.12 V$TGIF_01 0.32 32 0.16 42.5 0.10

5 E2f1 2 3.85 V$E2F1_Q6_01 0.52 45 2.31 50.3 0.81

5 E2f6 10 2.71 V$E2F_03 0.48 41 2.84 72.5 0.81

5 E2f7 3 2.71 V$E2F_03 0.48 41 1.27 47.3 0.76

5 Myc 20 2.54 V$MYCMAX_B 0.48 41 1.00 27.9 0.69

5 Rxra 14 1.87 V$PPARA_02 0.30 26 1.72 63.7 0.77

6 Irf1 25 3.65 V$IRF_Q6 0.40 35 0.09 79.1 0.56

6 Irf2 13 3.65 V$IRF_Q6 0.40 35 3.32 44.3 0.81

6 Irf3 12 3.65 V$IRF_Q6 0.40 35 0.05 35.4 20.09

6 Irf5 6 3.65 V$IRF_Q6 0.40 35 1.21 68.4 0.75

6 Irf7 6 3.65 V$IRF_Q6 0.40 35 5.20 26.6 0.88

6 Isgf3g 6 1.84 V$IRF_Q6_01 0.33 29 3.24 25.0 0.84

7 Pou2f2 9 2.10 V$OCT_C 0.32 24 0.42 45.9 20.64

9 Myc 20 1.54 V$MYC_Q2 0.36 26 1.26 29.3 20.67

10 Atf1 14 1.73 V$CREB_Q3 0.34 25 0.86 38.1 0.73

10 Myc 20 2.18 V$MYCMAX_B 0.47 35 0.43 11.2 0.68

10 Nfyc 4 1.67 V$NFY_Q6_01 0.39 29 1.31 35.8 0.78

10 Nr3c1 6 2.79 V$GR_Q6_01 0.34 25 1.86 48.5 20.79

11 Fos 27 3.23 V$AP1_Q2_01 0.45 29 0.11 47.0 20.05

11 Jun 20 3.23 V$AP1_Q2_01 0.45 29 0.20 41.4 20.37

11 Junb 28 3.23 V$AP1_Q2_01 0.45 29 0.05 70.3 0.24

13 Foxo3a 14 2.41 V$FOXO3_01 0.37 20 0.77 14.2 20.75
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Clust TF TF Clust -log10 Pscan
Position-Weight Matrix
Name FracBind Scan Hits -log10 Pexp ,h. Mean Corr

13 Irf1 25 7.47 V$IRF_Q6_01 0.57 31 0.32 77.5 0.64

13 Irf3 12 7.47 V$IRF_Q6_01 0.57 31 0.07 42.8 0.07

13 Irf5 6 7.47 V$IRF_Q6_01 0.57 31 0.49 22.7 0.71

13 Nfkb1 15 2.32 V$NFKB_Q6_01 0.41 22 2.41 31.3 0.82

13 Rel 25 1.65 V$CREL_01 0.37 20 0.88 71.9 0.72

14 Nfkb1 15 2.14 V$NFKB_C 0.34 19 3.37 51.3 20.84

15 Rel 25 2.42 V$CREL_01 0.42 21 1.78 29.0 0.78

16 Cebpa 19 1.43 V$CEBP_C 0.32 16 1.05 73.4 0.74

16 E2f1 2 1.78 V$E2F_01 0.40 20 2.52 52.3 0.80

16 Jun 20 2.39 V$AP1_Q2_01 0.44 22 0.14 59.3 0.43

16 Myc 20 1.90 V$MYCMAX_02 0.40 20 0.83 20.5 0.63

16 Rxra 14 1.32 V$FXR_IR1_Q6 0.30 15 1.33 63.8 0.75

17 Nfatc1 14 1.71 V$NFAT_Q4_01 0.36 18 1.78 33.6 20.79

17 Nfatc2 14 1.71 V$NFAT_Q4_01 0.36 18 1.60 12.2 20.80

17 Nfkb1 15 2.02 V$NFKB_Q6 0.36 18 2.25 60.3 0.80

17 Sfpi1 17 1.35 V$ETS_Q6 0.42 21 1.34 14.8 0.78

18 Pou2f2 9 1.78 V$OCT_Q6 0.33 16 0.68 53.9 20.67

19 Nr3c1 6 1.62 V$PR_Q2 0.33 16 1.24 37.2 20.74

19 Rxra 14 1.61 V$T3R_Q6 0.37 18 1.65 14.6 0.79

19 Zfp161 19 2.98 V$ZF5_01 0.55 27 0.90 49.8 0.73

20 E2f7 3 2.11 V$E2F_03 0.50 24 0.64 66.5 0.66

20 Myc 20 2.36 V$MYCMAX_B 0.52 25 0.66 53.6 0.64

21 Nfkb1 15 2.13 V$NFKAPPAB_01 0.38 15 2.25 28.2 0.78

22 Stat1 6 3.22 V$STAT1_01 0.58 19 0.16 55.2 0.39

23 E2f1 2 3.24 V$E2F1_Q4_01 0.60 21 0.08 47.6 0.54

23 E2f6 10 3.24 V$E2F1_Q4_01 0.60 21 0.48 46.0 0.66

23 E2f7 3 3.24 V$E2F1_Q4_01 0.60 21 0.05 50.7 0.49

25 Irf1 25 1.41 V$IRF_Q6_01 0.40 10 1.42 15.1 0.79

26 Cebpa 19 2.50 V$CEBP_01 0.45 14 0.01 52.6 0.14

26 Tgif1 27 2.14 V$TGIF_01 0.39 12 0.28 49.4 0.36

27 Atf1 14 2.57 V$CREBATF_Q6 0.58 14 0.25 69.0 0.52

27 Cbfb 4 2.39 V$PEBP_Q6 0.50 12 0.45 65.3 0.52

27 E2f7 3 1.62 V$E2F_Q4_01 0.54 13 1.01 61.0 0.63

27 Egr1 27 2.62 V$KROX_Q6 0.58 14 1.37 16.0 0.75

27 Egr2 27 2.62 V$KROX_Q6 0.58 14 1.16 11.7 0.75

27 Jun 20 2.63 V$CREBP1CJUN_01 0.54 13 0.24 47.3 0.46

27 Rxra 14 2.46 V$PPARA_02 0.46 11 0.61 63.3 0.53

28 E2f1 2 2.75 V$E2F_01 0.54 14 0.05 37.9 20.05

28 Nfkb1 15 4.48 V$NFKAPPAB_01 0.58 15 0.07 25.7 0.27

29 Cebpa 19 2.48 V$CEBP_01 0.48 12 0.04 65.9 20.11

31 Mef2a 2 2.39 V$MEF2_03 0.58 7 0.16 35.9 20.51

Column 1 indicates the target gene cluster. Column 2 indicates the transcription factor gene that is associated with the cluster, based on the two sources of evidence.
Column 3 indicates the cluster of which the transcription factor gene is a member. Column 4 indicates the -log10 P value of the promoter scanning-based evidence.
Column 5 indicates the name of the position-weight matrix that had the smallest scanning-based P value of association with the cluster, for the indicated transcription
factor gene (the ‘‘V$’’ prefix is not shown). Column 6 indicates the fraction of scanned genes within the cluster that had at least one match for the indicated position-
weight matrix. Column 7 contains the number of scanned genes within the cluster that had at least one match for the indicated position-weight matrix. Column 8
indicates the negative log10 P value of the time-lagged correlation evidence. Column 9 indicates the cluster-wide average time lag h with respect to the indicated
transcription factor gene. Column 10 contains the average optimal time-lagged correlation between the indicated transcription factor gene, and the genes within the
cluster.
doi:10.1371/journal.pcbi.1000021.t001

Table 1. cont.
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recognized by one or more of the TFs associated with the cluster.

From this estimate the network contains 1,232 genes, or 63% of

the 1,960 genes that are differentially expressed under TLR

stimulation.

The distribution of the number of targets regulated by TFs, the

so-called out-degree distribution of the transcriptional network, is

one key measure of the network’s interconnectedness [52]. For

each TF that was included in the transcriptional network, the

number of targets was estimated using the promoter scanning data

(see Materials and Methods). The out-degree varied approximat-

ely 20-fold over the set of 36 TF genes (Figure S14). The

transcription factor MYC (which is involved in development and

cellular differentiation [53]) was found to be the most highly

connected in the network (consistent with the high out-degree for

MYC found in [11]), followed by members of the E2F family of

TFs (believed to play a role in cell cycle regulation [54]). Other

highly connected TFs include NFYC (a repressor in the TGFb
signaling pathway [55] and member of a TF family involved in

monocyte differentiation [56]) and RXRA (a component of

heterodimeric TFs that regulate inflammatory signaling and

cholesterol metabolism [57]). Also strongly connected in the

network are the NFkB TF family members cREL and NFKB1/

p50 (key early regulators of the immune response [58]); the IRF

family members IRF1, IRF3, IRF5, IRF7, and IRF9 (regulators of

interferon-induced immune response [17]); and STAT1 (a key

regulator of apoptosis and mediator of interferon signaling [59]).

Both the IRF and E2F family TFs had strong P values for

association with target clusters (Figure S14). The out degree

distribution appears to be scale-free, consistent with previous

reports for mammalian networks [11,60]. The number of TF

genes associated each cluster (in degree) ranged from 1 to 9, with

an average in-degree of 3.3.

To reveal patterns among TFs that may regulate multiple

clusters, the connections between the 36 TFs and the 27 clusters in

the inferred network were arranged in a matrix in which each row

represents an induced TF and each column represents a cluster of

differentially expressed genes (Figure 6). Both the TFs and clusters

were divided into subsets that are induced or repressed under LPS

stimulation, and ordered within these subsets based on the time of

25% differential expression under LPS (see Materials and

Methods). Thus, the matrix is divided into quadrants; for example,

the upper left quadrant contains connections between induced TF

genes and induced clusters, and the lower-right quadrant contains

connections between downregulated TF genes and downregulated

clusters. The upper left and lower right quadrants contain

primarily positive correlations, with most anti-correlated connec-

tions found in the upper right and lower left quadrants. In the

upper left quadrant, the connections generally fall along an arc

indicating the temporal sequence of TF gene activation. The anti-

correlated ‘‘off arc’’ connections within this quadrant generally

indicate the association between the falling edge of a transiently

induced TF gene and the rising edge of a late-induced gene

cluster. The only correlated ‘‘off arc’’ connections within this

quadrant (Nfkb1RC28, and JunbRC11) have weak time-lagged

correlation evidence, but a very significant motif scanning P value.

