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Modeling Zika Virus Transmission 
Dynamics: Parameter Estimates, 
Disease Characteristics, and 
Prevention
Munsur Rahman1, Kidist Bekele-Maxwell2, LeAnna L. Cates3, H. T. Banks2 & 
Naveen K. Vaidya4,5,6

Because of limited data, much remains uncertain about parameters related to transmission dynamics 
of Zika virus (ZIKV). Estimating a large number of parameters from the limited information in data 
may not provide useful knowledge about the ZIKV. Here, we developed a method that utilizes a 
mathematical model of ZIKV dynamics and the complex-step derivative approximation technique to 
identify parameters that can be estimated from the available data. Applying our method to epidemic 
data from the ZIKV outbreaks in French Polynesia and Yap Island, we identified the parameters that can 
be estimated from these island data. Our results suggest that the parameters that can be estimated 
from a given data set, as well as the estimated values of those parameters, vary from Island to Island. 
Our method allowed us to estimate some ZIKV-related parameters with reasonable confidence 
intervals. We also computed the basic reproduction number to be from 2.03 to 3.20 across islands. 
Furthermore, using our model, we evaluated potential prevention strategies and found that peak 
prevalence can be reduced to nearly 10% by reducing mosquito-to-human contact by at least 60% or 
increasing mosquito death by at least a factor of three of the base case. With these preventions, the 
final outbreak-size is predicted to be negligible, thereby successfully controlling ZIKV epidemics.

The Zika virus (ZIKV) was first isolated in a Ugandan forest from a febrile rhesus monkey in 19471. The first 
major outbreaks of ZIKV arose in Yap and Micronesia between April and July of 20072, followed by an additional 
outbreak in French Polynesia between October 2013 and April 20143. In 2015, ZIKV raised to prominence in 
American countries, more specifically in Brazil and Colombia4–6, the areas where the epidemic form of ZIKV was 
previously uncommon. In February 2016, the World Health Organization (WHO) declared ZIKV to be a public 
health emergency of international concern7, and the Center for Disease Control (CDC) set their response efforts 
to a Level 1 activation, which is the highest response level at the agency8. This devastating spread of the virus 
poses a major global public health emergency and prompts worldwide attention.

ZIKV, a member of the Flavivirade family, is primarily vector-borne, with some reported cases of sexual 
or blood-fusion transmission1–3,5. This arbovirus is spread by the Aedes genus of mosquito, which is also the 
primary vector for other well-known viruses like Dengue, Chikungunya, and yellow fever2,4,6, and is likely to 
flourish in tropical areas similar to the French Polynesian landscape. ZIKV symptoms include fever, myalgia/
arthralgia, edema of extremities, maculopapular rash, retro-orbital pain, conjunctivitis, and lymphadenopathies9, 
while many ZIKV infected individuals do not show any symptoms at all. Growing evidence shows that ZIKV is 
linked to several neurological disorders, such as Guillain-Barre Syndrome10,11 and microcephaly in infants born 
to mothers who were infected with ZIKV during pregnancy12,13. Unfortunately, there is no specific treatment 
for this disease, and at this moment the illness cannot be prevented by medications or vaccines. Because of the 
absence of treatment and vaccines, the immediate control strategy of ZIKV will rely on the control of mosquito 
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and/or human-mosquito contacts. It is thus critical to get insights into the transmission dynamics of ZIKV in the 
population and properly evaluate potential control strategies.

Mathematical modeling has become a useful tool in studying dynamics and designing prevention and control 
measures for infectious diseases14–19. Previous modeling studies on ZIKV have advanced our understanding of 
the ZIKV infection and related parameters2,20,21, but limited experimental and theoretical studies have left much 
to be desired. In particular, it has been common practice to estimate the parameters from model fitting without 
considering that all parameters might not be accurately estimated from the limited data sets2,21. Moreover, the 
number of parameters that can be estimated might not be similar for all datasets. The parameter estimation 
from model fitting without thorough analysis on the available data set and related estimable parameters may 
not be reasonable for ZIKV transmission dynamics. Given the lack of detailed analysis on the current parameter 
estimates, the key epidemiological parameters of ZIKV transmission, including the basic reproduction number, 
still remain uncertain. In addition, there is a lack of detailed evaluation on potential ZIKV control strategies. 
Such studies based on prior analysis of parameter estimation and validation could inform future data collection 
strategy, including those involving prevention measures, such as outbreak planning or assessment of potential 
countermeasures, thereby helping to decrease the potentiality of this infectious disease to become a pandemic.

