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Abstract

Background: In previous work, RAF theory has been developed as a tool for making theoretical progress on the
origin of life question, providing insight into the structure and occurrence of self-sustaining and collectively
autocatalytic sets within catalytic polymer networks. We present here an extension in which there are two
“independent” polymer sets, where catalysis occurs within and between the sets, but there are no reactions
combining polymers from both sets. Such an extension reflects the interaction between nucleic acids and peptides
observed in modern cells and proposed forms of early life.

Results: We present theoretical work and simulations which suggest that the occurrence of autocatalytic sets is
robust to the partitioned structure of the network. We also show that autocatalytic sets remain likely even when the
molecules in the system are not polymers, and a low level of inhibition is present. Finally, we present a kinetic
extension which assigns a rate to each reaction in the system, and show that identifying autocatalytic sets within such
a system is an NP-complete problem.

Conclusions: Recent experimental work has challenged the necessity of an RNA world by suggesting that
peptide-nucleic acid interactions occurred early in chemical evolution. The present work indicates that such a
peptide-RNA world could support the spontaneous development of autocatalytic sets and is thus a feasible
alternative worthy of investigation.
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Background
Understanding the origin of life on Earth is an impor-
tant and fascinating problem [1]. In order to shed light
on the structure of early replicators and their mechanism
of formation, various experimental approaches have been
explored [2-5]. Due to the enormity of the task, experi-
mental work alone seems unlikely to answer the question,
and this has motivated several theoretical investigations
[6-9]. While one goal of theoretical work is to accelerate
experimental progress (either in top-down construction of
a minimal cell [10], or the spontaneous formation of a self-
replicating protocell from abiotic precursor molecules),
links between theory and experiment have been scarce.
Naturally, theoretical models are simplifications of real
chemistry, and while such simplification enables progress,

*Correspondence: wim@SmartAnalytiX.com
2SmartAnalytiX.com, Lausanne, Switzerland
Full list of author information is available at the end of the article

it may limit the conversation between theorists and exper-
imentalists until the models more accurately reflect the
complexity of real biochemical systems.
The combinatorial and stochastic aspects of theoreti-

cal work on the origin of life mean mathematics has an
important role to play. The intuitive analogy between sets
of reacting compounds and directed graphs was the moti-
vation for Bollobas and Rasmussen’s work on directed
cycles in random graphs [11]. In previous work [8,12-15],
RAF theory has been developed as an effective tool for
making progress on theoretical questions about the ori-
gin of life, based on initial work by Kauffman [7,16]. In
particular, it appears the emergence of collectively auto-
catalytic and self-sustaining sets of chemical reactions
(RAF sets, defined later) is necessary for the origin of life
to occur. Previous work has investigated the structure of
such sets and the probability of their formation, leading to
theoretical and empirical (simulation-based) results.
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The general ideas behind RAF theory are not unique,
and there are several related formalisms [6,9,17]. How-
ever, in some cases, questions within the RAF framework
have proven tractable while an equivalent question posed
within an alternative formalism has not, perhaps because
of the simplicity of the RAF model. On the other hand,
it has been suggested that such simplicity limits our abil-
ity to draw conclusions about “real” biochemical systems.
However, the recent demonstration of the ability of RAF
theory to link theoretical and experimental results [4,18],
together with the ongoing development of fresh theoret-
ical ideas [19], suggests that this framework continues to
enable progress.
In this paper, we present a biologically relevant exten-

sion to the well-studied polymer model, formalising a net-
work of molecules in which there are two “independent”
types of polymer, which are able to catalyse each others’
(and their own) reactions, but cannot combine to form
hybrid polymers. The motivation for this is the nature of
the interaction between peptides and nucleic acids in the
metabolic networks of modern cells. The importance of
an extension addressing this mutually catalytic arrange-
ment was highlighted in Kauffman’s 1986 paper, in note
(vii) (p. 14): “An independent then symbiotic coexistence of
autocatalytic protein sets and template replicative polynu-
cleotides would obviously be useful in prebiotic evolution.”
(While the present work does not address the templat-
ing ability of nucleic acids, this aspect has been studied
previously [14,20]). Moreover, this extension is highly rel-
evant in the light of recent experimental results from Li
et al. [5]. In their paper, the authors propose that interac-
tions between polypeptides and polynucleotides occurred
very early in chemical evolution, providing an alternative
to the hypothesis that life began in an RNA World [21].
The authors state “The striking reciprocity of proteins and
RNA in biology is consistent with our proposal: proteins
exclusively catalyze nucleic acid synthesis; RNA catalyzes
protein synthesis; and genetic messages are interpreted by
the small ribosomal subunit, a ribonucleoprotein.” The
reciprocity described here provides a clear motivation
for theoretical investigation into the properties of these
“symbiotic” polymer systems.
We present theoretical results showing that RAF sets are

just as likely to emerge in such systems as in those pre-
viously studied [14], and it turns out that the result holds
even for a more general system in which the molecules are
not necessarily polymers, a small amount of inhibition is
allowed, and the amount of catalysis varies freely across
the reaction network. In previous work, catalysis has been
assigned randomly with equal probability between each
molecule and each reaction. The current work shows that
RAF sets remain highly probable even under heteroge-
nous catalysis, which is what we might expect to find in
real biochemical networks.

As a step toward increased chemical realism, we intro-
duce the concept of a kinetic chemical reaction system,
in which every reaction has an associated rate, and all
molecules are lost via diffusion into the environment at a
constant rate. We can in principle then search for RAFs
in the system (as in previous work [8]) with the additional
requirement that every molecule in the RAF must be pro-
duced at least as fast as it is used up or diffuses away - we
call such an RAF a kinetically viable RAF (kRAF).

Definitions
Wewill use the notation of Hordijk and Steel [8]. Consider
a triple (X,R, F), where

• X = {x1, x2, . . . } is a (finite) set of molecular species
or molecule types;

• F ⊂ X is a distinguished subset of molecular species
known as the food set, the set of all species initially
available in the environment;

• R = {r1, r2, . . . } is a (finite) set of chemically allowed
reactions;

• Each reaction r ∈ R is an ordered pair (A,B), where
A ⊆ X is a multiset of reactants and B ⊆ X is a
multiset of products. We can represent a reaction as
a1 + a2 + · · · + an → b1 + b2 + . . . bm. Note that the
reactants ai are not necessarily distinct, and neither
are the products bi. Also note that reversible
reactions can be modelled as two (formally) separate
reactions (A,B), (B,A) ∈ R.

The triple (X,R, F) is therefore a set of molecular species
together with the reactions that occur between them,
intuitively visualised as a directed graph. For brevity, we
will often use the term “molecule” in place of “molec-
ular species” or “molecule type”. We also define ρ(r)
to be the set of all distinct reactants of the reaction
r, and π(r) to be the set of all distinct products of r.
Then for any subset R′ of R, ρ(R′) := ⋃

r∈R′ ρ(r) and
π(R′) := ⋃

r∈R′ π(r). Another useful concept will be
the support of a reaction r, supp(r) := ρ(r) ∪ π(r).
Similarly, supp(R′) := ρ(R′) ∪ π(R′) for any subset
R′ of R. Informally, the support of a set of reactions is
the set of all molecules consumed or produced by those
reactions.
We can equip the triple (X,R, F) with a catalysation

assignment C ⊆ X × R, where (x, r) ∈ C is understood
to mean that the molecule x catalyses reaction r: that is, x
accelerates r but is unchanged by the reaction. A chemical
reaction system (CRS) is now defined as a triple (X,R, F)

together with a catalysation assignment C. We will denote
a CRS Q by Q = (X,R, F ,C). Figure 1 shows an exam-
ple of a CRS within the binary polymer model, defined by
Kauffman [7] and well studied by Hordijk and Steel [8].
In this model, all molecule types are polymers over a 2-
letter alphabet, and each reaction is either the ligation of
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Figure 1 A chemical reaction system. A simple CRS within the
binary polymer model, where the food set consists of all monomers
and dimers. The subset {r1, r2, r3, r5} is the maximal RAF subset (the
maxRAF), while {r1, r2}, {r3} and {r1, r2, r3} are smaller RAFs within the
maximal RAF known as subRAFs. {r1, r2} is an example of an irreducible
RAF, since no proper subset of it is an RAF. A reaction such as {r3},
which consists of a single autocatalytic reaction with food molecules
as reactants, is sometimes called a ‘trivial RAF’.

two molecules into a longer polymer, or the cleavage of a
single molecule into two shorter polymers.
The final important concept is that of the closure of the

food set relative to a subset of reactionsR′ ⊆ R, denoted
clR′(F) and formally defined as the minimal subset W ⊆
X which contains F and satisfies ρ(r) ∈ W ⇒ π(r) ∈ W
for all r ∈ R′. Informally, clR′(F) is the set of all molecules
that can be built up from the food set using only reactions
inR′ (ignoring catalysis).
Following [13], we say that a subset R′ of R forms a

reflexively autocatalytic and food-generated set (an RAF
set) forQ provided thatR′ is non-empty and that:

(i) All the reactants of each reaction inR′ are contained
in clR′(F) (food-generated);

(ii) For each r ∈ R′, there exists (x, r) ∈ C such that
x ∈ clR′(F) (reflexively autocatalytic).