In contrast, the downregulated gene clusters and TF genes are not

as stratified as the upregulated clusters in terms of the time of

differential expression, and thus associations appear throughout

the lower-right quadrant.

The network of associations between TF genes and clusters

(based on combined scanning and expression evidence) directly

leads to hypotheses regarding TF regulation of clusters. For

example, a statistical association between any of the TF genes Jun,

Junb, or Fos and a cluster would suggest a hypothesis that the TF

AP1 regulates that cluster. The network also recapitulates several

known transcriptional regulatory interactions. First, the NFkB

component Rel is associated with C15, which is enriched for

cytokines and contains many NFkB targets including Nfkb1 [43],

Il6, and Il12b [6]. Second, Jun, a component of AP1 (a regulator of

stress response such as response to ultraviolet radiation or

pathogenic insult [61]), is associated with C27, an early-

upregulated cluster that is enriched for cell cycle-related genes

and genes involved in the DNA damage response. Furthermore,

C27 contains Egr1, which is a known target of AP1 under

genotoxic stress conditions [61]. Third, IRF1 is strongly associated

with the antiviral cluster C13, which contains the validated IRF1

target gene, Ccl5 [62]. The network also includes the TF genes

Egr1 (a key regulator of LPS-induced cytokine signaling [63]) and

Egr2 (implicated in adhesion and phagocytosis [64] as well as cell

proliferation [65]) as regulators of C27. Finally, the TF gene Sfpi1

(PU.1) is associated with C17, an induced gene cluster enriched for

endosome-associated genes (PU.1 over-expression is known to

block viral escape from the endosome [66]).

Several interactions in the network were detected only through

the integration of expression data with promoter scanning

evidence. For example, based on scanning evidence alone, with

a FDR of 0.1 (Pscan#0.0033), the association between Nfkb1 and

C17 would not have been detected, but by including the effect of

the strong TLCs between Nfkb1 and C17 genes, an association

between Nfkb1 and C17 was detected. As a second example, the

network includes an association between the TF gene Irf1 and

cluster C25; based on promoter scanning evidence alone, only a

general association of the IRF family with the cluster would have

been possible (see Table 1).

In order to investigate the possible co-operative regulation of

clusters by TFs in the network, protein interactions were obtained

for human orthologs of protein units associated with the 36 TF

genes shown in Figure 6. Protein interactions between the TFs

were obtained from the Human Protein Reference Database [67]

and the Biomolecular Interaction Network Database [68] (see

Materials and Methods). The resulting interaction diagram, shown

in Figure S15, reveals that upregulated TFs are highly intercon-

nected at the level of protein-protein interactions [6]. Further-

more, the diagram shows 15 pairs of interacting TFs whose

corresponding genes co-associate with clusters in the network. An

example corresponding to a known transcriptional complex is the

pair c-JUN (an AP1 component) and EGR1 [69]; both are

associated with C27.

A notable induced TF gene in the network is Tgif1 (TGIF1, or

TG-interacting factor 1, named for the core TGIF1 binding

sequence, 59-TGTCA-39 [70]), a transcriptional repressor in the

TGFb signaling pathway [71]. TGIF1 has not been previously

implicated in classical macrophage activation. It is associated

(Pscan,0.01) with C26, a cluster containing genes involved in

immune response, ubiquitin cycle, and leukocyte activation.

Specifically, C26 contains the cytokines Csf2 (which stimulates

differentiation of macrophages and granulocytes, and is pro-

inflammatory [72]) and Gm1960 (a mediator of neutrophil

chemotaxis [73]). The Csf2 promoter appears to have a TGIF1

binding site motif match (match score.0.96) in the region

(2254,2244) relative to the transcription start site, and Gm1960

also has three TGIF1 motif matches approximately 1.5 kbp

upstream of the start site (best match score.0.95). In humans,

TGIF1 is known to interact with several protein members of the

SMAD/AP1 transcriptional complex (Figure S16) [71,74].

To validate the microarray-based expression measurement,

Tgif1 expression was measured in murine BMMs using quantita-

tive PCR (qPCR; see Materials and Methods). Consistent with the
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Figure 6. Transcription factor genes associated with clusters in the inferred transcriptional network. (A) The matrix shows associations
between transcription factor genes and co-expressed gene clusters. Each column represents one of the 27 clusters within the inferred network, and
each row represents one of the 36 transcription factor genes in the network. Clusters are ordered based on the LPS response time, defined as the
time (under LPS stimulation) at which the cluster-median differential expression level reaches 25% of the maximum differential expression (see
Materials and Methods, Expression Clustering). Transcription factor genes are ordered based on the LPS response time. The vertical gray line
separates upregulated clusters (left half) from downregulated clusters (right half). The horizontal gray line separates upregulated transcription factors
(top) from downregulated transcription factors (bottom). An orange or blue square indicates a statistically significant association between the
transcription factor gene and the cluster, based on both promoter scanning and expression dynamics. An orange solid rectangle represents a positive
average time-lagged correlation with genes in the cluster; a blue solid rectangle represents a negative average time-lagged correlation. (B) The red-
green matrix is a heat-map showing transcription factor gene expression. The color indicates the normalized differential expression of the indicated
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microarray-based results, Tgif1 expression was found to be ,3-fold

upregulated after 1 hour of stimulation by LPS or Pam3CSK4

(data not shown). Furthermore, from microarray-based measure-

ment (Affymetrix probeset 1422286_a_at), Tgif1 expression is

,2.4-fold reduced in unstimulated Ticam1(Lps2/Lps2) BMMs

relative to wild-type (with no apparent effect in MyD88(2/2)

BMMs relative to wild-type), suggesting that basal expression of

Tgif1 is TRIF-dependent.

Targeted validation using ChIP-on-chip
Genome location analysis based on chromatin immunoprecip-

itation-on-chip (ChIP-on-chip) hybridization was used to validate

five high-confidence associations in the transcriptional network,

between NFkB/p50 and clusters C13, C17 and C28; and between

IRF1 and clusters C13 and C25. This validation consisted of

demonstrating a statistical enrichment of ChIP-on-chip–identified

binding for a given TF among genes within a cluster with which

the TF was associated through our computational method, as

compared to randomly selected TLR-responding genes. A custom-

fabricated oligonucleotide microarray was used, with probes tiling

up- and downstream of genes that were differentially expressed

under TLR stimulation in a murine macrophage-like cell line (see

Materials and Methods). Macrophages were stimulated with LPS

and then ChIP was carried out using TF-specific antibodies at 1

and 2 h, and (for IRF1 only) 4 h. Binding of p50 was highly

enriched within the genes of clusters C13 and C28 represented on

the tiling array (18 out of 23 and 20 out of 21 genes were bound,

respectively) but not significantly enriched for C17 (11 out of 20).

IRF1 binding was enriched within the genes of C13 and C25 (18

out of 23, and 18 out of 22, respectively). In four out of five cases,

the enrichment relative to the overall rate of binding to

differentially expressed genes represented on the tiling array

satisfied P,0.01 (Fisher’s Exact Test; see Table 2). ChIP-on-chip

results for individual target genes within the aforementioned

clusters are provided in Table S13, and results for all clusters that

were represented on the array (see Materials and Methods) are

shown in Table S14. For each of the two TFs assayed with ChIP-

on-chip, and for those clusters that were identified as targets of the

TF through the network analysis, the fraction of clusters found to

have significant TF binding to their genes was higher than for

clusters selected randomly from among all clusters represented on

the tiling array (1.7-fold overall). Additionally, the association

between IRF1 and C30 was significant (P,0.05) based on

scanning, but not significant based on Pcomb. Consistent with the

integrated analysis, C30 was not significantly enriched for IRF1

binding, based on the ChIP-on-chip assay.

Discussion

In this study we inferred a transcriptional network underlying

dynamic TLR-stimulated activation of the murine macrophage.

This network consists of statistical associations between differen-

tially expressed transcription factor (TF) genes and co-expressed

clusters of genes, each indicating a possible role for the associated

TF in regulating the cluster. Such associations have proved useful

for generating and prioritizing testable hypotheses regarding

transcriptional regulation [6,7]. A novel computational approach

was used that combined sequence- and expression-based evidence.

Using expression data acquired under a comprehensive set of TLR

stimuli (and sampled densely in time), differentially expressed

genes were partitioned into clusters of co-expressed genes that

revealed a diversity of induction time scales, functional enrich-

ments, and stimulus-dependent activation patterns. The clustering

enabled sensitive identification of TFBS enrichments despite

uncertainty (due to limited sampling) in the position-weight

matrices and in the appropriate score threshold for motif scanning.

