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Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder

characterized by severe motor, cognitive and psychiatric impairments. While motor

deficits often confirm diagnosis, cognitive dysfunctions usually manifest early in the

disease process and are consistently ranked among the leading factors that impact the

patients’ quality of life. The genetic component of HD, a mutation in the huntingtin (HTT)

gene, is traditionally presented as the main contributor to disease pathology. However,

accumulating evidence suggests the implication of the microtubule-associated tau

protein to the pathogenesis and therefore, proposes an alternative conceptual framework

where tau and mutant huntingtin (mHTT) act conjointly to drive neurodegeneration and

cognitive dysfunction. This perspective on disease etiology offers new avenues to design

therapeutic interventions and could leverage decades of research on Alzheimer’s disease

(AD) and other tauopathies to rapidly advance drug discovery. In this mini review, we

examine the breadth of tau-targeting treatments currently tested in the preclinical and

clinical settings for AD and other tauopathies, and discuss the potential application of

these strategies to HD.

Keywords: tauopathy, tau hyperphosphorylation, cognitive deficits, tau-targeting treatments, tau aggregation

inhibitors, tau immunotherapy, microtubule stabilizers, gene silencing

HUNTINGTON’S DISEASE: A SECONDARY TAUOPATHY

Tau is an important microtubule-associated protein primarily expressed in neurons and known
to mediate a plethora of cellular functions such as microtubule dynamics, neurite outgrowth,
intracellular trafficking and synaptic plasticity (1–3). These activities are tightly regulated by
post-translational modifications of tau, including phosphorylation and dephosphorylation (4–6),
acetylation (7, 8), glycosylation (9), O-GlcNAcylation (10), nitration (11), sumoylation (12)
and truncation (13). However, while phosphorylation is an essential mechanism regulating the
biological activities of tau, abnormally hyperphosphorylated tau (p-tau) can form neurofibrillary
tangles (NFTs) and/or neuropil threads (NTs) (14) that interfere with these fundamental
mechanisms. This has been classically associated with Alzheimer’s disease (AD) or with diseases
caused bymutations of the tau gene (MAPT) such as Frontotemporal dementia with parkinsonism-
17 (15, 16) (Table 1). More recently, similar tau dysregulations have been reported in Huntington’s
disease (HD) (27, 31, 32, 42, 55, 64, 83, 84) [reviewed in (33, 85)]; a disorder driven by an autosomal
dominant pattern of inheritance and caused by a pathological CAG repeat expansion exceeding
35 in exon 1 of the huntingtin (HTT) gene (86) coding for the huntingtin (HTT) protein. This
CAG elongation leads to the production of mutant huntingtin (mHTT) (87–90) which confers
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TABLE 1 | Tau pathology and therapeutic strategies in AD and HD.

Evidence of tau dysfunction
Target

Therapeutic
approachAlzheimer’s disease Huntington’s disease

• A90V (17), G213R (18), K280del (19), A152T (20), V287I

(18), A297V (18), S318L (18), A41T (21).

• H1 and H1c haplotypes may be risk factors for AD

(22–25); H2 haplotype may be protective against

AD (23).

• No MAPT mutations identified in GWAS studies (26).

• Accelerated cognitive decline in H2 haplotype

carriers (27).

MAPT

polymorphism

and mutations

Modulation of MAPT

gene expression
• Tau tangles composed of 3R and 4R tau (28).

• Shift from 4R to 3R tau-enriched NFTs in hippocampus

(29).

• ↑ 3R tau in brainstem with disease progression (30).

• Cortex and striatum of HD patients: ↑ 4R/3R mRNA

ratio (31, 32); ↑ 4R/3R tau protein (27, 31–33); ↓ 3R tau

protein (27, 31).

• Cortex and striatum of R6/1 and HD94 mice: ↑ 4R/3R

mRNA ratio; ↑ 4R and ↓ 3R tau protein (31).

Tau isoforms

• Tau aggregates associated with severity of symptoms

and disease progression (34, 35).

• Presence of NFTs in several AD brain regions:

transentorhinal region, hippocampus, neocortex (36).

• Transcellular propagation of tau in vitro (37, 38) and

spread between brain regions in vivo (39–41).

• Propagation and deposition of tau inclusions in a

sequential pattern in AD patients, from transentorhinal

(stage I) to the isocortex (stage V–VI) (36).

• Presence of NFTs in post-mortem HD brain tissue

(27, 42–46).

• Acquisition of tau inclusions, NFTs, NTs and increased

4R/3R tau in healthy fetal neural allografts in HD

recipients (42).

Tau pathological

deposits and

propagation

Inhibition of tau

aggregation and/or

tau immunotherapies

• GSK-3β (47–49), CDK5 (49, 50), PKA, Erk1/2,

JNK1/2/3, p38, CK1 (51), TTBK1, DYRK1A (52, 53)

MARK, PKB, PKC, CaMKII, SFK, c-Abl [all reviewed

in (54)].

• GSK-3β (55, 56), CDK5 and CaMKII (56).
Tau-targeting

kinases
Targeting

hyper-p-tau

• PP1, PP2A, PP2B, PTEN, PP5 (57–60). • PP1 and PP2A (56), PP2B (56, 60) Tau-targeting

phosphatases

• Tau phosphorylation in AD brain tissue: S202, T231,

S199, Y18, S262, S356 [For a detailed account on

phosphorylation sites, see (61, 62)].

• ↑ phosphorylation at Y18, T231 and S199 in

post-mortem brain tissue (63).

• ↑ phosphorylation at Y18 and T231 in isocortex and

transentorhinal cortex depending on Braak stages (63).

• Tau phosphorylation in HD brain tissue: S396, S404,

T205, S199 (32) and S202 (AT8 antibody) (42, 43).

• ↑ p-tau in cortex and striatum of HD patients (27, 32).

• Detection of hyper-p-tau S202 and T205 in healthy fetal

neural allografts in two HD patient recipients (42).

• ↑ hyper-p-tau in the brains of R6/2 (56, 64), zQ175 (64)

and 140CAG knock-in (56) mouse models of HD.