We commonly use “F-generated” in place of “food-
generated”, and “RAF” in place of “RAF set”. Informally,
property (i) requires that the reactions inR′ must be able
to sustain themselves from the food set alone. Property
(ii) requires that every reaction in R′ must be catalysed,
and furthermore that the catalysts must themselves be
generated from the food set by that same set of reactions.
These definitions are intended to capture properties of

chemical networks that may have been important in the
emergence of early replicators. Uncatalysed reactions in
general proceed extremely slowly. We require catalysis so
that molecules accumulate in concentrations sufficient to
perform useful biochemical tasks. Otherwise, they would
diffuse away before being able to play any role in the

emergence of the first replicator. Moreover, not only do
catalysts greatly increase the reaction rates, they also lead
to an equally dramatic reduction in the variance of the
rate of reactions (c.f. [22], figure six); this last feature
would seem to be important for obtaining some degree of
synchronicity in both early and present-day metabolism.
However, to allow the catalysts to come out of nowhere
would be begging the question. So in addition, we require
that the reactions generate their own catalysts from the
food set (the set of all molecules available in a particular
environment on early Earth).
The idea of a set being F-generated requires that no

molecules are required as reactants before they have been
produced. A set that fails to be F-generated could never
have spontaneously built itself up from the molecules
available on early earth (the food set), which is clearly a
necessary condition for the development of early replica-
tors from prebiotic chemistry. Note however that while
the reflexively-autocatalytic requirement guarantees that
an RAF set of reactions eventually produces a catalyst
for every reaction, the definition of F-generated allows a
reaction to proceed prior to the production of any of its
catalysts. We consider this to be reasonable (and realistic)
for the following reason. Reactions can proceed uncatal-
ysed (albeit at a much lower rate), which may soon lead
to the production of a catalyst for the reaction, estab-
lishing a positive feedback loop which quickly increases
the rate of the reaction (consider the production of the
molecule 0011 in Figure 1; this molecule is the sole cata-
lyst for its own production). In previous work [13] we have
studied a stronger type of autocatalytic set in which a cat-
alyst must be present before a reactions can progress at all.
These sets, referred to as constructively autocatalytic and
F-generated sets (CAFs) have quite different properties to
RAFs; indeed, they are less likely to appear spontaneously.
Figure 1 illustrates some ways in which a set can fail

to be an RAF. The subset {r1, r2, r3, r5, r7} fails to be
reflexively autocatalytic (and so fails to be an RAF) since
r7 is uncatalysed. In the subset {r1, r2, r3, r5, r6} all reac-
tions are catalysed, however the catalyst of r6 is outside
cl{r1,r2,r3,r5,r6}(F) (the reactions do not collectively gener-
ate all of their own catalysts), so this subset also fails to
be reflexively autocatalytic. The subset {r1, r2, r3, r4, r5} is
reflexively autocatalytic (since every reaction is catalysed,
and all the catalysts are in cl{r1,...,r5}(F)), but it is not F-
generated, since the reactant 101 of r4 is not in the closure
set (it cannot be created from the food set by the reactions
{r1, . . . , r5}). However, the subset {r1, r2, r3, r5} is an RAF.
In fact, it is the largest RAF in the system, equal to the
union of all RAFs in the system. Such an RAF is referred
to as the maximal RAF subset or themaxRAF.
Given any catalytic reaction system Q = (X,R, F ,C),

there is a fast (polynomial-time) algorithm which deter-
mines whether or not Q contains an RAF, and if so
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the algorithm constructs the maxRAF [8]. We use this
algorithm in section “Simulations of partitioned chemical
reactions systems” to study the emergence of RAFs within
simulations of the partitioned polymer system, defined in
the following section.
Note that the definitions of a CRS and of an RAF do not

explicitly include consideration of reaction rates or con-
centrations. Therefore, the RAF formalism cannot address
the more specific question of whether or not a popula-
tion of molecules can remain stable enough to catalyze
its own growth from the food set and growth over time
to allow reproduction of the set, issues that are obviously
of interest in an origin of life scenario. For example, an
RAF might include an exceedingly rare reaction, the rate
of which could never support the growth of the system, or
a very fast reaction, which depletes an essential molecule.
However, this purely algebraic approach has allowed the
development of several important results that would not
have been easy to deduce from a more detailed model.
Nonetheless, once an RAF set is discovered, it can then
be checked for dynamical stability: previous work [15,18]
has involved molecular flow simulations of RAF sets using
the Gillespie algorithm [23]. Also, in section “Kinetic
RAF framework” we consider an extension of the for-
mal RAF framework which does take reaction rates into
account.

Partitioned polymer system
All modern life utilises at least two polymers for link-
ing information to structure and function: nucleic acids
(DNA/RNA) and peptides. Nucleic acids store and prop-
agate genetic information, while peptides perform struc-
tural, catalytic and signalling roles in vivo in the form
of proteins, enzymes and hormones. The interaction
between peptides and nucleic acids is fundamental to the
most important biochemical processes: peptides catal-
yse the replication of DNA and the synthesis of mRNA
in transcription; at the ribosome, a combination of pep-
tides and catalytic RNA molecules (ribozymes) catal-
yse the translation of mRNA, generating new peptide
sequences. At the same time, each of these polymers
catalyse reactions amongst themselves: for example, pro-
teolytic enzymes catalyse the cleaveage of peptides, and a
gene (DNA) could be considered to “catalyse” transcrip-
tion of mRNA by acting as a template (Figure 2). Despite
the mutual catalytic dependence of nucleic acids and pep-
tides in living systems, these polymers are independent
in the sense that there are no “hybrid” polymers contain-
ing both nucleotide and amino acid monomers12. In order
to formalise these properties we introduce the following
generalisation of the well studied polymer model [8].
Consider a triple (X,R, F) within the polymer model.

Let X, R and F be partitioned as X = {X1,X2}, R =
{R1,R2} and F = {F1, F2}, where

DNA/RNA peptides

Figure 2 Reciprocity of peptides and nucleic acids. Schematic
depicting the mutual catalytic dependence between nucleic acids
and peptides in living systems, where a dashed arrow from X to Y
indicates that there exist reactions involving molecules in Y which are
catalysed by molecules in X. While all possible such arrows are
present in the diagram, both groups of molecules are “closed” in the
sense that there are no reactions combining nucleotide and amino
acid monomers in the same polymer.

• X1,X2 are disjoint sets of polymers;
• F1 ⊂ X1 and F2 ⊂ X2 are disjoint sets of food

molecules;
• Ri is a set of ligation and cleavage reactions such that

supp(Ri) ⊆ Xi.

A partitioned CRS is now defined as a triple (partitioned
as above) together with a catalysation assignment C. We
will use the word module to refer to the set of molecules
X1 together with the associated reactions R1, and simi-
larly for X2 and R2. Hence, a partitioned CRS consists of
two modules, and catalysis can occur both within (intra-
modular) and between (inter-modular) the modules (the
specific pattern of catalysis will depend on the nature of
C). Note however that due to the condition supp(Ri) ⊆
Xi, there can be no reactions involving molecules from
both X1 and X2. We also allow X1 and X2 to be sets of
polymers over different sized monomer alphabets. For
example, let the size of these alphabets be k1 and k2: then
to model the interaction between a set of peptides (X1)
and a set of RNA polymers (X2), set k1 = 20, k2 = 4.
Figure 3 shows a simple partitioned CRS within the

binary polymer model. Previous work [8,13] has demon-
strated that in the standard, unpartitioned polymermodel,
RAFs are highly likely to be present in a CRS, given some
mild requirements on the level of catalysis. Since the level
of catalysis may vary across the network in the partitioned
model, and since the partitionmakes the underlying struc-
ture of the reaction network qualitatively different, it is
not obvious whether RAFs might be more or less likely
to occur. This question is addressed more generally in
the next section, where we prove a stronger result which
is certainly sufficient to show that a partitioned CRS is
just as likely to contain RAFs as an unpartitioned one.
We will present the general result, before returning to the
partitioned model.
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Figure 3 A partitioned CRS. A partitioned CRS within the binary
polymer model. One set of molecules is built from the ‘square’ and
‘circle’ monomers, and the other is built from the ‘triangle’ and
‘hexagon’ monomers. The molecules at the bottom of the image
comprise the food set and give rise to the other molecules via the
ligation and cleavage reactions r1, . . . , R4. Dashed arrows indicate
which molecules catalyse which reactions. In this case, the entire CRS
is an RAF. Note that while there is intra- and inter-modular catalysis,
there are no reactions involving molecules from both modules. This is
emphasized by the enclosure of each module within a large circle: of
course, in real systems, the molecules would be free to mingle.

Results and discussion
The probability of RAFs in general catalytic reaction
systems
It was shown in [13] that for a CRS within the polymer
model, the level of catalysis (expected number of reactions
catalysed per molecule) necessary and sufficient to pro-
duce RAF sets with a given probability increases linearly
with n, the maximum length of polymers in the system.
Here we extend this result to a general CRS in which the
molecules are not necessarily polymers, and we invoke
slightly weaker assumptions by allowing the catalysation
rates to vary between reactions; in a later section this
approach also allows for a limited degree of inhibition.
For convenience, we will assume that the set of reactions

R is the disjoint union of two sets R+ and R−, where
every reaction in R+ is of the form a + b → c (two
reactants and one product), and R− consists entirely of
the corresponding reverse reactions c → a + b, so that
|R+| = |R−|. We refer to the reactions inR+ as ‘forward’
reactions. Thus pairs of corresponding reactions fromR+
and R− can be considered as a single reversible reaction.
We will also assume that a molecule catalyses r ∈ R+ if
and only if that molecule also catalyses the corresponding
r ∈ R−, which reflects the reality of biological catalysis.
These assumptions can be weakened, but doing so compli-
cates slightly the statement and proofs of the results that
follow, and they apply readily to the partitioned system
that we study, as do the further conditions listed below.
In our generalised model we make two main assump-

tions concerning catalysation:

(C1) The events E(x, r) that molecule x catalyses
(forward) reaction r are independent across all pairs
(x, r) ∈ X × R+.