In addition, using the SDR-normalized expression data for

clustering ensured that genes were clustered based on their

temporal (and stimulus-dependent) activation profiles, rather than

by the magnitude of fold-change. Early-upregulated clusters were

found to be enriched for TFs, consistent with the idea that many

regulators of the transcriptional program are themselves produced

on-demand in response to TLR stimulation [6]. The early

transcription factor gene (over time), in LPS-stimulated wild-type macrophages (SDR, see Equation 1). Red indicates upregulation relative to
unstimulated macrophages and green indicates downregulation. A diamond symbol indicates the transcription factor response time. (C) Each column
of the red-green matrix indicates the median normalized differential expression of the genes in the indicated cluster (over time), in LPS-stimulated
wild-type macrophages. The diamond indicates the average LPS response time of the genes within the cluster.
doi:10.1371/journal.pcbi.1000021.g006

Table 2. Validation of transcription factor-to-cluster associations using ChIP-on-chip

TF Matrix Stim. Clust Time Points In Clust On Chip Bound P-Value

NFkB/p50 NFKB_Q6 LPS C13 1 h, 2 h 64 23 18 1.161023

NFkB/p50 NFKB_Q6 LPS C17 1 h, 2 h 58 20 11 2.561021

NFkB/p50 NFKAPPAB_01 LPS C28 1 h, 2 h 28 21 20 1.161026

IRF1 IRF_Q6_01 LPS C13 1 h, 2 h, 4 h 64 23 18 2.361023

IRF1 IRF_Q6_01 LPS C25 1 h, 2 h, 4 h 37 22 18 8.861024

Shown are five (TF,cluster) associations for which at least 30% of the genes within the cluster are represented on the tiling array, along with the results of the ChIP-on-
chip assay for binding of the indicated TF to the promoters of genes within the indicated cluster. Column 1 indicates the transcription factor antibody target. Column 2
indicates the position-weight matrix that was used for scanning the promoters of genes in the cluster. Column 3 indicates the stimulus used. Column 4 indicates the
gene cluster whose promoters the indicated TF is predicted to bind. Column 5 indicates the time points at which ChIP-on-chip assays were performed. Column 6
indicates the number of genes in the cluster. Column 7 indicates how many of these genes have probes tiled on the chip, in the flanking 59 intergenic region (due to the
much smaller microarray expression dataset used to select genes for the tiling array, only about 22% of the 1,960 differentially expressed genes were represented on the
tiling array, as described in Materials and Methods). Column 8 indicates the number of these genes that were identified positively by ChIP-on-chip as having the
indicated transcription factor bound to chromatin, in the 59 flanking intergenic region. Column 9 indicates the P value for the enrichment of ChIP-on-chip hits among
genes within the cluster identified by promoter scanning, as compared to the set of all genes on the array (Fisher’s exact test). The ChIP-on-chip results for individual
genes are provided in Table S13.
doi:10.1371/journal.pcbi.1000021.t002
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induction of a large number of TFs was an important indicator of

the potential utility of analyzing temporal expression as an

evidence for transcriptional regulatory interactions (TRIs).

The time-lagged correlation (TLC) was used to analyze

temporal gene expression for TFs and gene clusters, and in

addition to the correlation strength, the biological plausibility of

the estimated optimal time lag was factored into the significance

assessment for the TLC. This time lag is useful for distinguishing

between genes that are linked by a regulatory interaction and

genes that are merely co-expressed. The TLC is efficient to

compute, and in general requires fewer measurements than

methods that rely on estimating the joint probability distribution

of the expression of two genes (e.g., pairwise mutual information

[11]). This observation is related to the most notable drawback of

the TLC, namely, that it is sensitive only to the covariance of the

joint probability distribution, and not higher order moments (with

significantly more expression measurements, a possible extension

of this method could be to use time-lagged mutual information

[75]). A second limitation of the TLC (and of any evidence based

solely on lagged expression comparison) is that in practice it can be

difficult to distinguish between indirect transcriptional regulation

through a rapid-acting intermediary, and direct transcriptional

regulation. Finally, while it is not a significant issue in the cluster

analysis described in this work, we note that the proposed method

for estimating the significance of the expression data for a single

gene pair (Equation 6) is potentially not robust with respect to

noise in the data. For the purpose of single-gene analysis, it could

be improved by using a polynomial fit to the t dependence of

F pt
r2

t

� �
, or by defining the optimal time lag to be the time lag that

minimizes s.

The specific implementation of the TLC approach used in this

study has two key advantages. First, by selecting the optimal time

lag for a TF–gene pair based on minimizing the lag-dependent P

value rather than maximizing the squared correlation coefficient,

the inherent bias of the TLC technique in selecting time lags was

avoided. This made it possible to include the contributions of (i)

the magnitude of the correlation, and (ii) the probability of

observing the optimal time lag, to the significance of a pairwise

association. Second, the probability distribution for time lags

among true interactions was incorporated as a prior in the

significance calculation. This enabled taking into account the

biological plausibility of the time lag in computing the significance.

This significance test for the TLC has not, to our knowledge, been

previously reported.

With any network inference method based on pair-wise

comparison of the expression profiles of a regulator and a possible

target (including the TLC method), it is difficult to accurately

resolve the multi-factorial control of a target gene. This is

particularly true when the effect of one TF is simply to modulate

(amplify or dampen) the time-varying influence of another TF on a

target gene. Several additional mechanisms can confound or

eliminate the correlation between the expression level of a TF gene

and the chromatin-bound activity of the corresponding TF,

including multimeric TF assembly from protein products of several

genes, post-translational activation of the TF, dynamically

regulated nuclear translocation, and dynamically regulated TF

protein turnover. For example, in the case of ATF3, there is little

correlation between differential expression and nuclear localiza-

tion [6], and as a result, this TF is not strongly implicated in the

network via TLC. However, we note that the CREB/ATF binding

motif was identified as enriched within the core early response

cluster C27. Additionally, we note that given that the expression

data set used in this work is densely sampled at early times (1–

2 hours) and sparsely sampled at late times, our ability to leverage

expression data as an evidence for TRI is reduced for very late-

responding TF genes (e.g., Lmo2). In summary, with a limited

expression dataset, a high-significance TLC by itself should not be

regarded as sufficient evidence to infer a TF-to-target association,

underscoring the importance of incorporating additional sources

of evidence.

In the present work, promoter sequence scanning was used to

identify TFBS motifs enriched within co-expressed gene clusters.

Due to the often one-to-many mapping between TFBS motifs and

TFs, the scanning-based evidence often identifies multiple

candidate TFs with a gene cluster, of which perhaps a single TF

may be the relevant regulator in the given condition. The TLC

approach described here provides an objective statistical frame-

work for evaluating the suitability of a proposed TF-to-target

association based on a large set of time-course expression

measurements. In particular, the approach enabled the preferen-

tial identification of TF-to-target associations for which the

optimal time lag is biologically plausible, and the rejection of

associations with a biologically implausible (e.g., zero) time lag.

Four (TF,cluster) associations were validated using ChIP-on-chip

assays, in which enriched binding of the relevant TF was shown

among genes within the relevant cluster. The ChIP-on-chip

enrichment P values are conservative estimates of the genome-

wide binding enrichment, due to the fact that genes were selected

for inclusion in the tiling array based on differential expression

under LPS stimulation in a macrophage-like murine cell line

(RAW 264.7). We note that for each of the two TFs assayed, two

(TF,cluster) pairs were found to be enriched for binding based on

ChIP-on-chip, but not based on the network analysis. Such false-

negative predictions may be the result of binding sites sometimes

occurring upstream of the 2 kbp region selected for TFBS motif

scanning, the target TF being cross-linked to a DNA-bound co-

regulator recognizing a different motif than the TF, or due to the

TF recognizing a TFBS motif variant not represented in the motif

database.

The inferred transcriptional network resulting from our analysis

associates at least one TF with 27 of the 32 clusters. The 27

clusters comprise 86% of all differentially expressed genes, with an

overall network coverage (including motif matches for individual

targets) of 63%. An average of 3.3 TF genes were associated with

each cluster, which may reflect the prevalence of combinatorial

control in the transcriptional network. The TFs implicated in the

network are also highly interconnected at the level of protein-

protein interactions, and interacting TFs are found to co-associate

with clusters in the network. Many TFs known to play a role in

macrophage activation were strongly associated with clusters in the

inferred network (e.g., NFkB, AP1, IRF family members, and

STAT1). NFkB and AP1 appear to be the most prolific activators

in the network. EGR family members appear to be associated with

early-induced clusters, and IRF family members are associated

with later-induced clusters. In particular, the network associated

specific TFs with immunologically important gene clusters (e.g.,

EGR1/2 and AP1 regulating cluster C27; and NFkB and IRF1

regulating cluster C13). Finally, incorporating expression data

enabled identifying a specific TF from among members of a large

TF family recognizing a motif enriched within a target cluster; for

example, the predicted interaction between IRF1 and C25 was

validated by ChIP-on-chip. However, we note that more ChIP-on-

chip data, with a variety of TF targets, would be required to

quantitatively assess the performance of the combined network

analysis compared to single-evidence analysis using sequence data

or expression data alone.

We note that by including in the analysis only TFBS motifs for

which at least one associated TF gene was differentially expressed,
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the inferred network does not include TFs for which there is no

transcript-level differential expression; this trade-off enabled

network inference based on dual criteria of motif match

enrichment and the estimated time lag prior probability. Work is

in progress to extend the analysis to include all 208 TFBS motifs

corresponding to TFs that are transcriptionally expressed in the

TLR-stimulated macrophage. Another limitation related to

sequence scanning is that the promoter sequence data set used is

purely upstream of the annotated transcription start site (TSS);

recent evidence suggests that some TFs may be equally likely

localized downstream of the annotated TSS [76]. In future work, it

could be productive to scan for TFBS motifs both upstream and

downstream of the annotated TSS.

In addition to recapitulating known regulators, the analysis

identified a potential transcriptional regulator not previously

known to play a direct role in TLR-stimulated macrophage

activation, TGIF1. TGIF1 is a three-amino acid loop extension

homeobox protein that acts as an obligate repressor through either

direct binding to the retinoic acid responsive element on DNA, or

through its interaction with SMAD2 in the TGFb pathway [71].

Its associated TFBS motif is enriched within the promoters of

genes within cluster C26 (P,1022) and cluster C4 (P,1022), and

Tgif1 is strongly (11-fold) upregulated in murine macrophages in

response to Streptococcus pyogenes infection [77]. Particularly

intriguing is the possibility that, in light of motif scanning

evidence, TGIF1 may act as a transcriptional repressor of the

cytokines Csf2 and Gm1960.

The approach of combining promoter scanning-based evidence

with expression dynamics-based evidence enabled more specific

identification of the TF gene(s) regulating a cluster than would

have been possible using promoter scanning alone. Time-course

expression data allowed, in some cases, the disambiguation of

which TF gene (out of a family of TF genes associated with a given

TFBS motif) is the likely regulator of a cluster enriched for the

corresponding TFBS motif. Inclusion of expression data provided

a second source of evidence to indicate the relevance of a given TF

gene for predicting the condition- and time-specific expression of a

target gene cluster. In total, these results validate the strategy of

computationally integrating two distinct large-scale data sources

(expression and genomic sequence) to infer a murine macrophage

transcriptional network. In a future study, additional sequence-

based data sources, such as evolutionarily conserved elements in

the cis-regulatory region, could be incorporated into the method.