Disease-

associated p-tau

sites

Targeting

hyper-p-tau

and/or tau

immunotherapies

• Prevention of in vitro microtubule assembly (65) and

depolymerization (66, 67) by p-tau isolated from human

AD brain tissue.

• Reduced microtubule density and axonal degeneration

in neuronal cultures (68, 69), in Tg mice expressing h-tau

(70) or PS19 tau (71), and in AD patients (72).

• Contribution of tau-dependent loss of microtubule

stability to cognitive deficits in tau 3xTg and rTg4510

mouse models (73).

• Tau-related microtubule destabilization is accompanied

by Aβ-induced neurodegeneration (74–77).

• Binding of mHTT to microtubules, defects in axonal

transport, mitochondrial and vesicular dynamics in

primary neurons (78–81).

• Reduction of BDNF axonal transport by mHTT in

NG108-15 cells, resulting in neuronal loss (82).

• Recruitment of mHTT to microtubules by tau (56)
Microtubule

dysfunction
Stabilizing

microtubules

Aβ, Amyloid-beta; AD, Alzheimer’s disease; BDNF; brain-derived neurotrophic factor; CaMKII, Ca2+/calmodulin-dependent protein kinase II; CDK5, cyclin-dependent kinase-5; CK1,

Casein kinase 1; DYRK1A, Dual specificity tyrosine-phosphorylation-regulated kinase 1A; Erk1/2, extracellular signal-regulated protein kinases 1 and 2; GSK-3ß, glycogen synthase

kinase-3; h-tau, human tau; HD, Huntington’s disease; hyper-p-tau, hyperphosphorylated tau; JNK1/2/3, c-Jun N-terminal Protein Kinase 1/2/3; MARK, MAP/microtubule affinity-

regulating kinase; mHTT, mutant huntingtin; mRNA, messenger RNA; NFTs, neurofibrillary tangles; NTs, neuropil threads; p-tau, phosphorylated tau; PKA, protein kinase A; PKB, protein

kinase B; PKC, protein kinase C; PP1, protein phosphatase 1; PP2A, protein phosphatase 2A; PP2B, protein phosphatase 2B; PP5, serine/threonine-protein phosphatase 5; PTEN,

phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase; S, serine; SFK, Src Family Kinase; T, threonine; Tg, transgenic; TTBK1, tau-tubulin kinase 1; Y, tyrosine.

a cytotoxic activity to this newly formed protein. This
includes sequestration of transcription factors, mitochondrial
dysfunction, induction of apoptotic cell death and alteration of
the ubiquitin-proteasome system (UPS) (88–90).

While the diagnosis of HD is based on motor features
(typically chorea), patients exhibit early and progressive

cognitive impairments that impact activities of daily living
along with psychiatric disturbances that can evolve to frank
psychosis (91, 92). Notably, carriers of the H2 MAPT haplotype
allegedly experience more rapid cognitive decline than those
with an H1 haplotype (27). This is of particular interest since
the MAPT haplotype has been proposed as a risk factor for
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other neurodegenerative disorders such as AD, Parkinson’s
disease (PD) and PD-associated dementia (22, 23, 93). Along
these lines, data collected by Positron Emission Tomography
(PET) have allowed to establish correlations between tau and
cognitive decline, with tau deposits more closely related with
cognitive dysfunction in AD patients than amyloid β (Aβ) (94).
Furthermore, both PET and cerebrospinal fluid (CSF) measures
of tau, but not Aβ, have been linked to worsening cognition in
AD (95). Similarly, the CSF of HD patients contains increasing
levels of total tau (t-tau) with disease progression, which correlate
with a decline in motor and cognitive functions (96). While a
couple of studies have found discrepancies between the levels of
CSF t-tau and cognitive decline (96, 97), a correlation between
CSF t-tau and mHTT has been reported (97).

In agreement with the concept that HD meets the criteria
of a secondary tauopathy is the fact that the cardinal features
of tauopathies—misfolding, hyperphosphorylation, NFTs and
NTs—have all been identified in post-mortem brain tissue
derived from HD patients (27, 43–46, 98–100) [reviewed in
(33, 85)]. For example, an increased 4R/3R tau isoform ratio
has been observed in HTT mutation carriers (31, 32) at late
disease stages (3 and 4) (32). In particular, nuclear rod-like tau
deposits composed of the 4R tau isoform are more abundant
in striatal and cortical tissues of HD patients, while they are
virtually undetectable in the brains of control individuals (31).
Both abnormal p-tau and mHTT aggregates can be located
within neurons (27), although they rarely colocalize (98) or
co-precipitate in HD brain homogenates (31).

Collectively, these findings suggest an association between
altered tau biology and HD pathology. However, whether
tau impairments have a causative effect on the manifestation
of certain aspects of the disease, such as cognitive decline,
has yet to be established. A closer look at the evidence of
tau dysfunction in HD allows us to explore rather uncharted
territories in therapeutic development for this condition. Taking
advantage of the discoveries and therapeutics designed to
attenuate tau dysfunction in AD (101), as a significant number
of preclinical studies and clinical trials have already been
initiated, may indeed prove to be useful in HD as well. There
is a broad diversity of approaches (Figure 1), which include
decreasing tau phosphorylation, inhibiting tau aggregation and
reducing pathological forms of tau using microtubule stabilizing
compounds, immunotherapies or silencing of the MAPT
gene (Figure 1), which could all serve treatment purposes. In
the following sections, we present the multiple therapeutic
approaches to target tau, describe the treatments that have
reached clinical trials and discuss their potential application
to HD.