(C2) For some constant K ≥ 1, the expected number of
molecular species that catalyse any reaction is at
most K times the expected number of molecular
species that catalyse any other reaction.

Note that (C1) allows different molecule types to catal-
yse different numbers of reactions in expectation, since
the probability that molecule type x catalyses reaction r
can vary according to both x and r (in [13] it was assumed
that the probability of E(x, r) depends only on x, not on r).
Before stating the main result of this section, we require

the following definition. We say that a triple (X,R, F)

has a species stratification if and only if there is a nested
sequence α1 ⊆ α2 ⊆ · · · ⊆ αm = X such that the fol-
lowing conditions hold: (i) F = αt for some t < m; (ii) If
the reaction f → a + b is in R where f ∈ F then a and b
are also elements of αt ; (iii) The number of forward reac-
tions involving any two food molecules as reactants is at
most some fixed constant M; (iv) if we let X(1) := α1 and
X(s) := αs − αs−1 for s ∈ {2, . . . ,m} then:
(S1) The number of molecules in αs grows no faster than

geometrically with s. That is, |X(s)| ≤ ks for some
fixed k ≥ 1, for all s ∈ {1, . . . ,m};

(S2) Every molecule in X(s) can be constructed from
molecules in αs−1 by a number of forward reactions
that grows at least linearly with s−1. More precisely,
for some fixed ν > 0, the following holds: For each
s ∈ {t + 1, . . . ,m}, and for all x ∈ X(s) we have:

|{r ∈ R+ : x ∈ π(r)andρ(r) ⊆ α(s−1)}| ≥ ν(s−1).

We now show that for any triple (X,R, F) the proba-
bility that Q = (X,R, F ,C) (where the random assign-
ment C satisfies (C1) and (C2)) has an RAF (denoted
P(∃RAF forQ)) is, under certain conditions, determined
by how the average catalysation rate compares to the sim-
ple ratio of the total number of forward reactions to the
total number of molecules.
Let μ be the average expected number of forward reac-

tions that are catalysed by a molecular species (averaged
over all molecular species in X). That is:

μ := 1
|X|

∑
x∈X

E[ |{r ∈ R+ : (x, r) ∈ C}|]

= 1
|X|

∑
x∈X

∑
r∈R+

P(E(x, r)).

The proof of part (a) of the following theorem is pre-
sented in the Appendix; part (b) follows immediately from
a stronger result stated later (Theorem 2) and the proof
of that later result is also in the Appendix.

Theorem 1. For any triple (X,R, F) that has a species
stratification, consider the random CRS Q = (X,R, F ,C)
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formed by an assignment of catalysation (C) under any
stochastic process satisfying (C1) and (C2).

(a) If μ ≤ λ · |R+|
|X| then the probability that there exists

an RAF forQ is at most φ(λ), where
φ(λ) = 1− (1− λ

K )τ → 0 as λ → 0, and where τ is a
constant dependent only on k and t.

(b) If μ ≥ λ · |R+|
|X| then the probability that there exists

an RAF forQ is at least 1 − ψ(λ), where
ψ(λ) = k(ke−νλ/K )t

1−ke−νλ/K → 0 exponentially fast as λ → ∞.

The results in section “Simulations of partitioned chem-
ical reactions systems” show that as the level of catalysis is
increased past some threshold there is a transition in the
probability of the existence of RAFs. This is to be expected
as it is well known in combinatorics that every monotone
increasing property of subsets of a set has an associated
threshold function [24]. Consideration of the definitions
of reflexively autocatalytic and F-generated reveals that
the RAF property is monotone on the subsets of the set
of possible catalysis arcs from molecules to reactions in
a CRS, so the RAF property has a threshold function. In
the original binary polymer model, the threshold func-
tion for catalysis is linear in n (the maximal sequence
length). However, in the more general setting considered
here, molecules do not come equipped with a intrinsic
length. Nevertheless, Theorem 1 shows that the ratio of
‘reactions-to-molecules’ plays essentially the same role as
n in a threshold function for the RAF property.

Remarks
• The proof of part (b) involves the construction of an

RAF involving every molecule in X (that is,
supp(R′) = X). However, in general, this RAF will
involve only a subset of the reactions inR+.

• In general, the definition of a species stratification
seems rather artificial: while a CRS within the simple
(unpartitioned) polymer model naturally admits a
species stratification (since we just let αs be the set of
all polymers up to length s), it would be a non-trivial
exercise to find a species stratification for a CRS with
molecules that are not polymers. Nevertheless,
Theorem 1 shows that the molecules in a CRS being
polymers is sufficient but not necessary, and we will
see shortly that in the partitioned polymer model a
species stratification also applies.

The probability of RAFs in a partitioned CRS
In light of Theorem 1, in order to show that the same lin-
ear catalysis requirement that applies for an unpartitioned
CRS holds for a partitioned one, we need only show that
a partitioned CRS has a species stratification, and con-
struct a set C satisfying (C1), (C2). In what follows, we
will consider a partitioned CRS that satisfies the same

assumptions that were made in the proof of Theorem 1
(i.e. R = R+ ∪ R−, and corresponding reactions from
R+ and R− are always catalysed together). Also, let a
molecule r ∈ R+ belong to R1 if and only if the corre-
sponding r ∈ R− does too, and let R+

1 denote the subset
of all forward reactions in R1. Applying similar restric-
tions to R2, we thus consider a partitioned CRS in which
R is the disjoint union of four sets; R+

1 ,R−
1 ,R+

2 andR−
2 ,

so that each module consists of an equal number of for-
ward and reverse reactions together with the associated
molecules (of course, the modules may contain different
numbers of reactions to each other).
In previous work [19], C was often generated by ran-

domly assigning catalysis as follows: let each element of
X × R+ (and the corresponding element of X × R−) be
included in C with some fixed probability p. When study-
ingmetabolic network data from real organisms, wemight
expect to find that this uniform model does not match
the observed pattern of catalysis: for example, it might
be the case that peptides tend to catalyse more reactions
involving other peptides than reactions involving nucleic
acids. To allow for this possibility in a partitioned CRS, we
allow the likelihood of catalysis to vary depending on both
the nature of the catalyst and the nature of the molecules
involved in the reaction. Specifically, we define the matrix
P where, for any molecule x ∈ Xi and any reaction r ∈ Rj,
the probability that x catalyses r (and the correspond-
ing reverse reaction) is given by the ijth entry of P. For
example, in a CRS generated using the matrix

P = 10−6 ·
[
10 1
2 10

]

we would expect to observe around ten times more cataly-
sis within modules than between them, and twice as much
catalysis of reactions in R1 by molecules in X2 than of
reactions inR2 by molecules in X1.
In what follows, consider a partitioned CRS Q =

(X,R,C, F) which is complete: that is, both X1 and X2
contain every possible polymer up to length n1 and
n2 (respectively), and R1 (respectively R2) contains
every possible forward and reverse reaction between the
molecules in X1 (respectively X2). Let F1 (respectively F2)
be all the molecules in X1 (respectively X2) up to some
length t < min{n1, n2}. Finally, for amolecule x ∈ X, let |x|
denote the length of x (i.e. the number of monomer units
in x).
For X1, define the stratification

α1 ⊆ α2 ⊆ · · · ⊆ αt ⊆ · · · ⊆ αn1 = X1

where αs consists of all the molecules in X1 such that 1 ≤
|x| ≤ s. It will prove useful to define X1(1) := α1 and for
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s ∈ {2, . . . , n1}, X1(s) := αs − αs−1. Similarly for X2, define
the stratification

β1 ⊆ β2 ⊆ · · · ⊆ βt ⊆ · · · ⊆ βn2 = X2

and let X2(s) be defined similarly to X1(s). Note that
|Xi(s)| = ksi . Defining nmin := min{n1, n2} and nmax :=
max{n1, n2}, these stratifications are combined into a sin-
gle stratification γ1, γ2 . . . , of the set X as follows:

• for 1 ≤ s ≤ nmin, γs := αs ∪ βs;
• for nmin < s ≤ nmax,

γs :=
{

αs, if n1 > n2
βs, if n2 > n1

.

Note that F = γt , which is condition (i) in the defini-
tion of a species stratification; conditions (ii) and (iii) also
clearly hold (with M = 2 for condition (iii)), so it remains
to establish condition (iv), namely that the stratification
satisfies (S1) and (S2). Define X(1) := γ (1) and for s ∈
{2, . . . , nmax},X(s) := γ (s)−γ (s−1), and consider the size
of each set X(s). Since |X(s)| does not exceed ks1 + ks2 for
any value of s, (k1 + k2)s is strictly greater than |X(s)| for
all s ∈ {1, . . . , nmax}, so the partitioned CRS satisfies (S1).
To see that it also satisfies (S2), we need only note that for
any molecule type x ∈ X(s) where s ∈ {t + 1, . . . , nmax},
|x| = s, so there are a maximum of s − 1 ways x could
be constructed from shorter molecule types (i.e. molecule
types in γs−1). Since R1 and R2 are both complete, every
such reaction exists and there are in fact precisely s−1 for-
ward reactions generating x from γs−1, so take ν = 1. We
conclude that the complete partitioned CRS has a species
stratification.
It remains to show that the catalysation assignment C

described above satisfies (C1), (C2). For each pair (x, r) ∈
X × R, the probability that x catalyses r (and the corre-
sponding reverse reaction) is dependent only on which
module x and r belong to, so (C1) clearly holds. The fol-
lowing expression gives the expected number of species
that catalyse any given reaction:

PT
[ |X1|

|X2|
]

=
[
p11 p21
p12 p22

] [ |X1|
|X2|

]
=

[
c1
c2

]
,

where ci is the expected number of species in X that catal-
yse any given reaction in Ri. Noting that pij ∈ [0, 1] and
that

|X| = |X1| + |X2| =
n1∑
s=1

ks1 +
n2∑
s=1

ks2,

clearly c1, c2 are finite. Hence takingK= max{c1/c2, c2/c1}
shows that (C2) holds also. We conclude that Theorem 1
applies to a partitioned CRS.