Materials and Methods

All data were analyzed in MatLab (MathWorks, Natick, MA)

unless otherwise stated. In all cases where Fisher’s exact test was

performed, the test was one-tailed, using the cumulative

distribution function (CDF) of the hypergeometric distribution.

Microarray expression measurements
Mutant strains (see Table S1) were generated in the 129SVJ

background and backcrossed to C57BL/6 (Jackson Laboratories),

ten times. Femurs from the C57BL/6 and mutant strains were

flushed with complete RPMI (RPMI 1640 supplemented with

10% FBS, 2mM L-glutamine, 100 IU/mL penicillin and 100 mg/

mL streptomycin, all from Cellgro, Mediatech, except the FBS

which was from Hyclone). Bone marrow cells were plated on non-

tissue culture treated plastic in complete RPMI supplemented with

recombinant human M-CSF (rhM-CSF) at 50 ng/mL (gift from

Chiron). On day 4 the cells were washed two times with RPMI

with no additions and then grown 2 more days in complete RPMI

supplemented with 50 ng/mL of rhM-CSF. On day 6 the cells

were lifted from the non-tissue culture treated plastic, counted and

plated at a density of 1.046105 cells/cm2 (16106 cells per well in a

6-well dish) on tissue culture-treated plastic. On day 7 cells were

stimulated with TLR agonists at the concentrations indicated in

Table S2, without changing the media. Stimulus reagent sources

are shown in Table S15. Stimulation of the cells was verified by

the presence of TNFa in the culture supernatants detected by

ELISA (Duoset ELISA Assay Development System, R&D

Systems). Total RNA was isolated using TRIzol (Invitrogen) and

analyzed for overall quality using an Agilent 2100 Bioanalyzer.

mRNA was labeled using the Affymetrix One-Cycle Target

Labeling protocol and reagents for eukaryotic target preparation.

The labeled cRNA was hybridized to an Affymetrix GeneChip

Mouse Genome 430 2.0 array using standard protocols and

reagents from Affymetrix. Probe intensities were measured using

the Affymetrix GeneChip Scanner 3000 and processed into CEL

files using Affymetrix GeneChip Operating Software.

Microarray data processing
Expression data were acquired from 216 microarray hybrid-

ization experiments comprising 95 combinations of strain,

stimulus, and time point (hereafter, ‘‘experiments’’; see Table

S3), of which 41 were in mutant strains, and 54 in wild-type. Data

in the form of CEL files were background-subtracted and

normalized with the Robust Multi-chip Average (RMA) method

[78] using the software Bioconductor [79], then exported to

MatLab for further analysis. For each of the 95 experiments,

normalized expression measurements for each probeset were

averaged across biological replicates using the log2 intensities [78]

to obtain the replicate-combined probeset intensity.

Differential expression testing
Significance testing was performed using mean log2 intensities

from 7 wild-type TLR-stimulation time-course experiments

comprising 54 assays (where ‘‘assays’’ refers to a specific

combination of strain, stimulus, and elapsed time; see Table S3)

for which at least two replicates were available, relative to the

mean log2 intensities of unstimulated wild-type macrophages

(hereafter, the ‘‘reference experiment’’). For each probeset and for

each of the wild-type TLR-stimulation time-course experiments, a

differential expression test was performed using a spline-based

multivariate regression method [32] to obtain a P value for the

difference in the sum-squared residuals under the alternative and

the null hypotheses. A fourth-order polynomial basis was used,

with 1,000 iterations for the bootstrap resampling. For each time-

course experiment, a separate P value threshold was selected based

on a maximum Benjamini-Hochberg false discovery rate (FDR)

[80] as described below.

Probeset selection
A probeset selection algorithm was carried out to select a

representative probeset for each gene, eliminating probesets that

are annotated as cross-hybridizing to transcripts from different

genes.

Representative probesets from among the 45,037 probesets

(excluding on-chip control probesets) on the Affymetrix Mouse

GeneChip 430.2 were selected based on four criteria. A probeset

was selected if and only if: (i) it possessed an Entrez GeneID in the

Affymetrix probeset annotation database [81]; (ii) it had a log2

intensity exceeding a fixed cutoff, in at least one replicate-

combined experiment; (iii) it had a P value less than a fixed cutoff,

for at least one experiment; and (iv) its probeset name did not

contain ‘‘_x_’’ or ‘‘_s_’’, and was not associated (by GeneID

annotation) with transcripts of two distinct genes. Criterion (iv) was
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imposed in order to eliminate probesets containing probes that

cross-hybridize to transcripts from different genes [82]. Whenever

multiple probesets mapped to the same GeneID (or the same

collection of GeneIDs), the probeset with the smallest minimum P

value, across all non-reference experiments, was selected as the

‘‘representative probeset’’ for the GeneID (or GeneID list).

This selection procedure was applied with four different cutoffs

for log2 intensity and P value, as summarized in Table S16. (i) To

generate a set of differentially expressed genes suitable for

expression clustering (hereafter, the ‘‘target’’ genes), a log2

intensity cutoff of 6 was used, and a P value cutoff of 1024 was

used. The resulting number of representative probesets for target

genes was 1,960. The complete list of the 1,960 target genes, and

their expression measurements, are provided in Table S4. (ii) To

generate a set of differentially expressed TF genes, the algorithm

was re-run for probesets that are annotated as TFs, and for which

a TRANSFAC matrix is available (see Selection of Transcription

Factors), with a FDR cutoff of 0.05. A total of 80 differentially

expressed TF genes were identified, as described in Selection of

Transcription Factors below. (iii) To generate a set of all genes that

were expressed in the macrophage, in at least one experiment, the

probeset selection was run with a log2 intensity cutoff of 6 and no

filtering for differential expression. The 8,788 resulting genes were

used as the reference set for applying Fisher’s exact test to the

promoter scanning results (see Promoter Scanning below). (iv) To

generate the set of all genes represented by ‘‘_at’’ or ‘‘_a_at’’

probesets on the GeneChip, the algorithm was run with no

filtering for minimum intensity or differential expression. This

generated a list of 20,905 genes that constituted the genome-wide

set used in the gene ontology enrichment analysis (see Functional

Enrichment Analysis below).

Selection of transcription factors
A set of 388 position-weight matrices (PWMs) corresponding to

murine TFs was obtained from the TRANSFAC Professional

database version 10.3 [33]. These PWMs were mapped using

TRANSFAC as well as literature searching, to 273 mouse genes

that code for corresponding TFs or TF components. Of these, 80

TF genes were identified as differentially expressed (FDR#0.05) as

described in Probeset Selection above (see Table S5). The 80 TF

genes are represented by 150 TRANSFAC position-weight

matrices. Table S10 contains the microarray expression measure-

ments for these TF genes.

To estimate the fraction of genes in the mouse genome that are

TFs, a genome-wide list of 1,245 murine TF genes (and probable

TF genes) was assembled by mapping a list of 1,800 human TF

genes from the literature [83] to mouse orthologs present on the

Mouse GeneChip and integrating the set of genes possessing GO

annotations for transcription factor activity (GO:0003700).

Expression clustering
The SDR values xpj for log2 intensity, where p indicates the

probeset and j indicates the experiment, were clustered using a fast

implementation of the K-means algorithm [84], with a minimum

cluster size of 1. The number of clusters K was chosen to minimize

the Bayesian Information Criterion (BIC) [38]. The BIC is a

function of K represented as BIC(K),

BIC(K)~
XN

p~1

XM
j~1

xpj{ckp,j

se

� �2

zMK log N ð9Þ

where kp is the cluster to which the pth probeset is assigned, ckp,j is

the jth coordinate of the centroid of the kth cluster in the SDR-

transformed space of expression measurements, N = 1,960 (the

number of target genes), M = 94 (the number of non-reference

experiments), and se
2 is the average intra-cluster variance

evaluated at K = 3. The K-means clustering was carried out for

integer values 18#K#50, for 1,000 iterations at each value of K;

the optimal clustering (lowest average BIC over the 1,000

iterations) occurred at K = 32 (see Figure S1). The cluster

expression profiles were characterized using the within-cluster

median of the SDR; as a result, the cluster expression profile will

not necessarily have a maximum value of 1 across all data points.

This is because, in general, the genes within a cluster will not all

reach a maximum value at the same time point. The induction

time scale for the median SDR expression within each cluster was

estimated using linear interpolation between the time points for

the wild-type LPS time-course, and finding the time at which the

absolute value of the SDR first exceeded 0.25. Clusters were

displayed (in Figure 1 and Figure S2) in the cluster order that

minimized the sum of Euclidean distances between adjacent

clusters, obtained using simulated annealing [85] with 5000

iterations and a cooling rate of 0.5. The cluster expression profiles

in Figure 2 were ordered for display using hierarchical

agglomerative linkage using the Euclidean distance of extremal

SDR expression level in time-course microarray experiments

under the four indicated TLR agonists.

Functional enrichment analysis
Jackson Laboratory Mouse Genome Informatics GO annota-

tions [86] were added to the Affymetrix Mouse GeneChip GO

annotations [81] by string matching on the gene symbol field for

each annotated probeset. For each of the 20,945 GO term IDs

[87], the number of occurrences of the GO term ID (or a

descendent of the GO term ID) in the GO hierarchy was

computed for all 20,905 genes represented on the Affymetrix

Mouse GeneChip (see Probeset Selection above) as well as for each

co-expressed gene cluster. For each GO hierarchy (process,

component, and function) the total number of genes possessing

at least one GO annotation for the hierarchy was computed (see

Table S17). The P value for GO enrichment was computed for

each pair (i,C) of a GO term ID i and gene cluster C, using Fisher’s

exact test (under-occurrences of a GO term relative to the

reference set were discarded). Any pairs (i,C) in which less than 5%

of the genes within C possess GO term ID i, or with a term level in

the GO hierarchy less than 3, were discarded. The resulting 629

(i,C) pairs were ordered by P value, and a P value cutoff was

selected by demanding that the estimated false discovery rate be

0.02 (P#0.0148, or 2log10 P$1.83). The resulting 460 GO term

enrichments are shown in Table S8.