THERAPEUTIC STRATEGIES TO TARGET
PATHOLOGICAL FORMS OF TAU

Targeting Tau Hyperphosphorylation
Tau function depends on its phosphorylation state.
Hyperphosphorylation generates negatively charged repulsive
forces which impede functional interactions with microtubules,
leading to their destabilization and subsequent cell death

(5, 6, 102). Recent studies have reported an increase in
p-tau levels in the cortex and striatum of post-mortem
brain tissue derived from HD patients (27, 32). More
specifically, hyperphosphorylation of tau has been detected
at 5 distinct epitopes—S396, S404, T205, S202, and S199
residues—(32, 42, 43), and S202 and T205 were found
in neuronal inclusions (27) (Table 1). The association of
tau hyperphosphorylation in various forms of tauopathies
(4, 103, 104), as well as in HD, suggests that approaches aiming at
restoring normal levels of p-tau could improve disease outcome
(Figure 1); approaches that have already been extensively tested
in AD models (105–108). One of the strategies to reduce p-tau
levels is to modulate the activity of tau-targeting kinases and
phosphatases. The physiological function of the tau protein is
facilitated by the orchestrated activity of these enzymes through
phosphorylation and dephosphorylation at the threonine and
serine residues (109). A number of small molecule inhibitors of
protein kinases or activators of phosphatases have been studied
in pre-clinical and clinical settings and are presented in the
following section.

Kinase Inhibitors

Small molecules, which have the ability to reduce tau
hyperphosphorylation, have been among the first tau-targeted
treatments developed for AD. This evolved from the evidence
that kinases, such as cyclin-dependent-like kinase 5 (CDK5) and
glycogen synthase kinase 3 beta (GSK-3β), are altered in patients
and animal models of the disease (49, 110–114) (Table 1). In a
transgenic (Tg) HD mouse model that expresses exon 1 of the
human HTT gene, with approximately 125 CAG repeats (R6/2)
(115), a knock-in chimeric HD mouse model, that expresses a
human HTT exon 1/ mouse Htt with 140 CAG repeats (KI140)
(116), as well as in patients, the levels and activity of CDK5 and
GSK-3β have been found to be dysregulated (55, 56), suggesting
that redirecting kinase inhibitors levels/activity could potentially
abrogate tau hyperphosphorylation observed in HD.

CDK5 inhibitors, such as Flavopiridol (Alvocidib) and
Roscovitine (Seliciclib), have been tested in AD preclinical
studies. Flavopiridol efficiently inhibits CDK5 and improves
synaptic plasticity as well as motor behavior in mice injected
with Aβ oligomers (117). Roscovitine (Seliciclib) prevents tau
phosphorylation in aNiemann-Pick Type C diseasemousemodel
(118), which is characterized by CDK5 dysfunction that triggers
tau hyperphosphorylation (119). However, CDK5 inhibitors have
yet to be tested in the clinical setting and further investigation is
therefore needed to determine if they can, in effect, ameliorate
tau-associated pathology in either, or both, AD and HD.

GSK-3β inhibitors form another class of compounds, which
have been tested in preclinical and clinical contexts. Among
the GSK-3β inhibitors, Tideglusib and lithium have shown
improvements in AD Tg mouse models that express either four
familial AD mutations (FTDP-17 G272V, P301L, and R406W,
referred to as VLW mice and VLW mice overexpressing GSK-
3β) (120, 121), three familial AD mutations (APP Swedish,
MAPT P301L and PSEN1 M146V) (3xTg-AD) (122), AD-
related mutations (APP Swedish crossed with Tau VLW) (108)
or the MAPT mutation P301L alone (123). Tideglusib and
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FIGURE 1 | Schematic representation of mechanistic interventions using tau-targeting therapies. The MAPT gene encodes for the protein tau, which undergoes

post-translational phosphorylation and dephosphorylation that regulate its affinity for microtubules and ensure its functional role as a microtubule stabilizer. When tau

undergoes hyperphosphorylation, generally via an abnormal stimulus, it loses its affinity for microtubules and accumulates into the cytoplasm or exits the cells. When

released from the microtubules, intracellular hyperphosphorylated tau proteins self-assemble into aggregates of increasing complexity, and ultimately produce large

pathological aggregates and NFTs. At each step of the process, drug targets have been identified and a variety of therapeutic approaches have been designed and

tested in preclinical and/or clinical studies. A first strategy leverages the use of ASO (e.g. BIIB080) to control MAPT gene expression and reduce tau synthesis.

Alternatively, pathological tau hyperphosphorylation can be reversed with kinase inhibitors (e.g. Tideglusib or lithium) or phosphatases activators (e.g. Memantine), and

tau loss of function can be counterbalanced with microtubule stabilizers (e.g. Taxane derivatives, Davunetide, or Epothilones). Furthermore, immunization-based

strategies offer an interesting approach to sequester and degrade p-tau before aggregation, using peptides that mimic a specific p-tau amino acid sequence (e.g.

ACl-35 or AADvac-1), active or passive immunization to target either intracellular (e.g. LY3303560) or extracellular tau (e.g. RO7105705, C2N-8E12 or BMS-986168).

Lastly, tau aggregation inhibitors, such as Methylene blue, provide an additional means by which to eliminate tau aggregates and restore cellular health. ASO,

antisense oligonucleotide; CDK5, cyclin-dependent kinase-5; GSK-3ß, glycogen synthase kinase-3; hyper p-tau, hyperphosphorylated tau; MAPT,

microtubule-associated protein tau; P, phosphate; PP2A, protein phosphatase 2A; p-tau, phosphorylated tau.

lithium considerably reduce phosphorylation and aggregation
of tau, decrease neuroinflammation and neuronal death and
improve learning and memory abilities (108, 120–123). Both
drugs have also been tested in phase I and II clinical trials
for AD with overall positive results, demonstrating safety,
tolerability and improved cognition in comparison to placebo-
treated individuals (124) [reviewed in (125)]. The therapeutic
potential of lithium has further been evaluated in the R6/2
mouse model and in HD patients, and studies have reported
encouraging results (126–128) [reviewed in (129)]. Lithium
was found to regulate HD-associated pathological processes
such as glutamate excitotoxicity, altered levels of neurotrophic
and growth factors and transcriptional dysregulation (130–133)