Simulations of partitioned chemical reactions systems
Previous simulations of chemical reaction systems [8,14]
have focussed on those which are complete (X con-
tains every molecule up to some maximum length n,
and R contains every possible cleavage/ligation reaction
between the molecules of X) and those in which catal-
ysis is assigned randomly such that every molecule has
the same fixed probability of catalysing any reaction. In
[13,14], it was shown both theoretically and computation-
ally that in a ‘classic’ CRS with only one module, the level
of catalysis (expected number of reactions catalysed per
molecule) necessary and sufficient to generate RAFs with
a given probability (e.g. 0.5) increases linearly with n. Fur-
thermore, simulations show that the linear relationship is
not steep: when n = 10, the required level of catalysis is
around 1.29, and when n = 20, the required level of catal-
ysis increases only to 1.48 [14]. Based on the finding that
many enzymes catalyse multiple reactions [25], and the
results of a recent search for RAF sets in the metabolic
network of E. coli (Sousa FL, Hordijk W, Steel M, Martin
W: Autocatalytic sets in the metabolic network of E. coli,
in preparation)., this level of catalysis appears to be biolog-
ically feasible. Hence, the above results suggest that RAFs
might be expected for real biochemical polymer networks,
even under a random assignment of catalysis.
Theorem 1 assures us that the linear increase in the

required level of catalysis seen in the original model also
applies to the partitioned model. However, it is not obvi-
ous whether or not the same realistic level of catalysis will
be seen in the latter. In particular, because the partitioned
model is highly flexible in terms of possible patterns of
catalysis (forms of the matrix P), it is interesting to ask
how the pattern of catalysis affects the probability of RAF
formation. In order to address this question, we simulated
a partitioned CRS in which each module is complete, with
k1 = k2 = 2, n = 10, and the food set consists of all
monomers and dimers. This CRS was simulated under
three different catalytic assignments (Figure 4). In order
to isolate the effect of the pattern of catalysis on the prob-
ability of RAF formation, the overall level of catalysis is
constant across all three scenarios for any given value of
p. We generated 500 instances of each model at a range of
values of p (corresponding to a range of levels of cataly-
sis) and searched for RAFs using the algorithm from [8].
Analyses were performed on an IBM Power755 cluster
comprising 13 nodes, each with 32 CPUs running Linux
11.1 (a total of 416 CPUs).
Figure 5 shows, at each level of catalysis, the fraction

of the 500 instances which were found to contain an
RAF, for each of the three models investigated. All three
models display a sharp transition in the probability of
RAF formation as the level of catalysis increases, famil-
iar from simulations of classic CRSs [8]. The uniform and
inter-modular models display apparently identical results.
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Figure 4 Three models of catalysis in a partitioned CRS. Visual representations of the three systems investigated via simulations: inter-modular
(left), intra-modular (centre) and uniform (right). Labelled arrows from Xi to Xj indicate that molecules in Xi catalyse reactions involving molecules
from Xj , with some non-zero probability (given by the label). The catalysis matrix P, which depends on the parameter p, is shown for each system. It
can readily be shown that the overall level of catalysis (expected number of reactions catalysed per molecule) is the same in all three scenarios.

The level of catalysis required to give 50% probability of
RAF formation in these models (≈ 1.3) is slightly higher
than that in the intra-modular model (≈ 1.25), indicating
that during this transition, RAFs are slightly more likely
in a CRS with only intra-modular catalysis than a CRS
with some catalysis between modules. When the level of
catalysis is 1.29, around 75% of instances of the intra-
modular model contain an RAF, which is to be expected:
the same level of catalysis in an unpartitioned CRS with
n = 10 gives 50% probability of RAF formation [14], and
since here the intra-modular model essentially consists
of two independent copies of the unpartitioned CRS, the
probability of finding an RAF is 1 − (1 − 0.5)2 = 0.75.
Figure 5 also shows that, as the level of catalysis

is increased past the transition level, the fraction of
instances containing an RAF in the uniform and inter-
modular models approaches 100% slower than in the
intra-modular model. However, by the time the catalysis
level has reached 1.7, all three models produce RAFs close
to 100% of the time. These results indicate that the pattern
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Figure 5 Emergence of RAFs in a partitioned systemwith n = 10.
Plot showing how the proportion of CRSs containing an RAF depends
on the level of catalysis, for each of the three models. The maximum
length of polymers (n) is 10 and the food set consists of all monomers
and dimers. The fraction of CRSs containing an RAF is from 500
instances of the model.

of emergence of RAFs in partitioned chemical reaction
systems is very similar to that in previously studied sys-
tems. Moreover, it is clear that even under widely varying
patterns of catalysis, partitioned systems develop RAFs
with high probability.
The uniqueness of the results from the intra-modular

model suggests that the property unique to this model –
the complete absence of inter-modular catalysis – has a
discrete effect on the probability of RAF formation. Note
that the uniform and inter-modular models both have
inter-modular catalysis, but the latter has twice the level
of the former, as well as a lack of intra-modular catalysis.
Despite these difference, their results appear to be identi-
cal. Taken together, these results suggest that the presence
or absence of inter-modular catalysis has more of an effect
on the probability of RAF formation than the actual level
of inter-modular catalysis.
Despite the overall similarities in the pattern of emer-

gence of RAFs between all three models, Figure 6 shows
that the dependence of the size of the maxRAF on the
level of catalysis is qualitatively different depending on
the pattern of catalysis. At low catalysis levels, all three
models tend to contain only RAFs consisting of a sin-
gle reaction, catalysed by one of its own reactants or
products. At the threshold level of catalysis at which all
3 models begin to develop RAFs with higher probabil-
ity, the number of reactions contained in the maxRAF
in the intra-modular model increases faster than in the
other models (which again display very similar results).
However, after a short delay, the number of reactions in
the latter models rapidly increases, matching the equiva-
lent value in the intra-modular model and then exceeding
it. As the level of catalysis is increased further past the
transition point, the rate of growth in the uniform and
inter-modular models gradually decreases again, and all
3 models appear to converge on the same values of the
average maxRAF size. This asymptotic behaviour makes
sense: at higher levels of catalysis, the module to which
any particular catalyst belongs has less bearing onwhether
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Figure 6 Size of the maxRAF in a partitioned systemwith n = 10. Plots showing how the average number of reactions and number of
molecules in the maxRAF change as the level of catalysis moves through the transition range, expressed as a proportion of the total number of
reactions and molecules in the CRS. Averages are taken over 500 instances of each model where n = 10 and the food set consists of all monomers
and dimers. Instances containing no maxRAF were excluded from the calculation of the average, hence the data points that appear close to zero
indicate a small but non-zero average size.

or not the reaction in question is part of an RAF set, as
the network becomes “saturated” with catalysis. Figure 6
also shows how the average number of molecules con-
tained in the maxRAF (expressed as a proportion of all the
molecules in X) depends on the level of catalysis (more
formally this is |clR′(F)|/|X|, where R′ is the maxRAF).
The pattern of growth is similar to that seen in the num-
ber of reactions. However, one important contrast is that,
while the maxRAF quickly grows to involve the majority
of the molecules in X, at a given level of catalysis it con-
tains only a relatively small proportion of the reactions
in R. Thus as the level of catalysis is increased beyond
that shown in Figure 6, we should expect the average pro-
portion of molecules involved in the maxRAF to quickly
approach 1.0, while the average proportion of reactions
in the maxRAF continues to increase linearly. Not until
a much higher level of catalysis will the maxRAF contain
100% of the reactions in the system. These results make
sense, since the number of possible reactions in a polymer
system isO(n2n), while the number of molecules isO(2n).
Overall, the above results show that when n = 10, a

partitioned CRS behaves very similarly to a classic CRS
in terms of RAF emergence. In order to address the ques-
tion of whether this is true for general values of n, we
repeated the experiments at n = 15 (Figures 7 and 8). For
each of the three models, the level of catalysis required
to attain a given probability of RAF formation is higher,
which is to be expected given previous theoretical and
experimental work on the original unpartitioned model.
However, while the intra-modular model undergoes a
sharp transition similar to the n = 10 case, both the uni-
form and inter-modular models undergo a more gradual
increase in the probability of RAF formation as the level
of catalysis increases from around 1.3 up to 2.0 (Figure 7).
Once again, the latter two models exhibit almost iden-
tical results, which is surprising given the difference in

their pattern of catalysis. The level of catalysis required to
give a 50% probability of RAF formation in the uniform
and inter-modular models has increased from around 1.3
(n = 10) to 1.45 (n = 15), while the increase in the
same figure for the intra-modular model is smaller, going
from around 1.25 to around 1.32. However, the increased
level of catalysis in the uniform and inter-modular mod-
els remains chemically realistic. Figure 7 also suggests that
as the level of catalysis is further increased, the fraction of
CRSs containing an RAF for these models will approach 1
monotonically, as observed for n = 10 (Figure 5).
Figure 8 shows how the average size of the maxRAF (in

terms of number of reactions, and number of molecules)
changes as the level of catalysis is increased. Whereas for
n = 10 the maxRAF initially grew most quickly for the
intra-modular model, these plots do not show the same
early growth spurt: instead, all models appear to begin the
transition at around the same level of catalysis. It is pos-
sible that the resolution was not high enough to detect
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Figure 7 Emergence of RAFs in a partitioned systemwith n = 15.
Plot showing how the proportion of CRSs containing an RAF depends
on the level of catalysis, when the maximum length of polymers in
the system (n) is 15. The fraction of CRSs containing an RAF is from at
least 120 instances of the model.
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Figure 8 Size of the maxRAF in a partitioned systemwith n = 15. Plots showing how the average number of reactions and average number of
molecules in the maxRAF change as the level of catalysis is increased, expressed as a proportion of the total number of reactions and molecules in
the CRS when n = 15. Instances containing no maxRAF were excluded from the calculation of the average.