The list of 32 TLR-regulated murine cytokines was obtained by

screening for all differentially expressed genes possessing an

annotation for cytokine or chemokine activity, and by refining the

list by using NCBI PubMed searches to determine whether each

gene is a cytokine.

Selection of genes for null distribution
To form the null distribution of time-lagged correlation, a set of

non-TF genes was generated. From the set of 1,960 differentially

expressed genes, a set Q of 484 genes were selected such that each

gene: (i) does not correspond to a TRANSFAC transcription factor

as described above; (ii) has at least two GO process and two GO

function annotations; (iii) is not annotated as ‘‘regulation of

transcription, DNA-dependent’’ (GO:0008015); (iv) does not have

a gene name with the prefix ‘‘Zfp’’ (zinc finger protein); and (v) is

not listed among the 1800 TF genes (see Selection of Transcription

Factors). The time-lagged correlations between genes within this
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group were taken as the null distributions of time-lagged

correlations, for the purpose of computing the P value of a time-

lagged correlation between a TF and a gene (see Time-lagged

Correlation below).

Constructing the prior distribution of time lags
Given the time resolution of the expression data (for which the

smallest Dt is 20 min), the set L of time lags was chosen to be 0–

80 min (inclusive), at 10 min intervals. The precision at which the

optimal time lag can be estimated, at |rt|$0.9, was determined

to be 65 min, based on simulated independent Gaussian noise

added to the replicate-combined array data with standard

deviation given by the measured replicate-standard deviation of

the log2 intensity in each experiment. The upper limit of 80 min

was selected to ensure that in each time-course with time points T,

the target gene expression evaluated at time points {t+t|tMT and

t+t#max(T)} would always be based on measurements from at

least three time points. The conditional probability density

P(tc|H̄0) of the overall transcriptional time delay tc, for true

interacting TF–target gene pairs, was defined using the gamma

distribution (see Text S1, Section 3). This probability density was

integrated for bins of tc centered at the discrete time lags tML, to

obtain an estimate of the discrete probability for observing an

optimal time lag, where Dt = 10 min. Using the distribution

P(tc|H̄0), the upper limit of 80 min for t included approximately

97% of transcriptional delays.

Time-lagged correlation
The time-lagged correlation (TLC) was computed for all

possible triples (f,g,t) of TF gene f, potential target gene g, and

time lag t M L. There were 80 TFs and 1,960 target genes. The

TLC was computed as follows, for a given (fixed) time lag t. Let

the vectors XT(f) and XT(g) represent the log2-transformed, SDR-

normalized expression measurements for f and g in a time-course,

where T is the set of time points, and let tmax;max(T). Let

Tt;{tMT|t#tmax2t}. Let XTt
(f ) and XTt

(g) represent the

measurements of f and g, respectively, at the times Tt. We now

define the set of shifted time points T’t;Tt+t = {t+t|tMTt}. The

expression values XT 0t (g) were computed using linear interpolation

between the adjacent time points. Expression values XTt
(f ) for

each time course were concatenated together to obtain a

combined multi-experiment vector X comb
Tt

(f ) of measurements

for f and a combined vector X comb
T ’

t
(g) of time-boosted measure-

ments for g. The TLC rt(f,g) was then computed using Equation 2

and using X comb
Tt

(f ) and X comb
T ’

t
(g). The criteria for inclusion of a

time-course experiment in the TLC calculation were (i) a

minimum of three points in the set Tt, and (ii) a minimum of

three measurements contributing to the interpolated values XT 0t . A

total of eleven time-course experiments comprising 72 indepen-

dent time points were included in the TLC analysis, as shown in

Table S9.

To build the background (null) TLC distribution Dpt
(as defined

in Text S1, Section 2) for each time lag t, the TLC was computed

for a set H consisting of all non-identical pairs of genes (h1,h2),

where h1 and h2 are drawn from the set Q of non-TF genes (see

Selection of Genes for Null Distribution above). The background

distributions were constructed from the rt
2(h1,h2) values, using

Gaussian kernel density estimation [38] (see also Text S1, Section

4) with a smoothing length of 0.005 (chosen to maximize the

number of pair-wise associations in the non-background set for

which Ptlc#1023). For each t and each rt(f,g), the complementary

CDF F pt
was computed by integration of Dpt

using the extended

Simpson’s Rule (closed interval) [85] with 200 bins.

The TLC was then analyzed for the set G of gene pairs (g1,g2),

where g1 was drawn from the set of 80 TFs (see Selection of

Transcription Factors above), g2 was drawn from the set of 1,960

differentially expressed (‘‘target’’) genes (see Probeset Selection

above), and g1?g2 (the inequality avoids perfect zero-time-lagged

correlations that would bias the significance test). For each pair

(g1,g2), the time lag that maximized F pt
(r2

t(g1,g2)) was selected as

the optimal time lag for the pair, and denoted by h(g1,g2).

The probability ratio R(t) was computed using Equation 5. The

marginal probability P(H0) was estimated to be ,0.94 based on an

analysis of the transcriptional network of [7], taking the average

out-degree of the TFs in Fig. 4B and dividing by the number of

differentially expressed genes in that study (1,784 genes). The

marginal probability P(t)was obtained from h(H).

The combined, cumulative, TLC-based P value for (f,g),

denoted by Ptlc(f,g), was computed according to Equation 7 (for

which a detailed mathematical derivation is given in Text S1).

Empirical evidence showing the approximate independence of j
and R under the null hypothesis is shown in Figure S17. For each

pair (f,C) of TF gene f and gene cluster C (see Expression

Clustering above), an overall F score, Fexp (f,C) was computed

using Equation 8, combining the |C\{f}|P values. Because the

genes within a cluster are grouped by expression similarity, their

TLCs with respect to f are not independent, even under the null

hypothesis that f does not regulate any of the genes within the

cluster. Thus, among a large collection of pairs (f,C) satisfying the

null hypothesis, the F scores Fexp (f,C) will not be distributed

according to the x2 distribution with 2|C\{f}| degrees of freedom.

Instead, the number of intra-cluster degrees of freedom was

computed for each cluster by clustering the SDR expression

profiles of the genes within a cluster (across all 94 non-reference

experiments) using the K-means algorithm. For a range of numbers

k of sub-clusters, the BIC was computed using the variance at k = 3

for normalizing the bias term [38]. The number of sub-clusters k at

which the BIC was minimized was doubled to obtain the effective

number of degrees of freedom, d(C), within each cluster. The

average over all clusters was Æd(Ck)æk = 11.03, where Ck denotes the

kth cluster. The x2 test was applied with d(C) degrees of freedom, to

obtain an overall P value for the association between f and C:

Pexp(f ,C)~1{
c d(C)

2
, d(C)F exp(f ,C)

2 C\ ff gj j

� �
C(d(C)=2)

ð10Þ

where Fexp(f,C) is defined in Equation 8, and c is the incomplete

gamma function [85].

A second statistic, the average time lag, was computed for each

pair (f,C),

ShTf ,C:
1

C\ ff gj j
X

g[C\ ff g
h(f ,g) ð11Þ

and used as an additional criterion in the network inference (see

Network Inference below).

Promoter scanning
Mouse position-weight matrices (150 in total) corresponding to

the 80 differentially expressed TF genes, were obtained from

TRANSFAC Professional (see Selection of Transcription Factors

above, and Table S5) [33]. Promoter sequences of 2 kbp upstream

of 17,254 mouse genes were obtained from the UCSC genome

database [47] (UCSC annotation build mm8, based on the NCBI

mouse genome assembly m36), each identified by NCBI RefSeq
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ID. The [22 kb, 0] coordinate range relative to the transcription

start site was selected based on Figure 2c from [88]. For each

representative probeset (see Probeset Selection above), the

corresponding RefSeq ID (if available) was obtained from the

Affymetrix GeneChip annotation file [81]. The 8,788 expressed

genes mapped to 7,492 unique promoter sequences (hereafter, the

‘‘reference’’ set, denoted by mexp = 7,492). Of the 12,117 genes that

were not expressed in any of the microarray experiments, 7,503

were mapped to UCSC promoter sequences (hereafter, the

‘‘background’’ set). The 1,960 differentially expressed genes were

mapped to 1,713 unique promoter sequences. Low-complexity

repeats were masked from all promoter sequences prior to motif

scanning, using RepeatMasker [89]. Scanning was performed

using MotifLocator version 3.2 [90], using a first-order back-

ground model with frequencies computed from the first 496 genes

on chromosome 17, obtained from the 5 kbp upstream promoter

sequence file from NCBI mouse genome assembly 32 (UCSC

build mm4), and using motif matrix score thresholds selected as

described below. The background sequences were scanned with all

matrices with no cutoff. For each matrix, the score threshold was

computed at which an above-threshold match would occur on

average in one out of every 5 promoter sequences (i.e., once per 10

kb). The motif match score thresholds are given in Table S11. The

reference promoter set was scanned using these score thresholds,

and for each matrix m, the number of promoter sequences in the

reference set that had at least one above-threshold match was

denoted by nexp (m). For each cluster C, the mapped promoter

sequences for the genes within the cluster (the number of which

was denoted by m(C)) were scanned, and the number of sequences

with at least one above-threshold match was denoted by n(m,C).

For each matrix m and cluster C, a P value Pscan (m,C) was

computed from the values mexp, nexp (m), m(C), n(m,C), using Fisher’s

exact test. Let W denote the mapping between the 80 TF genes

and subsets of the 150 TRANSFAC matrices (see Table S5), so

that W(f) is the set of TRANSFAC matrices associated with the TF

gene f. For each TF gene f and cluster C, a P value representing the

association between f and C was computed as follows,

Pscan(f ,C)~ min
m[W(f )

Pscan(m,C) ð12Þ

The values of mexp, nexp (m), m(C), and n(m,C) for all clusters, are

provided in Table S11.

Network inference
For each pair (f,C) of TF gene f and co-expressed gene cluster C,

an overall combined P value, Pcomb (f, C) for the significance of the

association between f and C based on both promoter scanning and

expression time-course data, was computed using Fisher’s method,

Pcomb(f ,C)~1{
1

2
c 2,{ ln Pscan(f ,C):Pexp(f ,C)

� �	 

ð13Þ

The set of all pairs (f,C) were selected, satisfying the following

criteria: (i) Pcomb (f, C)#0.0248 (or 2log10 Pcomb (f,C)$1.61, where

the P value cutoff was obtained using an FDR of 0.025); (ii) Pscan

(f,C)#0.05 (or 2log10 Pscan (f,C)$1.3); and (iii) Æhæf,C$10 min.