[reviewed in (129)]. For example, lithium increased levels of
brain-derived neurotrophic factor (BDNF) and nerve growth
factor (NGF) in several brain regions of an animal model of
mania generated with ouabain or wild-type animals, as well as in
wild-type cultured neurons (133–136). Furthermore, exposure to
lithium mediated significant transcriptional changes connected
to signal transduction (e.g., mTOR and Wnt-related signaling)
in the corpus callosum of wild-type rats (137), as well as
transcription factors and genes related to metabolism in the
substantia nigra pars compacta of parkinsonian mice (induced
by the neurotoxin MPTP) (138). Clinical studies showed that
motor abnormalities were not improved in most HD patients
treated with lithium, but some reports suggest an amelioration
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of cognitive disturbances and mood disorder (139, 140). The
positive outcomes on non-motor impairments suggest a potential
benefit of lithium treatment in HD individuals, especially for
patients in early stages of disease, when cognitive and psychiatric
symptoms are predominant. However, it is unclear whether the
administration of lithium diminishes GSK-3β activity and p-tau
levels, as conflicting findings on GSK-3β levels in post-mortem
tissues of HD patients have been reported. Indeed, GSK-3β
levels and activity have been shown to be intrinsically decreased
in the striatum and cortex of HD individuals (83, 141), while
increased GSK-3β levels weremeasured in the hippocampus (55).
These discrepancies may reflect a dynamic molecular response at
different disease stages, or suggest the differential alteration of
GSK-3β levels in specific brain regions. Evaluation of p-tau in
the CSF or imaging with p-tau PET tracers could help identify
whether the beneficial effects of lithium are directly related to a
reduction of p-tau levels.

Phosphatase Activators

Since tau phosphorylation is a reversible process, triggering tau
dephosphorylation at serine and threonine residues could reduce
hyperphosphorylation. Phosphatases [described extensively in
(57)] catalyze the interconversion reactions of tau, from
phosphorylated to dephosphorylated states, thereby regulating
the degree of tau phosphorylation. Several studies have
demonstrated that the activity of protein phosphatase 2A (PP2A)
and serine/threonine-protein phosphatase (PP2B) is decreased
in AD mouse models and patients (58, 142) [reviewed in (59)],
as well as in both Tg and knock-in HD mouse models (56, 64,
143) (Table 1). The Tg mouse line used in the aforementioned
studies was the R6/1, which expresses the exon 1 of the
human HTT gene containing approximately 114 CAG repeats
(115) and the R6/2 model, described above. The knock-in
mouse lines discussed above were KI140 and zQ175, which
respectively express human HTT exon 1 with approximately 140
and 188 CAG repeats inserted in the mouse Htt (116, 144).
Furthermore, PP2A is an important phosphatase known to
regulate the activity of the GSK-3β and other kinases implicated
in tau pathological modifications (145), and dysregulation
of PP2A activity leads to cellular dysfunction including
cytoskeletal alterations, impairment of synaptic function and tau
mislocalization (146–149). Activation of the phosphatase PP2A
has been shown to reduce abnormal phosphorylation of tau in the
brain and ameliorate AD pathology (150, 151), suggesting that
PP2A phosphatase activators could likely restore physiological
levels of tau phosphorylation in patients.

Memantine is a small molecule that has been found to
reverse tau hyperphosphorylation. It enhances PP2A activity,
improves neuronal viability (152) and reduces glutamate
excitotoxicity in GABAergic neurons by acting as a N-
methyl-D-aspartate (NMDA) receptor antagonist (153).
Furthermore, Memantine mitigates lipopolysaccharide-induced
neurodegeneration in mixed rat primary cultures by attenuating
the microglial inflammatory response (154). It therefore appears
that Memantine is a multifunctional molecule that acts on
several cell types and on tau-independent molecular targets,
although additional studies are needed to determine if tau

directly promotes the beneficial effects of Memantine. Clinical
studies indicated that Memantine improves attention, agitation,
delusion, global well-being, daily functions and independence
in patients with mild cognitive decline (106, 107). There are 87
Memantine clinical trials listed on clinicaltrials.gov, all aiming
to treat dementia associated with neurodegenerative diseases,
including HD. Thus far, a small pilot (155) and one case study
(156) have reported that Memantine improves motor, but not
cognitive deficits, in HD patients. However, it may be premature
to conclude from these small-scale studies, especially given the
fact that both trials were based on the selection of patients in
advanced stages of disease that may have further tainted the
true potential of Memantine. Hence, Memantine is currently
under investigation in the clinical trial MITIGATE-HD, which
recruited a large number of pre-manifest HD, early HD and
control individuals providing a better opportunity to investigate
this compound as a treatment for cognitive impairments.
However, the secondary outcome measures of the MITIGATE-
HD study do not include CSF t-tau or p-tau nor tau PET imaging
evaluation and it will therefore not be possible to determine
whether the improvement in cognition, if any, is due to the
ability of Memantine to reduce tau hyperphosphorylation.

Views on Targeting Pathological Forms of P-Tau

Although targeting the mechanisms of
phosphorylation/dephosphorylation of tau is a seemingly
logical strategy, several limitations should be considered. Based
on the outcomes of AD clinical trials, the major drawback
is the dysregulation of essential kinases and phosphatases
responsible for the post-translational modifications of unrelated
tau substrates. For instance, GSK-3β phosphorylates more
than 100 substrates, while PP2A has more than 300 known
targets. Furthermore, both enzymes are themselves regulated
by a number of signaling pathways (157, 158). Pharmacological
alterations of these complex signaling pathways may lead
to activation of compensatory mechanisms, which would in
turn generate unpredictable outcomes (158). For example,
pharmacological activation of the PP2B phosphatase could
promote dephosphorylation of mHTT at serine 421, leading to
the disruption of axonal transport and cellular distribution of
important neurotrophic factors (159). Small molecules aimed
at specifically targeting the multi-substrate enzymes involved in
tau phosphorylation are accompanied by decisive limitations,
which constrain their use in the treatment of HD and other
tauopathies. However, the promising clinical results obtained
with lithium and Memantine do warrant further investigation in
the context of HD.