The primary objective of this study was to investigate whether data collected from various islands contain 
information to estimate all the parameters related to ZIKV. For this, we formulated mathematical models of trans-
mission dynamics of ZIKV infection and employed complex-step derivative based sensitivity analysis to identify 
the parameters that can be estimated from a given limited data. In particular, we used a standard and well-known 
least square based inverse problem formulation to estimate the parameters. We then performed sensitivity anal-
ysis using the relatively unknown and accurate ‘complex-step’ derivative approximation technique to compute 
sensitivities and standard errors. Using our method, we identified the estimable ZIKV related parameters that can 
be more confidently estimated from the survey data from six islands of French Polynesia and one island of the 
Federated States of Micronesia (weekly new infected population). Our techniques allowed us to estimate some 
ZIKV-related parameters with reasonable confidence intervals. Using these estimated parameters, we computed 
the basic reproduction number and performed model analysis to study the disease dynamics as well as the effect 
of prevention programs on disease outcomes.

Results
Identification of parameters that can be estimated from island data.  We fitted our model to 
the cumulative new infection data from each of six islands of French Polynesia (Tahiti, Sous-le-vent, Moorea, 
Tuamotu-Gambier, Marquises, Australes) and Yap island. We first estimated five parameters along with their 
respective standard errors (Table 1). With these parameters, the model simulations exhibited reasonable agree-
ment with the data (see Supplementary Fig. S1). However, as we can observe from Table 1, the standard errors 
for the estimated parameters are very large, giving a negative lower limit of 95% confidence intervals. The reason 
for the large standard errors could be that the data may not have enough information to estimate all five param-
eters and/or the model solution, P, may not be sensitive to all five parameters22. This uncertainty embedded in 
larger confidence intervals can be reduced by using less number of free parameters during data fitting process. As 
successfully implemented in many previous studies23–27, the number of free parameters can be reduced without 
violating the significance of data-fitting by fixing the parameter which has the least impact on the model solution. 
To use the similar technique, we computed the sensitivity matrix (see “Methods” section), which allowed us to 

Parameter Tahiti Sous-le-vent Moorea
Tuamotu-
Gambier Marquises Australes Yap

Average of all 
islands

β̂h S.Error 
[95% CI]

1.5547
0.9818
[−0.4816
3.5910]

0.8794
0.5873
[−0.3387
2.0975]

0.9569
0.5296
[−0.1415
2.0553]

0.9751
2.2552
[−3.7022
5.6524]

0.4601
0.5255
[−0.6298
1.5500]

1.7768
3.4492
[−5.3768
8.9304]

0.1787
3.0457
[−6.1381
6.4955]

0.9688

βm
S.Error
[95% CI]

0.0561
0.0996
[−0.1505
0.2627]

0.0685
0.0468
[−0.0286
0.1656]

0.1105
0.1887
[−0.2809
0.5019]

0.0771
0.3168
[−0.5799
0.7341]

0.1957
0.4066
[−0.6476
1.0390]

0.0319
0.0943
[−0.1637
0.2275]

1.2873
8.9866
[−17.3509
19.9255]

0.2610

αh
S.Error
[95% CI]

0.0833
0.0566
[−0.0341
0.2007]

0.1212
0.1431
[−0.0467
0.2133]

0.0875
0.0432
[−0.0021
0.1771]

0.0833
0.2544
[−0.4443
0.6109]

0.2500
0.8910
[−1.0375
1.5375]