Criterion (iii) was used to ensure that a pair (f,C) would not be

accepted based solely on a very low Pscan (f,C) value; the average

optimal time lag must be biologically plausible. A total of three

TF-cluster associations were rejected, that passed criteria (i) and

(ii), but not criterion (iii). A total of 90 TF-cluster associations were

identified based on these criteria, involving 36 TF genes. The out-

degree of a TF gene f within the network was estimated by

summing (over all clusters for which (f,C) was accepted) the

product z(f,C) |C\{f}|, where z(f,C) is the fraction of genes within

C that have at least one binding site for any matrix m M W(f).

The diagrams shown in Figures S15 and S16 were generated

using Cytoscape [91] version 2.5.0. Protein interactions were

obtained from the Human Protein Reference Database [67],

Release 6 (2007/01/01) and the Biomolecular Interaction

Network Database [68] (2007/10/14). The 36 differentially

expressed TF genes were mapped to human orthologs using

NCBI Entrez Gene. For the protein network diagram shown in

Figure S16, a minimum log2 microarray probeset intensity cutoff

of 6.5 was required in at least one array experiment (with the

exception of Smad6, whose human ortholog protein is expressed in

HL60 macrophage differentiation [92]).

Quantitative PCR
Total RNA was isolated from bone marrow-derived macro-

phages using TRIzol (Invitrogen), treated with DNAase (Ambion),

and used as template for reverse transcription (Superscript II,

Invitrogen) according to the manufacturers’ instructions. qPCR

was performed using Applied Biosystems ABI 7900 HT.

Expression units were computed relative to the housekeeping

gene Eef1a1 [6,93]. Primer reagents for Tgif1 and Eef1a1 were

obtained as described in Table S15.

ChIP-on-chip validation
Five (TF,cluster) pairs were selected for ChIP-on-chip validation

based on several criteria: (1) the gene members of the cluster

needed to be well-represented on the tiling array (at least 30% of

the genes in the cluster must be represented on the ChIP-on-chip

array); (2) a correlation between TF gene and cluster expression

consistent with known function (activator or repressor) for the TF;

(3) the availability of a high-quality polyclonal murine antibody for

a relevant TF protein; (4) demonstrated specificity of the antibody

based on Western blot analysis; (5) a successful ChIP assay for

several known targets of the TF. Genome location was assayed

using ChIP-on-chip hybridization as described in [6], with

polyclonal antibodies for murine IRF1 and p50 (Nfkb1) (Table

S15). A custom Affymetrix GeneChip microarray was used,

consisting of 25-mer oligonucleotides selected to densely tile 20

kbp upstream and 20 kbp downstream (and selectively, the coding

regions) of genes selected based on differential expression in

preliminary microarray expression studies involving murine RAW

264.7 cells stimulated for 60 minutes by LPS, Pam3CSK4, or

Pam2CSK4 [94]. Of the 1,960 differentially expressed genes

identified in Probeset Selection, 517 are represented on the tiling

array. Hybridization to the custom tiling array was carried out

using standard protocols and reagents from Affymetrix. ChIP-on-

chip microarray scans were background-adjusted and quantile

normalized as described in [6]. ChIP-on-chip data were processed

as follows. First, probes were sorted based on chromosomal

location. The sample/control absolute intensity ratio was

computed for each probe, where the control intensity was taken

from an experiment with antibody, but without LPS stimulation. A

smoothed intensity profile was then generated using a sliding

window algorithm based on Tukey’s biweight kernel [95] with a

100 bp window size (as was used in [6]). Probes were then selected

for which the intensity ratio was higher than a statistical cutoff

(P#0.01). If there were multiple significant probes within a 200 bp

region, the combined statistical significance of region was

computed by performing a t-test in which the distribution of

probe intensities within the 200 bp region is compared to a

background region of probe intensities. For each identified
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chromosomal region, the annotated gene nearest to the region in

the 59 direction was recorded, along with the distance to the

nearest flanking gene. Significance testing of the enrichment of

ChIP-on-chip binding among genes within a specific cluster was

carried out using Fisher’s exact test with a background set

consisting of all 520 differentially expressed mouse genes (see

Differential Expression Testing above) for which at least one probe

on the array is located within 20 kbp upstream of the TSS.

Accession numbers
All microarray expression data from this study have been

deposited into the ArrayExpress [96] public database under

accession number E-TABM-310. NCBI Entrez Gene identifiers

can be found for all differentially expressed genes considered in

this study, in Tables S4 and S5. Mouse Genome Informatics Allele

accession numbers are provided for each mutant strain, in Table

S15.

Supporting Information

Text S1 Mathematical Derivations. This document provides a

complete mathematical description of the significance test used for

the time-lagged correlation. In addition, it provides background

information on the Gaussian kernel density estimation method and

some key theorems supporting the derivation of the method.

Found at: doi:10.1371/journal.pcbi.1000021.s001 (0.23 MB PDF)

Figure S1 The optimal number of clusters was determined using

the Bayesian Information Criterion (BIC). The horizontal axis

indicates the number of clusters K used for K-means clustering.

The cluster analysis was repeated for K varying between 18 and

50, with the BIC computed for each number of clusters. The

optimal number of clusters, for which the BIC is minimized, was

found to be K = 32 (see Materials and Methods, Expression

Clustering).

Found at: doi:10.1371/journal.pcbi.1000021.s002 (0.15 MB TIF)

Figure S2 Differential expression profiles of gene clusters, in

TLR-stimulated macrophages, across all microarray expression

experiments. Each row represents an experiment (a specific

combination of strain, stimulus, and time point), and each column

represents a cluster. Clusters are displayed in the order that

minimizes the sum of pairwise distances between adjacent clusters

(see Materials and Methods, Expression Clustering). Each colored

rectangle within the heat-map indicates the centroid of the

expression levels for genes within the indicated cluster, for the

indicated experiment. The differential expression level (SDR, see

Equation 1) is indicated in red/green color, and varies between -1

(bright green) and 1 (bright red), with 0 (black) indicating no

change from the expression level in the unstimulated wild-type

macrophage. The shaded light gray/charcoal regions in the far left

column indicate the genotype. The color-coding in the second-to-

left column indicates the stimulus (color code legend in lower right;

and see Table S2 for the concentrations). The four-digit numbers

to the right of the color-code column, indicate the elapsed time

(min) post-stimulation, for each experiment.

Found at: doi:10.1371/journal.pcbi.1000021.s003 (1.38 MB TIF)

Figure S3 Cluster-median differential expression profiles in

wild-type macrophages stimulated with LPS show a diversity of

time scales. Each data point shown is the median of the SDR-

transformed (see Equation 1) differential expression levels of the

genes within the indicated cluster, at the indicated time after

stimulation.

Found at: doi:10.1371/journal.pcbi.1000021.s004 (0.34 MB TIF)

Figure S4 Cluster-median differential expression profiles in

wild-type macrophages stimulated with Pam3CSK4 show a

diversity of time scales. Each data point shown is the median of

the SDR-transformed (see Equation 1) differential expression

levels of the genes within the indicated cluster, at the indicated

time after stimulation. Cluster C26 shows sustained activation

under this stimulus, as opposed to the case of stimulation with LPS

(see Figure S3).

Found at: doi:10.1371/journal.pcbi.1000021.s005 (0.32 MB TIF)

Figure S5 Cluster-median differential expression profiles in

wild-type macrophages stimulated with poly I:C show a diversity

of time scales. Each data point shown is the median of the SDR-

transformed (see Equation 1) differential expression levels of the

genes within the indicated cluster, at the indicated time after

stimulation. The core response Clusters C27 and C28 induce later

in this time-course experiment than in the case of stimulation with

LPS (Figure S3).

Found at: doi:10.1371/journal.pcbi.1000021.s006 (0.32 MB TIF)

Figure S6 Cluster-median differential expression profiles of

wild-type macrophages stimulated with R848 show a diversity of

time scales. Each data point shown is the median of the SDR-

transformed (see Equation 1) differential expression levels of the

genes within the indicated cluster, at the indicated time after

stimulation. Cluster C26 shows sustained activation under this

stimulus, as opposed to the case of stimulation with LPS (see

Figure S3).

Found at: doi:10.1371/journal.pcbi.1000021.s007 (0.34 MB TIF)

Figure S7 Discretized prior probability distribution P(t|H0) of

observing an optimal time-lag t, for a gene pair that have a

transcriptional regulatory interaction. Here, the symbol ,H0

denotes the complement of the null hypothesis, i.e., that there is a

transcriptional regulatory interaction (this is denoted by an

overbar in the main text and in the supporting text). The symbol

t denotes the optimal time lag. For a discussion and derivation of

the prior probability distribution of transcriptional time lags, see

Materials and Methods (Constructing the Prior Distribution of

Time Lags) and Text S1 (Section 3).

Found at: doi:10.1371/journal.pcbi.1000021.s008 (0.26 MB TIF)

Figure S8 Histogram of time lag values that maximize the

absolute time-lagged correlation coefficient, for randomly drawn

pairs of non-transcription factor genes. The non-uniformity of the

histogram (the highest counts appear at high and low values of the

time lag) shows the inherent bias in the standard method of

selecting the optimal time lag, i.e., maximizing the absolute lagged

correlation coefficient. Time-lagged correlations could not be

reliably estimated for time lags greater than 80 min, due to limited

effective sample size for higher time lags (see Materials and

Methods, Constructing the Prior Distribution of Time Lags).

Found at: doi:10.1371/journal.pcbi.1000021.s009 (0.22 MB TIF)

Figure S9 Differential expression levels (SDR, see Equation 1) in

wild-type macrophages stimulated with LPS, for 38 pairs of

transcription factor genes and gene clusters. The pairs all show

high-significance time-lagged correlation based on the significance

criterion Pexp # 5610-3, and all satisfy the minimum average time

lag criterion ,h. $ 10 min. Differential expression levels are

relative to wild-type unstimulated macrophages, with positive/

negative values indicating upregulation/downregulation. The

names of the TF gene and the correlated cluster are shown above

each plot. The cluster expression level, shown in green, is the

centroid from the K -means clustering algorithm (see Materials and

Methods, Expression Clustering). Of the pairs, 23 have a positive
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time-lagged correlation coefficient, and 15 have a negative time-

lagged correlation coefficient.