Inhibiting the Formation of Tau Aggregates
When hyperphosphorylated tau detaches from the microtubules,
it relocates to the somatodendritic compartment and self-
assembles into increasingly complex aggregate species. This
process begins with soluble oligomers which grow into pre-fibrils
and ultimately form insoluble NFTs (66) [reviewed in (160)].
These NFTs accumulate with disease progression in AD (34, 161,
162) as well as in HD (44–46, 99) (Table 1), and therapeutic
strategies to prevent tau aggregation have therefore become a
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major focus of research (Figure 1). However, the perspective
that accumulation of NFTs causes neurodegeneration has been
more recently challenged (163, 164) [reviewed in (165)]. Indeed,
mislocalized, soluble misfolded, soluble hyperphosphorylated
forms of tau and tau oligomers are emerging as candidate
neurotoxic entities (166–168). For example, the mislocalization
of tau to dendritic spines has been established in AD and
seemingly induces synaptic impairments in rTg4510 and P301S
tau mouse models (167, 169–171) as well as the loss of
dendritic spines in AD patients (172). Spinal alterations have
been observed in R6/2 mice (173), but the relationship between
tau and spine instability in HD remains to be elucidated.
Additionally, as observed in AD and HD, pre-tangles and NFTs
have been identified in several brain regions, predominantly in
the putamen, cortex and hippocampus (22, 27, 43, 44, 46, 98–
100). It is therefore reasonable to anticipate that inhibiting tau
aggregation at early and late stages of fibrillization may improve
HD-related neurotoxicity and, on a larger scale, cognitive deficits.

The design of inhibitors of tau aggregation has already
generated a significant number of small molecules for drug
screening. Among 3,000 anti-tau aggregation molecules studied,
fibrillization inhibitors have been identified as the most effective
in preventing the formation of NFTs in Tg animals expressing
mutated human tau [reviewed in (174)]. For example, Methylene
Blue and its derivatives have been shown to stabilize tau in
a conformation that prevents its fibrillization (175), but other
neurotoxic forms of tau, such as oligomers, do not appear
to be affected (164, 176). Nonetheless, treatment of JNPL3
Tg mice expressing the P301L tau mutation results in the
amelioration of cognitive deficits (177) and Methylene Blue
is the only tau-targeting treatment that has reached phase III
in AD. Importantly, this drug can inhibit the aggregation of
other self-assembling proteins including mHTT (178), decrease
the formation of mHTT inclusion bodies in primary mouse
neurons and R6/2 mice, and improve motor deficits in these
animals (178).

Views on Inhibiting the Formation of Tau Aggregates

The current state of the field offers histological evidence of
tau aggregation in post-mortem HD brain tissue, but available
experimental animal models do not recapitulate pathological tau
inclusions. Establishing alternative models that reproduce key
features and molecular dysfunctions of HD is a prerequisite to
evaluate the contributions of tau aggregates to pathology as well
as the potential of anti-tau aggregation therapies. Additionally,
it is becoming increasingly clear that pathological forms do
not solely consist of NFTs, but include aggregate intermediates
and soluble post-translationally modified tau. Considering the
similarities among tauopathies, an efficient therapeutic approach
for HD should therefore target multiple tau species, including
oligomers and hyperphosphorylated forms of the protein (27).

Tau Immunotherapies
Tau-based immunotherapies refer to the neutralization and
clearance of the tau protein by host-generated antibodies
(active immunization) or by the administration of tau-specific
antibodies (passive immunization). Immunotherapies can be
designed to target a variety of tau species, including t-tau,

hyperphosphorylated tau, extracellular tau, oligomeric tau or tau
fragments (Figure 1) (165, 179–181). This approach provides
greater precision and flexibility to therapeutic designs, but
a successful clinical outcome relies on the identification of
the exact pathological forms of tau responsible for a specific
phenotype. Multiple forms of tau are potential candidates for
immunotherapies in HD, including tau aggregates (27), p-tau
(27, 32), tau oligomers (27) and caspase-2 cleaved 1tau314
(84). Each form appears to be associated with distinct disease
phenotypes/stages, and tau hyperphosphorylation at S396, S404,
T205, and S199 epitopes has been observed in stage 4HD patients
(32). The presence of tau oligomers (T22 and TOMA positive
staining) has also been detected in the putamen of stage 4 HD
patients (27). Caspase-2 cleaved 1tau314 protein is a form of
tau associated with dementia in Lewy body disease (182) and
is found in greater concentrations in the caudate nucleus and
prefrontal cortex of HD subjects when compared to healthy
controls (84). The following paragraphs will survey the available
literature to propose additional therapeutic frameworks for the
next generation of HD drugs.

Active Immunization

Active immunization by exposure of the host immune system
to pathological forms of tau has also been considered to
induce a long-lasting anti-tau immunity. Several peptides have
been designed using tau pathological forms such as p-tau
(181, 183), oligomers (180, 184) and truncated tau (185).
Immunization of animals recapitulating AD features can result
in pathophysiological and behavioral improvements (181), with
the host-generated antibodies depict specific recognition of
p-tau (181). Based on these findings, two anti-tau vaccines
have been tested in AD clinical trials; one targeting S396
and S404 phosphorylated tau (ACI-35) (186) and the other
targeting the pathological N-truncated form of tau (AADvac-1
or Axon peptide 108 conjugated to keyhole limpet hemocyanin)
(187). Importantly, the ACI-35 vaccine was designed against
pathological forms of tau also found in HD patients and
further investigations could establish its potential as a candidate
immunotherapy to ameliorate cognitive deficits in this patient
population (27, 99).

Passive Immunization

Passive immunization is achieved by administering pre-formed
antibodies to recognize a specific antigen and constitutes an
alternative immunization approach that does not solely rely
on the immune system of the host. Antibodies can further
be engineered to express desirable properties and bind tau
within intracellular and/or extracellular compartments. Several
antibodies have been designed to target various forms of tau
and the promising antibodies that have reached clinical trials are
discussed below.