the phenomenon: simulating smaller increments in p and
a greater number of instances around this transition zone
may reveal that it still occurs at n = 15. Other than this,
the plots are similar to those in Figure 6. RAF sets in the
uniform and inter-modular models grow faster both in
number of reactions and number of molecules, and not
until a level of catalysis around 2.0 does the intra-modular
model catch up. This is much later than in the n = 10 case,
which is particularly interesting given that at this level of
catalysis the intra-modularmodel is developing RAFs with
higher probability than the other models (Figure 7).

Discussion
We chose here to investigate only the cases when n = 10
and n = 15, since computational constraints limit the
feasibility of repeating the experiments for more and/or
larger values of n. However, inferences can be made about
other values of n, especially in the light of Theorem 1,
which shows that a linear increase (with n) in the level of
catalysis is necessary and sufficient to maintain RAFs with
a given probability in a partitioned CRS. After producing
similar results to the above for further values of n, it would
be interesting to use least squares regression to explicitly
express the linear dependence (on n) of the level of catal-
ysis required to give 50% probability of RAF formation for
various patterns of catalysis, and compare these with the
linear formulae produced in [14] for the original model.
Based of Figures 5 and 7, we expect to see a steeper rela-
tionship for the uniform and inter-modular models than
for the intra-modular model.
While all three models begin to develop RAFs with high

probability above the threshold level of catalysis, it is clear
that the intra-modular model develops RAFs somewhat
more reliably (with higher probability at lower catalysis
levels) than the other models. Furthermore, this differ-
ence is more apparent at n = 15 than n = 10, and in
the light of the result of Theorem 1, the difference looks
likely to becomemoremarked as n increases. On the other

hand, as pointed out by philosopher Roger White [26],
the probability of a mechanism proposed to play a role in
the origin of life may not be a sound metric by which to
judge the validity of that mechanism (Elliott Sober makes
a related argument in response to Richard Dawkins in [27]
pp.50-51). In terms of RAF theory, this means that the
probability of RAF formation might not be the best way to
decide which models have the most potential to shed light
on the origin of life question.
However, the results show another difference between

the models that is worth noting. Figures 6 and 8 both
suggest that the size of RAF sets is significantly lower in
the intra-modular model than in the uniform and inter-
modular models (excluding the brief window immediately
around the threshold level of catalysis in which RAFs
in the intra-modular model grow faster at n = 10).
This larger size of RAF sets in the uniform and inter-
modular models is interesting: since RAF sets can often
be decomposed into constituent RAFs (subRAFs), larger
RAFs are likely to contain more of these autocatalytic
subsets. It was suggested in [28,29] that this modular
structure might be important for the potential evolvabil-
ity of RAF sets. Specifically, the ability of large RAF sets
to gain and lose smaller subRAFs might be a mecha-
nism by which RAF sets can evolve and compete with
each other, a process which might favour characteristic
combinations of subRAFs, in a primitive form of selec-
tion. This transition from a purely self-replicating set
of molecules to a complex autocatalytic set which repli-
cates imperfectly while remaining robust to changes in
the environment is essential, if RAF sets are to give rise
to a replicator capable of gradual, open-ended Darwinian
evolution.
We have investigated three different patterns of catal-

ysis. Due to the inherent flexibility of the partitioned
model, there are various other qualitatively different
patterns that could be explored. In each of the above
systems, the catalysis matrix P is symmetric. Even with
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this restriction in place, there is a continuum between
exclusively inter-modular and exclusively intra-modular
catalysis, and we examined only the middle point and
the two extremes of that continuum here. We expect to
observe a similar pattern of RAF emergence in other sys-
tems, where both intra- and inter-modular catalysis occur,
but not in equal amounts. Based on Figures 5 and 7, if we
were to begin with an exclusively intra-modular system(
P = p

( 1 0
0 1

))
and gradually increase the level of inter-

module catalysis (the off-diagonal entries of P), while
holding the overall level of catalysis constant, we should
expect to see a shift in the pattern of RAF development,
becoming more like the uniform and inter-modular mod-
els examined here. This change should be complete by
the time the catalysis becomes uniform, so must occur
somewhere between ‘intra-modular’

(
P = p

( 1 0
0 1

))
and

‘uniform’
(
P = p

2
( 1 1
1 1

))
. It would be interesting to deter-

mine at what point this transition occurs, and how sharp
it is. A further extension would be to investigate systems
in which P is not symmetric: for example, where one
module dominates as a source of catalysts for the system(
e.g.P = p

10
( 9 9
1 1

))
. Given the main motivation behind this

investigation, and the observation that peptides appear to
be far more catalytically active than nucleic acids [25], this
particular extension seems highly relevant.
Based on structural complementarity between polypep-

tide and RNA helices [30] and more recent experimental
work demonstrating high catalytic proficiency of ances-
trally related primitive forms of enzymes involved in
translation [5,31,32], Carter and colleagues have sug-
gested that the interactions between polypeptides and
RNA may have played a key role in early chemical evo-
lution in a “peptide-RNA world”. Our theoretical results
show that a system with two different types of polymer
with reciprocity of function similar to that of proteins and
RNA, produces autocatalytic sets at similarly realistic lev-
els of catalysis to a simpler system composed of a single
type of polymer (such as an RNA-world or system of pep-
tides). Therefore, the results presented here suggest that
the alternative scenario proposed by Carter and colleagues
is feasible.

Extensions: closure, inhibition and reaction rates
The current definition of an RAF is limited because it
ignores inhibition and reaction rates. The latter is prob-
lematic because those reactions generating required reac-
tants which proceed too slowly, or those which use up
required reactants and proceed too fast, may prevent an
RAF set from persisting in a dynamic environment. While
the lack of inhibition and kinetics may be seen as a severe
restriction, it is useful because it allows us to compute
RAFs in polynomial time. These RAFs could then be
examined to test if they are viable given known inhibition
or reaction rate data.

Alternatively, we could build this into the definition of a
stronger type of RAF and ask if there is an efficient algo-
rithm to find them. In this section we explore the latter
approach. We consider RAFs that are viable under reac-
tion rates and show that determining whether or not they
exist in an arbitrary catalytic reaction system turns out to
be NP-complete.
Consideration of these factors (inhibition and reac-

tion rates) requires distinguishing between RAFs that are
‘closed’ and those that are not (this distinction is not
important in the absence of inhibition and dynamics).
Thus we first introduce and discuss this property, before
considering the definition and properties of RAFs that
allow inhibition or reaction rates.

Closed RAFs
Given a CRSQ = (X,R,C, F), a subsetR′ ofR is a closed
RAF if and only if the following conditions hold:

1) R′ is an RAF;
2) for every r ∈ R for which there is a pair (x, r) ∈ C

such that {x} ∪ ρ(r) ⊆ clR′(F), r ∈ R′.

Informally, a closed RAF captures the idea that “any
reaction that can occur, will occur”. If all the reactants
and at least one catalyst of a reaction r ∈ R are gener-
ated by the reactions in R′, then it seems reasonable to
expect that the reaction r will occur, and so we should
expect that r is included in R′. If r is not included, then
it is natural to consider adding it to R′, in order that
the extended set R′ ∪ {r} comes closer to containing
all the reactions for which it generates all the necessary
molecules. In order to formalise this notion, we intro-
duce the idea of the closure of an RAF, defined as the
smallest closed RAF which contains the RAF. Given an
RAF R′, we can construct its closure R′ as follows: let
R′ = K0, and let Ki+1 = Ki ∪ Li, where Li is the set
of all r ∈ R \ Ki such that there exists a pair (x, r) ∈
C and {x} ∪ ρ(r) ⊆ clKi(F). Then, R′ is the final set
Kn in the sequence of nested sets R′ = K0 ⊂ K1 ⊂
K2 ⊂ · · · ⊂ Kn, where n is the first value of i for which
Ki = Ki+1.
Note that an RAFR′ is a closed RAF if and only ifR′ =

R′. Note also that while the union of two RAFs is also an
RAF, the union of two closed RAFs is not necessarily a
closed RAF (though it is an RAF).
One notable property of closed RAFs is that, unlike

RAFs that are not closed, we can reconstruct the network
of reactions given only a “list” of the molecules involved in
the network, as follows.