Found at: doi:10.1371/journal.pcbi.1000021.s010 (0.52 MB TIF)

Figure S10 Combined plot showing (i) the histogram of

-log10Pexp values for the significance of the time-lagged correlation;

and (ii) the estimated false discovery rate, as a function of the

-log10Pexp value. The Pexp values were computed for all possible

pairs of (f,C) of transcription factor gene f and coexpressed gene

cluster C. The histogram was generated using 40 bins.

Found at: doi:10.1371/journal.pcbi.1000021.s011 (0.27 MB TIF)

Figure S11 Histogram of positions of transcription factor

binding site motif matches relative to transcription start site. The

median distance from the transcription start site is 537 bp. The

density of motif matches can be seen to peak at 220 bp relative to

the start site.

Found at: doi:10.1371/journal.pcbi.1000021.s012 (0.25 MB TIF)

Figure S12 Combined plot showing (i) the histogram of

-log10Pscan values for enrichment of TFBS motifs within co-

expressed gene clusters; and (ii) the estimated false discovery rate

as a function of the -log10Pscan value. The Pscan values were

computed for all possible pairs pairs (f,C) of transcription factor

gene f and cluster C, using the position-weight matrix associated

with f that had the smallest enrichment P value for the promoters

of the genes in cluster C. The histogram was generated using 40

bins.

Found at: doi:10.1371/journal.pcbi.1000021.s013 (0.28 MB TIF)

Figure S13 Integrating the two sources of evidence using

Fisher’s method. Each blue circle represents a unique (TF,cluster)

pair. The solid line indicates the cutoff for the combined P value,

at FDR = 0.1. Data points to the lower left of the line have a Pcomb

value smaller than the cutoff (see Materials and Methods, Network

Inference). The dotted green line indicates the cutoff for the

promoter scanning-based P value, Pscan = 0.05. Pairs that fall

below the green dotted line and to the lower-left of the solid

magenta line and for which the average time lag ,h. $ 10 min,

were included in the final network.

Found at: doi:10.1371/journal.pcbi.1000021.s014 (0.59 MB TIF)

Figure S14 The set of transcription factor genes has a 20-fold

variation in out-degree (number of target genes), within the

transcriptional network. (a) Estimated out degree of transcription

factor genes. The out degree of a transcription factor gene is the

number of genes estimated to be regulated by the transcription

factor(s) associated with that TF gene (i.e., of which that TF gene is

a component). For each gene cluster with which a TF gene was

associated, the number of genes within the cluster for which a

motif match was found (corresponding to the TF gene), was

tabulated. The number of target genes was summed over all

clusters with which the TF was associated, based on the combined

expression and promoter scanning data (see Materials and

Methods, Network Inference). Among the 36 TF genes in the

network, the estimated out degree had a median of 49, and a

maximum value of 285. (b) Estimated significance of the

association of the TF gene in the network. For each TF gene f

implicated in the network, the minimum P value P comb(f,C) of

association with any cluster C, was used as a measure of the overall

significance of the association of TF gene in the transcriptional

network. Transcription factor genes are displayed in decreasing

order of estimated out degree (number of target genes).

Transcription factors associated with larger clusters are seen to

correlate with higher significances in the network, as a conse-

quence of the sample size-dependence of the statistical tests used

for the motif scanning and expression dynamics evidences.

Found at: doi:10.1371/journal.pcbi.1000021.s015 (0.51 MB TIF)

Figure S15 Transcription factors involved in macrophage

activation are highly interconnected in the protein interaction

network, and the interacting TFs co-associate with clusters. Nodes

indicate TF genes whose transcript levels are differentially

expressed in LPS-stimulated macrophages, and that are associated

with the transcriptional network through the combination of

scanning- and expression-based evidences. Node labels are gene

names. A red node indicates upregulated gene expression under

LPS, and green indicates downregulation, and a purple node

indicates transient up- and downregulation. A blue arc indicates

that the human orthologs of the murine proteins associated with

the murine TF genes connected by the arc, have an interaction in

the Human Protein Reference Database [68] or in the

Biomolecular Interaction Network Database [69]. A thick black

arc indicates that the two connected TF genes co-associate with

one or more clusters within the network, and share a protein

interaction (suggesting a possible transcriptional complex). A

purple arrow indicates a known protein-DNA interaction between

the source node’s human ortholog protein and the promoter of the

human ortholog of the gene indicated by the target node. Brown

ellipses denote the core transcription factor complexes NFkB and

AP1.

Found at: doi:10.1371/journal.pcbi.1000021.s016 (0.64 MB TIF)

Figure S16 TGIF1 interacts with many members of the

SMAD/AP-1 transcription complex. Shown here is a network

diagram of 16 proteins that interact with the SMAD family of

transcription factors SMAD1/2/3/6, the histone deacetylaces

HDAC1/2, and the TG-interacting factors TGIF1/2. Nodes

indicate proteins, and a blue line between two nodes indicates that

the human orthologs of the two proteins have an interaction, in

either the Human Protein Reference Database (HPRD) [68] or in

the literature [72,75]. Red arrows indicate human protein-DNA

interactions annotated in the TRANSFAC database [34]. The

diagram includes nearest-neighbors of the SMAD, HDAC, and

TGIF families in the protein interaction network. Each node

shown in the diagram corresponds to a transcript that is likely

expressed in murine bone marrow-derived macrophages, based on

having an above-threshold microarray intensity within at least one

experiment (see Materials and Methods, Probeset Selection).

Found at: doi:10.1371/journal.pcbi.1000021.s017 (2.02 MB TIF)

Figure S17 Histogram of the cumulative density function of v,

for the v values for all sample points with y = 80 min. Strict

uniformity of this distribution (for each and every outcome

y = teL) would imply that v is totally independent of v|y. Here,

conditioning on y is seen to not introduce a significant bias in the

distribution of v values (see Supporting Text, Section 2).

Found at: doi:10.1371/journal.pcbi.1000021.s018 (0.30 MB TIF)

Table S1 Summary of mutant mouse strains used in this study.

Expression data from available mouse strains with mutations of

known TLR signaling adapter molecules or known transcriptional

regulators were included in the cluster analysis, in order to

maximize the diversity of expression patterns in the data set used

for clustering. Column 1 is the mutant strain name. Column 2 is

the name of the molecule affected by the mutation. Column 3

gives the gene title. Column 4 briefly summarizes the relevance of

the molecule in TLR-stimulated macrophages.

Found at: doi:10.1371/journal.pcbi.1000021.s019 (0.03 MB

DOC)

Table S2 Stimuli used for macrophage gene expression

experiments. Column 1 indicates the purified TLR agonist.
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Column 2 gives the description of the agonist. Column 3 indicates

the receptor(s) that are stimulated by the agonist. Column 4

indicates the adapter molecule(s) associated with the receptor.

Column 5 indicates the concentration used for in vitro stimulation

of macrophages.

Found at: doi:10.1371/journal.pcbi.1000021.s020 (0.04 MB

DOC)

Table S3 List of microarray experiments included in this study.

Each row indicates a microarray experiment. Column 1 indicates

the mouse strain, with ‘‘Wild-type’’ indicating C57BL/6. Column

2 indicates the stimulus (or combination of stimuli, separated by a

slash ‘‘/’’). Column 3 indicates the elapsed time post stimulation.

Column 4 indicates the number of biological replicates combined

in the experiment. Column 5 indicates whether the expression

measurements for the experiment were used in identifying

differentially expressed genes. Column 6 indicates if the experi-

ment was used for the clustering analysis. Column 7 indicates if the

experiment was used for time-lagged correlation (TLC) analysis.

The alternating shaded pattern for rows is used to visually

distinguish between experiments from different genotypes.

Found at: doi:10.1371/journal.pcbi.1000021.s021 (0.21 MB

DOC)

Table S4 Target genes with microarray expression data. This

spreadsheet contains the replicate-combined probeset intensities for

all 1,960 differentially expressed genes (see Materials and Methods,

Probeset Selection) across all 95 microarray experiments (see Table

S3). Column 1 indicates the NCBI gene symbol of the gene.

Column 2 indicates the NCBI Entrez Gene ID. Column 3 indicates

the probeset selected as representative for the gene. Column 4

provides a brief gene description, obtained from the Affymetrix

Mouse GeneChip annotations file. Column 5 indicates the co-

expressed gene cluster to which the gene was assigned (see Materials

and Methods, Expression Clustering). Columns 6–8 provide listings

of the gene’s Gene Ontology annotations in the process,

component, and function GO hierarchies, respectively (see

Materials and Methods, Functional Enrichment Analysis). Column

9 indicates the maximum log2 intensity observed, across all

experiments. Columns 10-104 provide the log2 intensity measure-

ments of the probesets across all 95 microarray experiments.

Found at: doi:10.1371/journal.pcbi.1000021.s022 (4.30 MB XLS)

Table S5 Differentially expressed transcription factor genes

considered as possible regulators of co-expressed gene clusters in

this study. Column 1 contains gene symbol. Column contains the

NCBI Entrez GeneID for the gene. Column 3 contains the

representative Affymetrix probeset selected for the gene. Column 4

contains the co-expressed gene cluster of which the transcription

factor is a member. Column 5 contains the TRANSFAC position-

weight matrices that are associated with the transcription factor (or

TF component) coded for by this gene (see Materials and

Methods, Selection of Transcription Factors). The ‘‘V$’’ prefixes

on TRANSFAC matrices are not shown.