0.0833
0.2270
[−0.3875
0.5541]

0.1138
2.8665
[−5.8313
6.0589]

0.1174

γh
S.Error
[95% CI]

0.0833
0.2398
[−0.4140
0.5806]

0.0833
0.0627
[−0.0467
0.2133]

0.0833
0.2283
[−0.3902
0.5568]

0.1249
0.5638
[−1.0444
1.2942]

0.2500
0.6208
[−1.0375
1.5375]

0.0878
0.3314
[−0.5995
0.7751]

0.0833
0.7629
[−1.4990
1.6656]

0.1137

η × 100
S.Error
[95% CI]

2.8400
0.0142
[2.8105
2.8695]

3.9400
0.0590
[3.8176
4.0624]

2.8500
0.0135
[2.8220
2.8780]

3.9900
0.3638
[3.2355
4.7445]

5.9600
0.5664
[4.7853
7.1347]

11.5800
0.6301
[10.2732
12.8868]

20.0400
4.7154
[10.2603
29.8197]

7.3142

Table 1.  Parameters obtained from fitting the model to data with all five parameters estimated. Here, β̂h and βm 
represent mosquito-to-human and human-to-mosquito transmission rate, respectively. Similarly, 1/αh and 1/γh 
represent human incubation period and the human infectious period. η represents proportion of case reported. 
The average of all islands shown are the values fixed in the subsequent fittings as needed.
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identify parameters that can be fixed and obtain reasonably smaller confidence intervals without violating the 
significance of data-fitting.

As discussed in “Methods” section, we computed the standard errors and the sensitivity value of P, i.e. ∂
∂Φ

P

j
, 

corresponding to all five parameters β β α γ ηΦ = ˆ , , , , andj h m h h , at the estimated parameter values using the 
second-order accurate complex-step approximation technique (Fig. 1). Note that the bigger the overall sensitivity 
value, ∂

∂Φ
P

j
, the more sensitive P is to the parameter Φj. As seen in Fig. 1, the magnitude of the sensitivity of P to one 

of the parameters (mostly η) is bigger in a multiple of magnitudes than each of the rest. In addition, the model 
solution is sensitive to most of the other parameters only for short periods of time. For each island, we identified 
the least sensitive parameter and fixed it during the data fitting process. We used the fixed value as an average 
estimate of all islands from Table 1 and later performed the sensitivity analysis of these chosen values. Then we 

Figure 1.  Sensitivity graphs of the cumulative infection P. The curves represent the local sensitivity value, ∂
∂Φ

P

j
, 

as a function of time corresponding to β β α γ ηΦ = ˆ , , , , andj h m h h  at estimated parameter values.
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refitted the model to the data to estimate the remaining four parameters (see Supplementary Table S1). We 
repeated the process by increasing the number of fixed parameters one at a time until each estimated parameter 
has a confidence interval less than a threshold value (see Supplementary Tables S2 and S3). Since we are interested 
in 95% confidence intervals, which corresponds to t-value of about 2.1 from student’s t-table for this data, we used 
a threshold ϑ = 1/(2.5) = 0.4 for our estimation (see “Methods” section). However, a lower value can be used if a 
higher confidence level is desired.

For the data considered here, the standard errors along with sensitivity results suggest that the data sets do 
not contain sufficient information to estimate more than three parameters in islands of French Polynesia and 
more than two parameters in Yap island with a reasonable degree of certainty attached to the estimates (Table 2). 
Interestingly, even in the islands where the equal number of parameters can be estimated, the parameters that can 
be estimated differ from island to island. For example, the data sets of both Tahiti and S-L-V allow to estimate 3 
parameters, but (βm, αh, η) can be estimated from Tahiti while (βm, γh, η) can be estimated from S-L-V (Table 2).