Lemma 1. A closed RAF R′ ⊆ R is determined entirely
by the subset of molecules F ∪ supp(R′) and the CRSQ =
(X,R,C, F).
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Proof. Consider the set R∗ reconstructed from F ∪
supp(R′) as follows:

1) Add toR∗ every reaction r ∈ R for which
supp(r) ⊆ F ∪ supp(R′).

2) Remove fromR∗ any reaction r for which there does
not exist an x ∈ F ∪ supp(R′) such that (x, r) ∈ C.

We will show that R∗ = R′ by establishing the set
inclusions R′ ⊆ R∗ and R∗ ⊆ R′. First, consider some
r ∈ R′. Clearly supp(r) ⊆ supp(R′). It remains to show
that there exists some x ∈ F ∪ supp(R′) such that (x, r) ∈
C. Since R′ is an RAF for (Q, F), by Lemma 4.3 of [8],
clR′(F) = F ∪ π(R′), which together with the definition
of F-generated and of the support implies that

F ∪ supp(R′) = clR′(F). (1)

By definition of reflexively autocatalytic, it follows from
(1) that for all r ∈ R′, there exists x ∈ F ∪ supp(R′)
such that (x, r) ∈ C. Therefore every reaction in R′ fits
the criteria for inclusion in R∗, and we conclude that
R′ ⊆ R∗.
Next consider some r ∈ R∗. Then by the rules of con-

struction of R∗, supp(r) ⊆ F ∪ supp(R′) and there exists
an x ∈ F∪supp(R′) such that (x, r) ∈ C. By (1), such an x is
in clR′(F), and also by (1), supp(r) ⊆ clR′(F) so certainly
ρ(r) ⊆ clR′(F). Then since R′ is a closed RAF, r ∈ R′
by definition. We conclude thatR∗ ⊆ R′, which together
with the previous result proves thatR∗ = R′.

Corollary 1. If R′ is an RAF, then given only F ∪
supp(R′) and the CRSQ = (X,R,C, F), we can construct
its closureR′.

Proof. If R′ is a closed RAF, then R′ = R′ so the
assertion holds trivially by the previous lemma.
Hence suppose R′ is not closed. Then there is at least

one reaction r∗ ∈ R \ R′ such that there exists a pair
(x, r∗) ∈ C and {x} ∪ ρ(r∗) ∈ clR′(F). Construct the set
of reactionsR∗ from F ∪ supp(R′) (as in Lemma 1). Since
we did not use the fact that the RAF was closed in the
first part of the proof of the lemma, we can apply the same
argument to see thatR′ ⊆ R∗.
Now consider some r ∈ R∗. Then by the rules of con-

struction ofR∗, supp(r) ⊆ F ∪ supp(R′), and there exists
some x ∈ F ∪ supp(R′) such that (x, r) ∈ C. Then by
Equation (1) in the proof of Lemma 1 (again, this applies
since we did not assume the RAF was closed in that part
of the proof), R∗ contains every r∗ ∈ R \ R′ such that
there exists a pair (x, r) ∈ C and {x} ∪ ρ(r∗) ∈ clR′(F).
At this point, we identify R′ with the set K0 and R∗
with the set K1 = K0 ∪ L0 described in the preamble to
Lemma 1. We can then follow the same process described
in the preamble, constructing a sequence of nested sets

R′ = K0 ⊂ · · · ⊂ Kn, where Kn is by definition equal
toR′.

Inhibition
In order to discuss the impact of molecules inhibiting
reactions, we begin with the following definitions.
Given a CRS Q = (X,R, F ,C) an inhibition assignment

is a subset I ofX×Rwhere (x, r) ∈ Imeans thatmolecular
species x inhibits reaction r. We say that a subset R′ of R
is an I-viable RAF for Q if and only if all of the following
hold:

(a) R′ is an RAF forQ;
(b) R′ is closed;
(c) No reaction inR′ is inhibited by any molecule in

clR′(F).

The motivation for insisting that R′ be closed is as fol-
lows: Suppose thatR′ involves a reaction that is inhibited
by some product x′ of a reaction r′ that is not inR′. Now if
the reactants, and at least one catalyst of r′ are present as
products of reactions in R′ (or elements of F) then there
is no reason for r′ not to proceed and for x′ not to be pro-
duced. In that case R′ ∪ {r′}, and any set containing it,
would no longer be an RAF.
The concept of an RAF subject to inhibition was formal-

ized and studied briefly in [13], but there condition (b) was
not imposed. This paper established that the problem of
determining whether or not a CRS contains an RAF that
is I-viable for Q is an NP-complete problem. It is perti-
nent therefore to ask whether the addition of condition
(b) alters this result, or affects the proof. In fact, it can be
shown that it does not, since the reduction in [13] involves
the construction of an RAF that is automatically closed.
It is also of interest to know how inhibition affects

the probability of forming a viable RAF, when I is a
random assignment. Notice that inhibition is a much
stronger notion than catalysation - since if a reaction
is inhibited by just one molecule, then no matter how
many molecules might catalyse that reaction, it is pre-
vented from taking place. Thus we might expect that
even low rates of inhibition could be a major obstruc-
tion to the formation of a viable RAF. However, we show
here that provided the inhibition rate is sufficiently small,
Theorem 2 still holds. To state this we first formalize
the model by extending (C1) and (C2) to the following
three conditions (which reduce to (C1) and (C2) upon
setting ε = 0).

(C1) The events E(x, r) that x catalyses reaction r, and
the events F(x, r) that x inhibits reaction r are
independent across all pairs (x, r) in X × R+.

(C2) As stated previously near the start of section “The
probability of RAFs in general catalytic reaction
systems”.
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(C3) For some constant ε ≥ 0, the expected number of
molecular species that inhibit any given reaction is
at most ε.

Notice that part (a) of Theorem 1 applies automatically
to the more restrictive notion of an inhibition viable RAF.
However part (b) does not, and here we present a stronger
result, which implies Theorem 1(b) (upon taking ε = 0).
The proof of this theorem is presented in the Appendix.

Theorem 2. Consider a CRS Q that satisfies the
extended conditions (C1)–(C3), and has a species stratifi-
cation. Suppose further that the inhibition rate ε in (C3)
satisfies: 0 ≤ ε ≤ exp(−Kc), where c is the average (over
all reactions) expected number of molecular species that
catalyse each reaction.

• If μ ≥ λ · |R+|
|X| then the probability that there exists

an RAF forQ is at least 1 − ψ(λ), where
ψ(λ) = k(2ke−νλ/K )t

1−2ke−νλ/K → 0 exponentially fast as
λ → ∞.

• When ε = 0 (no inhibition) the factor of 2 in the
numerator and denominator of ψ(λ) can be removed.

Kinetic RAF framework
Here we extend previous work by introducing the con-
cept of a kinetic CRS, in which every reaction has an
associated rate, and all molecules diffuse away into the
environment at constant rate. We then define a kinetic
RAF, which, informally, is an RAF in which everymolecule
is produced at least as fast as it is lost (to diffusion, or by
consumption in other reactions). This represents the idea
that being able to build up a sufficient local concentration
of molecules is a necessary condition for RAFs to form.
Definition: A kinetic CRS is a tuple Q = (X,R, F ,C, v)

where X,R, F and C are defined in the same way as for a
simple CRS, and v : R → R≥0 is a rate function, where for
each r ∈ R, v(r) is the rate of r.
For any subset R′ ⊆ R, the stoichiometric matrix SR′

is the |supp(R′) \ F| × |R′| matrix with rows indexed by
the non-food molecule types involved in R′ and columns
indexed by the reactions in R′, where Sij ∈ Z is the net
number of molecule type i produced by reaction j. The
rate vector vR′ =[ v(r1), v(r2), . . . , v(r|R′|)]T lists the rates
of each reaction inR′. Then, SR′vR′ is a vector of the net
rates of production of each molecule type in supp(R′) \F .
Let δ ≥ 0 be the diffusion rate.
A subset R′ ⊆ R is a kinetic RAF (kRAF) if and only

if the following properties hold (where 1 is a |supp(R′) \
F| × 1 column vector of 1s):

(a) R′ is an RAF forQ;
(b) R′ is closed;
(c) The following inequality holds:

SR′vR′ − δ1 ≥ 0. (2)

Note that we do not include food molecules in the rows
of SR′ . An RAF R′ is not guaranteed to contain any
reactions which generate food molecules, but will neces-
sarily contain at least one reaction with at least one food
reactant. In that case, if we were to include the rows cor-
responding to those food molecules, they would have only
negative entries, causing the RAFR′ (which might other-
wise satisfy the properties of a kRAF) to formally fail to be
a kRAF.
The diffusion rate δ represents the rate at which

molecules diffuse away into the environment. Diffusion is
unavoidable in chemical systems, and as molecules diffuse
away, their concentrations drop until they are no longer
available to sustain local reactions. A CRS occurring in the
ocean or a “pond”might have a larger δ than one occurring
in a hydrothermal vent, which may in turn have a larger δ

than a CRS confined within a lipid membrane [33].
The idea of searching for kRAFs within a kinetic CRS

is related to the idea in chemical organisation theory
(COT) of searching for self-sustaining chemical organi-
sations within an algebraic chemistry [9]. The definitions
of the stoichiometric matrix coincide, and the qualifying
condition (2) for a kRAF is similar to the qualifying condi-
tion for an organisation to be self-sustaining [9] (however
in COT there is no diffusion term; note that SR′vR′ >

0 is necessary but not sufficient for a subset R′ ⊆ R
to be a kRAF). Furthermore, in COT the entries of the
vector v are not fixed - we are free to choose a set of
values that makes the system self-sustaining, and indeed
the definition of self-sustaining is simply that such a set
of values can be found. In contrast, the reactions rates
in a kinetic CRS are pre-determined constraints within
which we can (in principle) go looking for a subset R′
of reactions that satisfies (2). While we propose that this
set up is more relevant to the origin of life, the follow-
ing theorem shows that such a search is unlikely to be
useful in general. We show that determining whether or
not R contains a kRAF is NP-complete when δ = 0
(we expect a similar result applies when δ > 0 but our
proof, presented in the Appendix, applies to the zero-
diffusion case).