Found at: doi:10.1371/journal.pcbi.1000021.s023 (0.13 MB

DOC)

Table S6 Summary of co-expressed gene clusters. Column 1

indicates the cluster name. Clusters were numbered in order of

decreasing size. Column 2 indicates the number of genes in the

cluster. Column 3 is a heat-map representation of the within-

cluster median of the normalized differential expression intensity

(SDR, see Equation 1), over time, in wild-type macrophages

stimulated with LPS. The color red indicates upregulation relative

to wild-type unstimulated macrophages, and green indicates

downregulation (see color bar in Figure S2). Column 4 indicates

the cluster response time under LPS stimulation, defined as the

time scale (in minutes) for the log2 fold change to reach 25% of its

extremal value (see Materials and Methods, Expression Cluster-

ing); the time scale uncertainty is 6 5 min. Column 5 lists the

known (excluding those solely inferred from electronic annotation,

i.e., ‘‘IEA’’ evidence code) transcription factor genes that are

members of the cluster (these are not the inferred transcriptional

regulators of the cluster). Column 6 lists the known cytokines and

chemokines that are members of the indicated cluster.

Found at: doi:10.1371/journal.pcbi.1000021.s024 (0.13 MB

DOC)

Table S7 The timing of induction of core response clusters C27

and C28 is adapter molecule-dependent. Column 1 indicates the

stimulus. Column 2 indicates the microarray conditions compared,

for example, fold-change (stimulated relative to unstimulated) in

Myd88(2/2) macrophages vs. the fold-change in wild-type.

Column 3 indicates the time post-stimulation. Columns 4 and 5

are the within-cluster medians of the log2 of the ratios for the

condition comparison indicated in column 2, for the clusters C27

and C28, respectively. The data indicate that the early response of

these clusters is largely dependent on the MyD88 signaling

pathway, and that the later response (2 hours) is more strongly

dependent on the TRIF signaling pathway.

Found at: doi:10.1371/journal.pcbi.1000021.s025 (0.03 MB

DOC)

Table S8 Gene Ontology enrichments in co-expressed gene

clusters. Column 1 indicates the cluster. Column 2 contains the

Gene Ontology ID (GOID) for the GO term. Column 3 contains

the GO term. Column 4 indicates the GO hierarchy (process,

component, or function) to which the GO term belongs. Column 5

contains the -log10P value (significance) for the enrichment of the

GO term in the indicated cluster. Column 6 contains the level of

the GO term in the gene ontology hierarchy. Column 7 indicates

the number of genes within the cluster that possess this GO term.

Column 8 indicates the frequency at which this GO term appears

in the set of all annotated genes in the genome (see Materials and

Methods, Functional Enrichment Analysis). Column 8 indicates

the frequency at which the GO term appears among genes in the

indicated cluster.

Found at: doi:10.1371/journal.pcbi.1000021.s026 (0.54 MB XLS)

Table S9 Time-course macrophage stimulation microarray

experiments used for time-lagged correlation analysis. Only

time-course expression studies with a sufficient number of time

points to admit time-lagged correlation analysis are shown (see

Materials and Methods, Time-lagged Correlation). Column 1

indicates the genotype from which macrophages were derived.

Column 2 indicates the stimulus used. Column 3 indicates the

times post-stimulation, at which gene expression was measured.

Found at: doi:10.1371/journal.pcbi.1000021.s027 (0.04 MB

DOC)

Table S10 Transcription factor genes with microarray expression

data. This spreadsheet contains microarray probeset intensities for

all 80 differentially expressed transcription factor genes (see

Materials and Methods, Selection of Transcription Factors) across

all 95 microarray experiments (see Table S3). Column 1 indicates the

NCBI gene symbol of the gene. Column 2 indicates the NCBI

Entrez Gene ID. Column 3 indicates the probeset selected as

representative for the gene. Column 4 provides a brief gene

description, obtained from the Affymetrix Mouse GeneChip

annotations file. Column 5 indicates the co-expressed gene cluster

to which the gene was assigned (see Materials and Methods,

Expression Clustering). Columns 6–8 provide listings of the gene’s
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Gene Ontology annotations in the process, component, and function

GO hierarchies, respectively (see Materials and Methods, Functional

Enrichment Analysis). Column 9 indicates the set of TRANSFAC

matrices associated with this transcription factor gene (see Materials

and Methods, Selection of Transcription Factors). Column 10

indicates the maximum log2 intensity observed, across all experi-

ments. Columns 11–105 provide the log2 intensity measurements of

the probesets, across all 95 microarray experiments.

Found at: doi:10.1371/journal.pcbi.1000021.s028 (0.21 MB XLS)

Table S11 Transcription factor binding site (TFBS) motif

position-weight matrices, threshold scores, and number of matches

for promoter TFBS motif searching. This spreadsheet contains the

results from scanning the promoters of all genes in the reference

set and in each co-expressed cluster, for transcription factor

binding site motifs from TRANSFAC (see Materials and Methods,

Promoter Scanning). Column 1 contains the TRANSFAC matrix

name. Column 2 contains the minimum MotifLocator match

score required for the given PWM to be identified as matching the

sequence at a given chromosomal location. Column 3 contains the

number of matches within the set of 7,492 reference promoter

sequences. Columns 4–35 contain the number of matches for the

PWM for each of the 32 co-expressed gene clusters. Section 2

contains the P values of the enrichments of the PWM matches

within each of the 32 clusters (see Materials and Methods,

Promoter Scanning). Row 2 indicates the number of genes whose

promoters were scanned, for each cluster. The number of matches

for each motif within each of the clusters is shown in a second

section of the spreadsheet, starting at row 154).

Found at: doi:10.1371/journal.pcbi.1000021.s029 (0.15 MB XLS)

Table S12 Time-lagged correlation data for all (TF,target) gene

pairs in which a motif associated with the TF gene was found to

match within the promoter region of the target gene. Column 1

contains the transcription factor gene symbol. Column 2 contains

the transcription factor gene’s Affymetrix probeset ID. Column 3

contains the target gene symbol. Column 4 contains the target

gene’s Affymetrix probeset ID. Column 5 indicates the co-expressed

gene cluster (1-32) of which the target gene is a member. Column 6

indicates the time-lagged correlation coefficient between the TF and

the target genes, at the optimal time lag. Column 7 indicates the

optimal time lag selected for the gene pair. Column 8 contains the

score assigned to the motif match by MotifLocator.

Found at: doi:10.1371/journal.pcbi.1000021.s030 (7.84 MB XLS)

Table S13 ChIP-on-chip data. Results of five ChIP-on-chip assays

for predicted (TF,cluster) pairs. Each row in the table shows

integrated data sources for a specific gene target. Column 1 indicates

the TF gene predicted to regulate the target cluster. Column 2 gives

the probeset of the TF gene. Column 3 indicates the gene symbol of

the target gene. Column 4 gives the target gene probeset. Column 5

gives the co-expressed cluster of which the target gene is a member.

Column 6 gives the score for the best motif match for the indicated

TF, within the promoter of the target gene (a blank cell indicates that

no above-threshold motif match was found, at the 1 match per 10

kbp level of stringency). Column 7 indicates the Ptlc from time-lagged

correlation. Column 8 indicates whether the gene’s promoter region

was represented on the promoter array. Column 9 indicates the

ChIP-on-chip P value; a blank cell in this column indicates that no

significant ChIP-on-chip binding was found (see Materials and

Methods, ChIP-on-chip Validation).

Found at: doi:10.1371/journal.pcbi.1000021.s031 (0.05 MB XLS)

Table S14 ChIP-on-chip enrichment results for co-expressed

gene clusters that are well-represented on the promoter array.

Each row in the table gives results for the ChIP-on-chip assay for a

particular cluster and for a particular TF target. Each row in the

table is associated with a particular cluster and a particular TF

target, for all pairings of p50/NFKB1 and IRF1 with the nine

clusters for which at least 30% of the member genes were

represented on the tiling array. The first column indicates the TF

target. The second column gives the cluster number. The third

column gives the number of genes on the ChIP-on-chip array for

which binding was observed upstream of the transcription start site.

The fourth column gives the number of genes within the cluster,

that were represented on the ChIP-on-chip array. The fifth column

gives the number of genes within the cluster that showed evidence of

TF binding in the upstream region, in the ChIP-on-chip assay. The

sixth column gives the fraction of genes in the cluster that are

represented on the array. The seventh column gives the enrichment

P value for the ChIP-on-chip hits within the cluster (see Materials

and Methods, ChIP-on-chip Validation). The eighth column gives

the motif match enrichment P value based on sequence scanning

(see Materials and Methods, Promoter Scanning). The ninth

column gives the P value based on the time-lagged correlation of

expression profiles of the TF gene and the genes within the target

cluster. The tenth column gives the average time lag, between the

TF gene and the genes within the target cluster. The eleventh

column gives the combined P value based on motif match

enrichment and time-lagged correlation (see Equation 13).

Found at: doi:10.1371/journal.pcbi.1000021.s032 (0.02 MB XLS)

Table S15 List of key materials and reagents. Column 1

indicates the type of material (mouse strain or stimulus reagent).

Column 2 indicates the specific strain or reagent. For mutant

mouse strains, the Mouse Genome Informatics accession number

of the allele is provided. Column 3 indicates the source laboratory

from which the mouse strain or reagent was obtained.

Found at: doi:10.1371/journal.pcbi.1000021.s033 (0.05 MB

DOC)

Table S16 Summary of probeset selection criteria. Each row

describes a set of data selection criteria, for a specific purpose. For

a detailed explanation of each set of criteria, see Materials and

Methods, Probeset Selection. Column 1 states the purpose of the

set of selection criteria. Column 2 indicates the minimum log2

absolute probeset intensity that must have been recorded in at least

one experiment, for the gene to be included in the selection

described in Column 1. Column 3 indicates the false discovery rate

used to determine the P value cutoffs for each of the seven time-

course experiments used for differential expression testing (see

Materials and Methods, Differential Expression Testing); ‘‘n/a’’

means that no differential expression test was applied, for genes in

the indicated row. Column 4 gives the number of probesets

resultant from the indicated selection criteria.

Found at: doi:10.1371/journal.pcbi.1000021.s034 (0.03 MB

DOC)

Table S17 The total numbers of genes that possess gene

ontology (GO) annotations, from each GO term hierarchy.

Representative genes are selected from the set of annotated

Affymetrix probesets as described in Materials and Methods,

Probeset Selection.

Found at: doi:10.1371/journal.pcbi.1000021.s035 (7.84 MB XLS)
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