Final parameter estimates.  As identified above, the given island data sets allow us to estimate three 
parameters for Tahiti, S-L-V, Moorea, T-G, Marquises, Australes, and two parameters for Yap with a reasonable 
confidence interval. Note that the parameters that can be estimated from these data set with a reasonable con-
fidence interval differ from island to island. The final parameters obtained for each island along with their 95% 
confidence intervals are given in Table 2. The standard errors across all 7 islands have significantly decreased in 
our final estimates (see Supplementary Fig. S2).

To assure that the reduction of free parameters does not provide a poor fitting, we performed F-test27. In each 
island, we found that increasing the number of free parameters did not improve the statistical significance of the 
model fitting (p-value > 0.05 in each case). This shows that choosing the fixed parameters in a way as done in our 
case provides smaller confidence intervals without violating the significance of the data-fitting. With the final 
estimated parameters, the model prediction along with the survey data for each island is shown in Fig. 2 (left 
column).

In order to investigate whether the final estimated parameters are affected by the choice of values at which the 
fixed parameters are set, we performed a sensitivity analysis of the fixed parameters on the estimated parameters. 
In this analysis, we randomly chose 200 different values for each ‘fixed’ parameter from the uniform distribution 
of the values over the range of estimate in Table 1. Then for each of 200 sets of fixed parameters, we estimated the 
free parameters through data fitting. We obtained that the estimated parameters are less sensitive to these fixed 
values (Supplementary Fig. S3), showing the robustness of our final parameters. This observation is aligned with 
the fact that fixing the less sensitive parameter at a reasonable value would not significantly affect the estimated 
parameters.

Note that we estimated parameters based on cumulative data as it provided a simple model formulation. In 
addition, we also computed the weekly new infection predicted by the model and compared them with the exper-
imental weekly raw data (Fig. 2, right column). The model predictions from these final parameters estimated 
provide excellent agreement with the experimental weekly data from each of the 7 islands considered. To observe 
whether these final parameter estimates are affected when weekly raw data are used for fitting as in the early epi-
demics of Ebola virus28, we also fitted our model directly to the weekly raw data and found that the final estimates 
are not affected much in these island data sets (Supplementary Table S4 and Fig. S4).

Characteristics of ZIKV transmission dynamics.  Note that the mosquito-to-human transmission rate, 
β̂h, could be estimated with reasonable confidence from only Yap island data. Based on this estimate, we obtained 
the mosquito-to-human transmission rate to be 0.50 (95% CI: 0.46–0.53) per day for Yap island (Table 2). On the 
other hand, we could estimate the human-to-mosquito transmission rate, βm, from all islands except Yap, and 

Parameter Tahiti S-L-V Moorea T-G Marquises Australes Yap

β̂h
[95% CI]

0.9688
[fixed] 0.9688 [fixed] 0.9688 [fixed] 0.9688 [fixed] 0.9688

[fixed]
0.9688
[fixed]

0.4952
[0.4570
0.5334]

βm
[95% CI]

0.0713
[0.0619
0.0807]

0.0596
[0.0510
0.0682]

0.1325
[0.0888
0.1762]

0.0712
[0.0604
0.0820]

0.0409
[0.0256
0.0562]

0.0536
[0.0475
0.0597]

0.2610
[fixed]

αh
[95% CI]

0.2253
[0.1610
0.2896]

0.1174
[fixed]

0.0836
[0.0589
0.1083]

0.0865
[0.0710
0.1020]

0.1174
[fixed]

0.2500
[0.1826
0.3174]

0.1174
[fixed]

γh
[95% CI]

0.1137
[fixed]

0.0833
[0.0600
0.1066]

0.1137
[fixed]

0.1137
[fixed]

0.0833
[0.0263
0.1403]

0.1137
[fixed]

0.1137
[fixed]

η × 100
[95% CI]

2.8600
[2.8306
2.8894]

3.9500
[3.9239
3.9761]

2.8500
[2.8275
2.8725]

3.9900
[3.9465
4.0335]

5.7000
[5.4656
5.9344]

11.7800
[11.4940
12.0660]

19.9900
[19.0451
20.9349]

# of estimable 
parameter

3
(βm, αh, η)

3
(βm, γh, η)