Theorem 3. Given a kinetic CRS Q = (X,R,C, F , v)
with diffusion rate δ = 0, the problem of determining
whether or notR contains a kRAF is NP-complete.

The closely related problem in COT of deciding whether
or not an algebraic chemistry contains an organisation is
also NP-complete [34]. Although Theorem 3 shows that
we cannot hope to efficiently find kRAFs within a kinetic
CRS, it is easy to check (in polynomial time) whether or
not a given RAF is a kRAF, and since RAFs can be found in
polynomial time [8], it may be feasible to discover kRAFs
in a kinetic CRS by first ignoring the rate function v and
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finding a sample of RAFs, then deciding whether or not
any are viable under v.
One weakness of the kRAF concept is that reaction rates

are fixed - in real systems, the rate of a reaction is a
function of the concentrations of its reactants, catalysts
and inhibitors. Although the concept of concentration
currently has no direct meaning in the RAF framework,
previous work has used dynamical simulations to study
the changes in concentrations of molecules in small RAF
sets [15,18].

Conclusions
Due to the utility of polymers in modern life, much of
the theoretical and experimental work on the origin of life
problem has focussed on system of polymers, and in [13]
it was shown that the level of catalysis need only increase
linearly as the number of molecules increases, in order
to maintain a high probability of RAFs occurring. We
have presented a generalisation of this result, showing that
under mild assumptions, the same linear bound applies to
a system in which the molecules are not necessarily poly-
mers. Furthermore, partitioned systems were shown to
support the development of RAFs similarly to typical sys-
tems containing only one type of polymer, and the effect of
the pattern of catalysis on the emergence of RAF sets was
explored. Previous research into template-based catalysis
[14,20] and recent work incorporating more realistic pat-
terns of catalysis [35] have indicated that the emergence of
RAFs is quite robust to the the structure of the underlying
reaction system, a conclusion which this paper supports.
This research was performed in an effort to better

understand the “symbiotic coexistence” of peptides and
nucleic acids in living organisms, as well as the poten-
tial role of this reciprocity in early chemical evolution (as
highlighted recently by [5]). While the results presented
here are a far cry from deep insights revealing funda-
mental truths about the origin of life, this extension of
previous work on chemical reaction systems represents an
incremental gain in understanding, which can hopefully
contribute to an eventual bigger picture. In particular, this
paper supports the experimental work of Li et al. [5] and
encourages further experimental work on the topic.
We have also introduced and studied two new concepts

in RAF theory: closed RAF sets, and kinetic chemical
reaction systems. A closed RAF set is an RAF set in the
standard sense, with the additional property that “every
reaction that can occur, does occur”. More specifically,
this means that if the existing subset of reactions is able
to produce all the reactants and at least one catalyst of a
reaction outside of the subset, then that reaction should be
included the subset. A closed RAF is a subset of reactions
that has “absorbed” every such reaction.
The kinetic RAF framework was developed in response

to criticism levelled at RAF theory for not accounting for

the fact that reactions progress at different rates. Kinet-
ics is a fundamental part of real chemistry, so while the
strength of RAF theory perhaps lies in its simplicity, the
development of a kinetic extension is appropriate. A cen-
terpiece of previous RAF theory investigations has been
the search algorithm from [8], which runs in polynomial
time and which has allowed chemical reaction systems of
various sizes and properties to be investigated computa-
tionally [8,14]. Therefore, a similar algorithm for detecting
kinetically viable RAFs inside a kinetic CRS would be a
promising start for the development of a theory of kinetic
RAFs. Unfortunately, a reduction from the NP-complete
problem 3-SAT showed that detecting a kinetic RAF
within a kinetic CRS is unlikely to be productive in gen-
eral. However, it is possible to construct RAFs efficiently,
and for each RAF found one can readily test whether it
is also a kRAF and therefore potentially capable of true
autocatalytic growth.

Endnotes
1Peptide nucleic acid (PNA) does exist, however this

polymer has a backbone of N-(2-aminoethyl)glycine
(AEG) monomers linked by peptide bonds, with
nucleobases attached to each monomer, rather than
being composed of both nucleotide and amino acid
monomers. Interestingly, the recent discovery of AEG
production in diverse taxa of cyanobacteria may suggest
an information-carrying role for PNA in early life [36].

2tRNA aminoacylation or “charging” involves the
esterification of an amino acid monomer to the relevant
tRNA, prior to translation at the ribosome. This is of
course an example of a reaction which combines
molecules from both “independent” sets.

Appendix
Proof of Theorem 1 and Theorem 2
Let c(r) denote the expected number of molecular species
that catalyse reaction r, let cl = min{c(r) : r ∈ R}
and cu = max{c(r) : r ∈ R} denote the lower and
upper bounds on these values, respectively, and let c =
1

|R|
∑

r∈R c(r) = 1
|R+|

∑
r∈R+ c(r) denote the average

value. Then from the definition of μ we have:

μ = c · |R+|
|X| ,

and (C2) furnishes the three inequalities:

cu/cl ≤ K , cu ≤ Kc, and cl ≥ c/K . (3)

Next we establish the following variation on a lemma
from [13].

Lemma 2. Consider a random CRS Q = (X,R,C, I, F),
satisfying (C1)–(C3). For a reaction r ∈ R let qr be the
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probability that either no species in X catalyses r or at least
one species in X inhibits reaction r .

(i) qr ≥ 1 − cu,
(ii) qr ≤ exp(−cl) + ε.

Let p(x, r) = P(E(x, r)) denote the probability that
species x catalyses reaction r, and let p′(x, r) = P(F(x, r))
denote the probability that x inhibits r. Note that 1 − qr
is the probability that at least one species in X catalyses r
and no species in X inhibits r and so, by condition (C1),
we have:

1 − qr = (1 −
∏
x∈X

(1 − p(x, r))) ·
∏
x∈X

(1 − p′(x, r)). (4)

Thus,

qr ≥
∏
x∈X

(1 − p(x, r)) ≥ 1 −
∑
x∈X

p(x, r),

and
∑

x∈X p(x, r) is the expected number of species that
catalyse r, which by (C2) is at most cu. Thus, qr ≥ 1 − cu
which establishes part (i).
For part (ii) we have from (4):

qr ≤
∏
x∈X

(1 − p(x, r))) +
(
1 −

∏
x∈X

(1 − p′(x, r))
)
.

and since
∏
x∈X

(1 − p(x, r))) ≤ exp
(

−
∑
x∈X

p(x, r)
)

≤ exp(−cl)

and

1 −
∏
x∈X

(1 − p′(x, r)) ≤
∑
x∈X

p′(x, r) ≤ ε

(by (C2) and (C3)) we obtain the claimed inequality in part
(ii).
To establish Theorem 1 part (a), observe that any RAF

must contain at least one catalysed reaction that has
its reactant(s) in F ; we call such a reaction primary. By
species stratification conditions (i), (ii) and (S1), the num-
ber of reverse reactions f → a + b, such that f ∈ F is
bounded by a function of k and t; while by the species
stratification conditions (i), (iii) and (S1), the number of
forward reactions f + f ′ → g such that f , f ′ ∈ F is also
bounded by a function of k and t (involving the constant
M mentioned in (iii)). Thus the total number of primary
reactions is at most a constant τ dependent only on k and
t. By Lemma 2 (i) and condition (C1), the probability QR
that none of the primary reactions are catalysed satisfies:

QR ≥ (1 − cu)τ (5)

Now, the probability that at least one of the primary reac-
tions is catalysed is 1 − QR, and this is clearly a necessary

(but not sufficient) condition for there to be an RAF for
Q. It follows from (3) and (5) that:

P(∃RAF forQ) ≤ 1−QR ≤ 1−(1−cu)τ ≤ 1−(1−c/K)τ .

Consequently, if μ ≤ λ · |R+|
|X| then λ ≤ c, and so we

arrive at Theorem 1(a), with φ(λ) = 1 − (1 − λ/K)τ .
To establish Theorem 2 (which implies Theorem 1(b)) ,

let q− := exp(−cl) + ε. By the upper bound on ε stated in
the theorem (and the inequality cl ≥ c from (3)) we have:

q− ≤ exp(−cl) + exp(−cK) ≤ 2 exp(−cK). (6)

By Lemma 2(ii), for any s ≥ t (recalling that F = αt),
the probability that a species x ∈ X(s + 1) cannot be pro-
duced from reactants in αs is at most (q−)cs (since by (S2)
we know that there exist at least cs reactions producing x
from reactants in αs, so the only way for x to fail to be pro-
duced is if each such reaction has either no catalyst in X
or an inhibitor in X).
Let Ns denotes the number of species in X(s + 1) which

cannot be produced by catalysed and uninhibited reac-
tions from reactants in αs. Then the expected value of Ns
satisfies the inequality E[Ns]≤ |X(s + 1)|(q−)νs, and, by
(S1) the term on the right is bounded above by ks+1(q−)νs.
In particular, since P(Ns > 0) ≤ E[Ns], the probability
(let us call itWs+1) that there exists at least one species in
X(s + 1) which cannot be produced from reactants in αs
satisfies:

Ws+1 ≤ ks+1(q−)νs. (7)

Let us say a species in X is problematic if each reac-
tion producing that species is either not catalysed by any
molecule in X or is inhibited by at least one molecule in
X. Then the probability that there exists a problematic
species in X is

∑m−1
s=t Ws+1, which, from (7), satisfies:

m−1∑
s=t

Ws+1 ≤ k
m−1∑
s=t

ks(q−)νs ≤ k
m−1∑
s=t

(2k exp(−νc/K))s,

where the second inequality applies (6). Thus the prob-
ability that there are no problematic species in X is 1 −∑m−1

s=1 Ws+1. A lower bound on this quantity is given by:

1 −
m−1∑
s=t

Ws+1 ≥ 1 − k
m−1∑
s=t

(2k exp(−rc/K))s

≥ 1 − k
∞∑
s=t

(2k exp(−νc/K))s

= 1 − k(2k exp(−νc/K))t

1 − 2k exp(−νc/K)
.