Passive immunization to target intracellular tau
Following peripheral administration, anti-tau antibodies are
able to cross the blood brain barrier to reach neuronal and
non-neuronal elements. The antibodies are internalized by
neurons via receptor-mediated endocytosis (188), bind tau and
the emerging tau-antibody complex is subsequently degraded
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through the proteasomal system (189). A significant number of
tau passive immunotherapies have been designed to target p-
tau, and the anti-tau pS202 monoclonal antibody (named CP13)
has thus far demonstrated a superior efficacy compared to other
anti-p-tau antibodies (190). Indeed, CP13 reduces soluble and
insoluble total and p-tau levels in the cortex and hindbrain of a Tg
mouse model expressing the human P301L mutation and which
is characterized by a severe tauopathy (190). In HD, increased
pS202 levels correlate with alterations in tau phosphorylation in
both R6/2 and zQ175mousemodels (56, 64), as well as in patients
(27, 42, 43). In addition to p-tau, antibodies have been designed
to target other pathological forms of the protein. The humanized
antibody LY3303560 (also referred to as Zagotenemab) is derived
from a monoclonal antibody used in histology (MC1) to identify
pathological conformations of tau (191) in both AD (191)
and HD human brain tissue (33). It has also demonstrated
greater affinity toward soluble tau aggregates compared to tau
monomers in vitro (179). This immunotherapy is safe and well-
tolerated in humans, as established by the successful completion
of a phase I and an ongoing phase II clinical trial evaluating
its efficacy in AD (192). CP13 and LY3303560 are therefore
attractive immunotherapy candidates that could be tested for
efficacy in preclinical models of HD. Animal models such as
zQ175 or KI140 mice recapitulate a slow disease progression
and the gradual acquisition of molecular and behavioral HD
phenotypes, and could therefore provide a suitable experimental
system to evaluate the benefits of immunotherapies on HD-
related cognitive as well as motor deficits (116, 144).

Passive immunization to target extracellular tau
In addition to neurotoxic effects resulting from post-translational
modifications, tau has been suggested to adopt prion-like
properties that result in its transcellular propagation through
the extracellular milieu, to ultimately seed pathology in healthy
recipient cells (193). Evidence from cellular (194, 195) and animal
models (39–41), as well as post-mortem tissue (36, 161, 162),
support this hypothesis (Table 1). For example, a single injection
of AD brain homogenate in the cortex or hippocampus of a
naïve mouse induces endogenous tau misfolding and aggregation
with detrimental consequences on physiological functions and
behavior (41). Extracellular tau is particularly efficient in
corrupting functional endogenous tau and initiating pathological
aggregates that lead to the formation of NFTs (196). A number
of mechanisms of tau spreading have been identified and include
cytoplasmic exchange by tunneling nanotubes (197), as well as
transsynaptic (198) or transcellular propagation via exocytosis
and endocytosis (194, 195, 199). Several antibodies targeting
extracellular tau have been designed to prevent transcellular
propagation and seeding of tau-related pathology. Antibodies
are now available to recognize a diversity of extracellular tau
isoforms and fragments. The antibody C2N-8E12 (also referred
to as ABBV-8E12) recognizes the isoform tau-F (441 aa) (200),
while the antibody RO7105705 (also referred to as Semorinemab)
binds the N-terminus of all six tau isoforms (201). Gosuranemab
(also referred to as BMS-986168) was engineered using a tau
fragment released into the conditioned media prepared from AD
patient-derived cortical neurons (202, 203). Despite differences

in the targeted epitopes, all of these antibodies have been shown
to ameliorate tau pathology and behavioral deficits in mouse
models that expressMAPTmutations (JNPL3, P301L and P301S)
(203–206). These observations suggest that reducing extracellular
levels of tau is a promising strategy to improve AD pathology.
Favorable to their use is the fact that antibodies tested in phase
I clinical trial have met safety and tolerability criteria (207)
[reviewed in (208)]. Similar routes of tau propagation have been
suggested to occur in HD patients who received fetal grafts to
replace cell loss generated by the disease process (42). However,
these observations originate from post-mortem analyses on a few
rare cases and more definitive evidence is needed to conclude
that tau can indeed propagate in the HD brain. Furthermore,
HD patients have lower concentrations of t-tau in the CSF in
comparison to AD affected individuals, (96, 97, 209–212), and
whether CSF t-tau levels truly reflect extracellular tau load in
the central nervous system (CNS) of HD patients remains to
be elucidated.

Views on Tau Immunotherapies

Research in the field of immunotherapy has made significant
progress in the development of anti-tau treatments for
AD and is gaining momentum in HD [reviewed in (101,
213)]. Antibody-based therapies have the distinct advantage
of being highly specific to the selected epitopes and can
target intracellular or extracellular tau both in the periphery
and in the CNS. Antibodies have a low molecular weight
and are therefore suitable for nanocarrier-based delivery
approaches to reduce their degradation, mitigate the host
immune response and control the rate of antibody release
(214). Furthermore, administration of tau-targeting antibodies
by injection is a straightforward and safe procedure (207).
Based on the concept that mHTT can propagate between cells
and template pathology in a prion-like fashion, active and
passive immunization strategies targeting extracellular mHTT
are attracting interest (215–222) [extensively reviewed in (213)],
and could be tested in parallel to a tau, or mHTT/tau
combined immunization. Furthermore, halting accumulation
and propagation of pathogenic proteins in HD patients at
early stages of the disease, before they are afflicted by
neurodegeneration and cognitive dysfunction, may provide the
most effective protection.

However, a major limitation of current studies is that the
majority of tau-related dysregulations have not been reported
in premanifest or early-stage diseased patients. As a result,
the association of pathological forms of tau with late stage
disease could cast doubts on the validity of targeting tau in
HD (32). A broad investigation on a larger population of HD
patients, matched for age, sex and CAG repeat length, would
provide more accurate information on the progression of tau
pathology. In particular, future studies could take advantage of
the technological advances achieved with PET scans and specific
anti-tau ligands (223), to enable the analysis of pathological
tau in the brain of living patients with a degree of specificity
that is not possible with post-mortem analyses. By doing so,
tau abnormalities could be directly compared to cognitive
performance and importantly, changes over time. For instance,
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the PET ligand [18F]MK-6240, which has already been validated
in AD, is a new generation tau ligand with high sensitivity for
NFTs and negligible off-target binding (224), which makes it
ideal for defining the extent of tau pathology in HD brains and
investigating its relationship with cognitive profile.