Noting that there being no problematic species in X is a
sufficient condition for Q to have an RAFR′ (indeed one
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with supp(R′) = X), we see that 1 − ∑m−1
s=1 Ws is a lower

bound on P(∃RAF forQ). Hence taking

ψ(λ) = k(2ke−νλ/K )t

1 − 2ke−νλ/K

and noting that ψ(λ) → 0 as λ → ∞, part (b) fol-
lows (observe that this RAF is closed, since it involves all
molecules in X). Finally, note that when ε = 0 the inequal-
ity in (6) can be improved to q− = exp(−cl) ≤ exp(−cK)

which eliminates the factor of 2. This completes the proof.

Proof of Theorem 3
Firstly, given a kinetic CRS Q = (X,R,C, F , v) and a sub-
setR′ ofR it can be checked in polynomial time whether
R′ is a kRAF forQ, and so the question of whether or not
R contains a kRAF is in the complexity class NP. We will
show that this question is NP-complete for the case δ = 0
by exhibiting a polynomial-time reduction from the NP-
complete problem 3-SAT. Suppose we have an instance
of 3-SAT, which is an expression P written in conjunctive
normal form involving a set Y = {y1, . . . , yn} of literals,
and with each clause consisting of a disjunction of at most
three variables (a literal yj or its negation yj). Thus we can
write P in the form

P = C1 ∧ C2 ∧ · · · ∧ Ck with Ci = ∨j∈T(i)yj ∨j∈F(i) yj.

For example, P = (y1∨y2∨y3)∧(y2∨y3∨y4)∧(y1∨y2∨y4)
would be an instance of 3-SAT for Y = {y1, y2, y3, y4}.
Here T(i) and F(i) are subsets of {1, . . . , n} that describe

which elements of Y are in Ci as a literal or a negated
literal (respectively). Since each clause has at most three
variables, |T(i)|+ |F(i)| ≤ 3. We say that P has a satisfying
assignment if there is a function S : Y → {true,false}
so that for each clause Ci in P, there exists j ∈ T(i) for
which f ( yj) = true or a j ∈ F(i) for which f ( yj) =
false. In the example above, setting S( y1) = true,
S( y2) = S( y4) = false, and S( y3) to be either true or
false provides a satisfying assignment for P.
Given P we will construct a catalytic reaction system

(X,R,C), food set F, and rate function v so that QP =
(X,R,C, F , v) has a kRAF if and only if P has a satisfying
assignment.
We take F = {f1, . . . , fn}, and let Y = {y1, . . . , yn}. Set
X = F ∪ Y ∪ Y ∪ {yjT : j = 1, . . . , n} ∪ {yjT : j

= 1, . . . , n} ∪ {θ1, . . . , θk} ∪ {ω,T}.
The reactions, associated rates, and catalysts are

described as follows:
fj → yj for each 1 ≤ j ≤ n; at rate k + 1;
catalysed by yjT ;

(8)

fj → yj for each 1 ≤ j ≤ n; at rate k + 1;
catalysed by yjT ;

(9)

yj + T → yjT for each 1 ≤ j ≤ n; at rate 0 < ε < 1/n;
catalysed by T;

(10)

yj + T → yjT for each 1 ≤ j ≤ n; at rate 0 < ε < 1/n;
catalysed by T;

(11)

yj → θi for each pair (i, j) with j ∈ T(i); at rate 1;
catalysed by T;

(12)

yj → θi for each pair (i, j) with j ∈ F(i); at rate 1;
catalysed by T;

(13)

θ1 + · · · + θk → T at rate 1; catalysed by T ; (14)

yj + yj → ω for each 1 ≤ j ≤ n, at rate k + 2;
catalysed by T.

(15)

First suppose thatQP contains a kRAFR′; we will show
that P has a satisfying assignment. Since R′ is an RAF,
it is non-empty. Therefore, the molecule T must be pro-
duced, since every reaction in R is catalysed by either T
or some molecule that is produced from T. This in turn
requires that for each 1 ≤ i ≤ k, θi is produced, and there-
fore, for each 1 ≤ i ≤ k there exists j ∈ T(i) such that
yj is produced or j ∈ F(i) such that yj is produced. Fur-
thermore, for each value of 1 ≤ j ≤ n, at most one of the
molecules yj, yj is produced, since otherwise by the clo-
sure property the jth reaction described by (15) would be
contained inR′, which would destroy both yj and yj faster
than either is produced and violate the rate property of the
kRAFR′. A satisfying assignment S for P is now provided
by setting S( yj) to be true (respectively false) if yj is
produced by some reaction in R′ (respectively not pro-
duced by some reaction in R′). Note that S is a satisfying
assignment even in the case where neither of yj, yj is pro-
duced for some j ∈ {1, . . . , n}, since in that case S( yj) can
be chosen arbitrarily.
Conversely suppose that P has a satisfying assignment

S; we will show thatQP contains a kRAF. LetR′ consist of
reaction (14) together with the following reactions:

• For each j ∈ {1, . . . , n} such that S( yj) = true,
include the j th reaction from (8), the j th reaction
from (10), and every reaction from (12) such that
j ∈ T(i);

• For each j ∈ {1, . . . , n} such that S( yj) = false,
include the j th reaction from (9), the j th reaction
from (11), and every reaction from (13) such that
j ∈ T(i).

To show thatR′ is a kRAF, we must show that it is a closed
RAF which satisfies the rate requirement (Equation 2).
It is easy to see that
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ρ(R′) = clR′(F)

= F ∪ {yj : S( yj) = true} ∪ {yj : S( yj) = false} ∪
{yjT : S( yj) = true} ∪ {yjT : S( yj) = false} ∪
{θ1, . . . , θk} ∪ {T},

(16)

so R′ is F-generated. Moreover, every reaction is catal-
ysed by exactly one molecule from the set {T} ∪ {yjT :
S( yj) = true} ∪ {yjT : S( yj) = false}, and since
this union is a subset of clR′(F), R′ is also reflexively
autocatalytic and is therefore an RAF set.
R′ is closed if there are no reactions r ∈ R \ R′ such

that there exists (x, r) ∈ C with {x} ∪ ρ(r) ⊆ clR′(F).
By the construction of R′, R \ R′ contains the following
reactions:

• fj → yj for each j such that S( yj) = false
(catalysed by yjT);

• fj → yj for each j such that S(yj) = true
(catalysed by yjT);

(the catalysts of these reactions are not contained in
clR′(F))

• yj + T → yjT for each j such that S( yj) = false;
• yj + T → yjT for each j such that S(yj) = true;
• yj → θi for each pair (i, j) with j ∈ T(i) and S( yj) =

false;
• yj → θi for each pair (i, j) with j ∈ F(i) and S( yj) =

true;

(Other than T, the reactants of these reactions are not
contained in clR′(F))

• yj + yj → ω for each j ∈ {1, . . . , k}.
For each value of j, exactly one of the two reactants of this
last reaction is contained in clR′(F). Hence,R′ is closed.
It remains to show that R′ satisfies the rate condi-

tion from section “Kinetic RAF framework”. Recall that
the rows of the stoichiometric matrix are indexed by the
molecules in the set

supp(R′) \ F = clR′(F) \ F ,

the elements of which are given by (16).
The molecules {yj : S( yj) = true} are each produced

at rate k + 1 from fj, used up at rate ε > 0 to produce
yjT , and used up at rate 1 by each of the reactions {yj →
θi : j ∈ F(i)}. Since there are k clauses, there are at most
k values of i for which j ∈ T(i). Hence the overall rate of
production of each molecule yj is at least k+1− (k+ ε) =
1 − ε > 0, which satisfies the rate condition. A similar
argument can be made to show that the molecules {yj :
S(yj) = false} also satisfy the condition.

The molecule T is produced at rate 1 by the reaction
θ1+· · ·+θk → T , and used up at rate 0 < ε < 1/n by each
of the n reactions forming yjT or yjT . Hence the overall
rate of production of T is guaranteed to be positive.
Consider the molecules θ1, . . . , θk . θi is produced at rate

1 by each reaction from (12) or (13) that is included in
R′, of which there are at least one (since P has a satisfying
assignment). θi is also used up at rate 1 by reaction (14),
hence the overall rate of formation of θi is non-negative.
Finally, noting that themolecules yjT and yjT are all pro-

duced at rate ε > 0 and are not used by any reaction, we
see that everymolecule in supp(R′)\F is produced at least
as fast as it is used up. This shows that R′ is a kRAF, and
so completes the reduction.
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