MITIGATION OF TAU-INDUCED CELLULAR
ALTERATIONS BY STABILIZING
MICROTUBULES

Structural and functional damage to the neuronal cytoskeleton
constitutes a key event in the pathogenesis of tauopathies (225–
227). Therefore, microtubule-stabilizing small molecules have
been developed and studied as a therapeutic approach to treat
tauopathies (Figure 1). Alterations of microtubule-dependent
axonal transport is a characteristic of HD pathology (78, 79) and
could result from the independent, but coordinated effects of
mHTT and tau (Table 1). mHTT has been shown to interact with
and destabilize microtubules, resulting in alterations of axonal
transport and loss of neuronal viability (78, 79, 228). Tau has
further been found to recruit mHTT to the microtubule network
(56), which could precipitate the destabilization of microtubules.
For example, microtubule stabilization using the small molecule
Taxol, a semisynthetic taxane derivative, inhibits the entry of
mHTT into the nucleus and increases neuronal survival in HD
primary striatal and cortical neurons (78). These observations
suggest that tau and mHTT can both induce microtubule
destabilization, which support the restoration of microtubule
functions as a therapeutic approach for HD.

The cytoskeleton stabilizing agents Epothilone and Taxane
derivatives have been found to interact with tubulin, restore
rapid axonal transport, and alleviate cognitive and motor
impairments in mouse models of tauopathies (T44 tau Tg
mice; PS19 tau Tg mice) (71, 229). However, the Epothilone
D phase I clinical trial was discontinued due to toxicity and
severe side-effects were reported for taxoid TPI 287 (abeotaxane)
(230). On the other hand, the microtubule-stabilizing peptide
Davunetide (NAP) (231, 232) was well-tolerated in preclinical
toxicology and clinical safety studies (233). NAP demonstrated
highly potent neuroprotective properties by reducing the activity
of the microtubule-severing protein katanin (234), inhibiting
programmed cell death and restoring mitochondrial function
in the PD-related A53T α-synuclein SH-SY5Y cell culture
model (235). In a Tg schizophrenia mouse model (activity-
dependent neuroprotective protein (ADNP)+/− Tg mice),
intranasal administration of NAP decreased brain levels of p-
tau and improved cognition (236). The treatment of patients
suffering from mild cognitive impairments with NAP showed
improved attention and working memory (233). However, no
improvement of cognitive deficits was observed in Progressive
Supranuclear Palsy (PSP) patients treated with NAP, which could
be partly explained by an ineffective dosage (237).

Views on Stabilizing Microtubules
The regulation and restoration of microtubule function is an
attractive strategy substantiated by promising preclinical results.

Epothilone and Taxane derivatives were approved by the FDA in
the early 1990s [history reviewed in (238)] as chemotherapies to
treat aggressive cancers and despite significant side-effects, they
are among the most relied upon therapies to treat solid tumors
(239, 240). In the case of neurodegenerative diseases, the toxicity
of microtubule-stabilizing agents is a major drawback that may
limit their clinical use, altogether. However, new microtubules
stabilizing agents such as Davunetide and others [reviewed in
(241)] exhibit promising disease-mitigating outcomes in animal
models, with more manageable side-effects in clinical trials,
and could therefore be the new frontier in the search for
microtubules stabilizing strategies to ameliorate tau pathology in
neurodegenerative diseases, including HD.

MODULATION OF MAPT GENE
EXPRESSION

Mutations in the MAPT gene have been associated with
neurodegenerative diseases such as Frontotemporal dementia
(20, 242–245), PSP (245) and AD (17–21); diseases characterized
by abnormal accumulation of pathological forms of tau and
that further correlate with cognitive deficits. Impaired alternative
splicing of exon 10 of theMAPT gene leads to an imbalance in the
amount of 3R and 4R tau isoforms within cells, and a change in
3R to 4R ratio has been associated with specific tauopathies. For
instance, NFTs are found to be immunopositive for both 4R and
3R in AD (28), while patients with Pick’s disease predominantly
express the 3R tau isoform (246). As a result, temporarily altering
MAPT expression or splicing using antisense oligonucleotides
(ASO) has been considered (Figure 1) (247). To our knowledge,
noMAPT mutations have been associated with HD, but patients
express lower 3R and increased 4R tau mRNA and protein levels
(32) and the 4R isoform is enriched in tau nuclear rods found in
the striatum (31). Therefore, selectively reducing the levels of 4R
tau without altering the overall expression of tau protein in HD
could restore protein homeostasis (31, 32).

Tau is involved in essential cellular functions (248) and as
a result, tau silencing could raise safety concerns that would
limit its translation to the clinic. Studies in tau knock-out animal
models have demonstrated that loss ofMapt causes cognitive and
motor deficits in an age- and strain-dependent manner (249). A
marked reduction in the number of dopaminergic neurons was
observed in the substantia nigra pars compacta ofMapt −/− mice,
which correlated with PD-like motor deficits in 12-month old
animals (249, 250). However, the partial or total downregulation
of the Mapt gene in the R6/1 Tg (115 CAG repeats) HD mouse
model improves motor behavior and does not induce significant
side-effects (31). Furthermore, the reduction of tau protein levels
using the ASO BIIB080 prevents NFTs deposition and clears
pre-existing tau aggregates, mitigates neuronal loss, ameliorates
behavior (nesting) and extends the survival of PS19 Tg mice
expressing the disease-associated P301S tau mutation (251). In
non-human primates, ASO BIIB080 reduces tau mRNA and
protein levels in the brain, spinal cord and CSF (251). These
promising results enabled the advancement of ASO BIIB080 to
phase I clinical trial that is currently ongoing (252).
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Views on Modulating MAPT Gene
Expression
Modulation of gene expression is a novel therapeutic avenue
to treat tauopathies and mRNA-targeting strategies using ASO
have recently been proposed as a potential treatment for HD
(253). The preliminary results of a clinical trial on IONIS-
HTTRx, an ASO drug that targets HTT, reported a sharp
decrease in mHTT CSF levels with no serious adverse events
(254, 255). To our knowledge, silencing more than one gene
via ASOs has never been tested, but lowering both HTT
and tau expression levels in HD patients has recently been
proposed (256). However, gene silencing and modification of
gene expression are novel technologies with only a few treatments
approved for clinical use. For instance Fomivirsen, an antisense
antiviral drug for the treatment of retinitis cytomegalovirus,
was the first antisense drug approved by the FDA in 1998
(257), and the second ASO therapy to reach the market
(Mipomersen, to treat familial hypercholesterolemia) was FDA
approved only 15 years later. As of today, little is known about
the possible long-term consequences of modulating protein
levels with ASOs, and it is essential to extensively investigate
whether modulation of both MAPT and HTT expression could
ameliorate disease outcome in HD patients without inducing
long-lasting side-effects.

ADDITIONAL TAU-TARGETING
APPROACHES

In addition to phosphorylation, tau can undergo a number
of post-translational modifications such as glycosylation (9),
acetylation (7), truncation (258), glycation (259), nitration
(260) and ubiquitination (261) [reviewed in (262)]. These
modifications have been associated with tauopathies and mainly
investigated in AD brains, with observation of increases in
acetylated (7), caspase-truncated (263) and N-glycosylated forms
of tau (9). Several molecules have been tested in preclinical
and clinical studies to target these different disease-associated
post-translational modifications. For example, Salsalate is a
nonsteroidal anti-inflammatory drug that decreases t-tau levels
and acetylated tau at the K174 residue, ameliorates hippocampal
atrophy and memory deficits in PS19 Tg mice (8), and
has consequently advanced to phase 1 PSP clinical trial
(264). It remains undetermined whether tau post-translational
modifications, such as acetylation or glycosylation, occur in HD
and only a broader understanding of all forms of tau alterations
in the disease would support the exploration of these additional
tau-targeting approaches.

Another aspect of pathology is the impairment of protein
degradation via alterations of the UPS, which has been observed
and associated with tauopathies, and proposed to mediate the
accumulation of tau within cells (265, 266) [reviewed in (267)].
The search for drugs that increase the degradation of tau by
activating the UPS led to the identification of Rolipram (268).
Rolipram has been found to activate the UPS by stimulating
the protein kinase A (PKA)/cAMP pathway in ex vivo cortical
brain slices of rTg4510 mice and to reduce both t-tau and

insoluble tau levels (266). Rolipram also decreases t-tau and p-tau
levels in a Tg mouse model of early-stage tauopathy expressing
the proteasome 26S-targeted fragment (rTg4510:Ub-G76V-
GFP) and improves reversal learning behavior in experimental
animals (266).

Disease-associated post-translational modifications of tau, as
well as dysfunction of the UPS, are compelling alternatives to
explore for the treatment of tauopathies. In contrast to the
therapeutic strategies discussed in sections Therapeutic Strategies
to Target Pathological Forms of Tau, Mitigation of tau-induced
cellular alterations by stabilizing microtubules, Modulation of
MAPT Gene Expression of this review, the relevance of these
pathways remains to be demonstrated in models of HD, and
the functional and mechanistic contributions of UPS dysfunction
to HD pathology are unclear (269). HD-related alterations
of the UPS have been hinted at, with early studies showing
sequestration of UPS components withinmHTT inclusion bodies
(87, 270) in Tg HD mouse models (R6/1, R6/2 and R6/5 Tg
- 130-155 CAG repeats) (87) as well as in human brain tissue
(270). However, further characterization suggested that UPS
impairments could be a transient phenotype, as global UPS
activity was not significantly impaired in the R6/2 model and in
the HD94 mouse model that expresses mHTT fragments under
a tetracycline-responsive system (271, 272). An explanation
for these seemingly contradictory findings was proposed by
Schipper-Krom et al. who suggested that proteasome recruitment
into inclusion bodies is a dynamic and reversible process,
that does not inhibit the catalytic activity of the sequestered
proteasome units (273), thus supporting observations that the
UPS activity may not be impaired in HD mouse models.
Nonetheless, pharmacological and genetic modulation of the
proteasome activity suggest its implication in mHTT aggregation
and cell survival, as a reduced activity is associated with
increased aggregation (88, 274) and increased activity promotes
the survival of HD striatal neurons (275).

CONCLUSION

HD patients and their families carry a heavy emotional
and financial burden as they face the challenges of a very
complex disease, which manifests with a blend of motor,
neuropsychiatric and cognitive deficits. Efficient symptomatic
treatments, and more importantly disease-modifying therapies,
are urgently needed. The diversity of symptoms and difficulty
to target the root of the disease, a mutation in the HTT gene,
suggests that combinatorial therapies that attenuate multiple
dysfunctional proteins and pathways may ultimately be the
best strategy to tackle the complex portrait of HD (Table 1).
Here, we have reviewed compelling evidence suggesting that
HD patients develop features of tauopathies and tau-related
dysfunctions. These include the (i) altered exon 10 splicing of
MAPT (31, 32), (ii) correlations between H2 MAPT haplotype
and severity of cognitive decline (27), (iii) dysfunction of
tau-targeting kinases and phosphatases (55, 56, 64, 83), (iv)
increased soluble hyperphosphorylated tau (32), (v) altered
levels of t-tau in the brain and CSF (32, 96, 97, 209), and
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(vi) presence of brain NFTs (27, 98, 99). The accumulating
evidence of tau pathology encompasses broad dysregulations
at the genetic and molecular levels, in CNS tissue and
associated biological fluids, and therefore argue in favor of the
classification of HD as a secondary tauopathy. In-depth studies
are now needed to determine if tau dysfunction directly causes
some of the features associated with HD, and in particular
cognitive deficits.

Therapeutic approaches targeting tau pathology have been
initially designed to treat AD (Figure 1) (101) or primary
tauopathies such as PSP (276), based on a large body of
evidence suggesting a strong connection between alterations
of tau function and cognitive decline [extensively reviewed in
(277)]. HD pathology is also associated with both pathological
forms of tau and cognitive impairments, thus tau-targeting
therapies may offer a completely new angle to treat HD-
associated cognitive dysfunction. A diversity of tau-targeting
methodologies has been developed, from small molecules to
immunotherapies andmodulation of gene expression using ASO.
These therapies are at various stages of drug development,
providing exciting and hopeful prospects toward the betterment
of the HD condition.
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