3
(βm, αh, η)

3
(βm, αh, η)

3
(βm, γh, η)

3
(βm, αh, η)

2
(β̂h, η)

R0
[Range]

2.3383
[2.1787
2.4877]

2.4977
[2.0424
3.1481]

3.1876
[2.6095
3.6759]

2.3367
[2.15222.5076]

2.0691
[1.2613
4.3165]

2.0274
[1.9068
2.1397]

3.1985
[3.0727
3.3196]

Table 2.  Final parameters estimated with reasonable confidence intervals, estimable parameters, and basic 
reproduction number (R0) with estimated range.
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found that βm ranges from 0.04 (95% CI: 0.03–0.06) per day in Marquises to 0.13 (95% CI: 0.09–0.18) per day in 
Moorea. It shows that the per day rate of mosquito-to-human transmission is about 4 to 12 times higher than that 
of human-to-mosquito. Our predicted human incubation period (1/αh) is about 4 to 12 days and can be estimated 
from Tahiti, Moorea, T-G and Australes. The predicted infectious (1/γh) period from our model is about 12 days 
that was estimated from S-L-V and Marquises islands (Table 2). These predictions are consistent with some pre-
viously measured laboratory data29,30.

Figure 2.  Survey data along with model prediction for each individual island. Cumulative infected humans 
(left column, solid line: model prediction and dot: data) and weekly new infection (right column, blue: model 
prediction and red: data).
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Estimated values of η, which could be estimated from the data sets of all islands, indicate that only a small por-
tion of predicted Zika infection was reported to the health sentinel sites. The reported cases ranged from 2.85% in 
Moorea to 19.99% in Yap. This shows that an actual epidemic size of the ZIKV could be significantly higher than 
that seemed in the reported cases. This is in agreement with the fact that individuals infected with ZIKV usually 
do not show any symptoms or show only mild symptoms and are most likely to be unreported.

Basic reproduction number.  The Basic Reproduction Number, R0, is defined as the average number of 
secondary cases generated by a typical infectious individual in a fully susceptible population17. The disease dies 
out if R0 < 1 and the epidemic occurs if R0 > 1. We calculated R0 for our model using the next generation operator 
approach31. We obtained the basic reproduction number for our model as follows:

β β α
γ λ α λ

=
+

.
ˆ

R
( ) (1)
h m m

h m m m
0

Using the estimated parameters in Eq. (1), we obtained the basic reproduction number, R0, with a value rang-
ing from 2.03 in Australes to 3.20 in Yap island (Table 2). Based on the parameter estimates, the range of R0 for 
each island is also presented in Table 2. The model predicts R0 > 1 in each island, and there were ZIKV epidemics, 
which is consistent with the observations in the data collected.

We further examined the effects of the parameters on the reproduction number R0 using the normalized for-
ward sensitivity index Sx given by32:

=
∂
∂

S x
R

R
x (2)x

0

0

where x is one of the parameters whose sensitivity on R0 is sought. This index implies that the higher the value in 
its magnitude, the more sensitive R0 is to the parameter. Also, the positive (or negative) sign indicates that R0 
increases (or decreases) as x increases. Our result shows that the basic reproduction number is more sensitive to 
mosquito lifespan than any other parameters (Fig. 3), suggesting that prevention programs focused on reducing 
mosquito lifespan can be more effective for avoiding ZIKV infection. To a lesser extent, R0 is also sensitive to βm, 
β̂h, and γh. Such measurements can be useful to identify and quantify the effective prevention strategies.

Disease outcomes: prevalence and outbreak size.  While we acknowledge that the same parameters 
may not be suitable for all the islands, we take the average of the values in Table 2 for our base case computations 
and simulation study purposes. With these parameters, our model predicts the mean prevalence of infection to be 
at its peak between the initial 8 to 10 weeks of infection. The amplitude of the peak suggests that during the peak 
time of infection 30–35% of the total population will be affected (Fig. 4). The model also suggests that after 

Figure 3.  Sensitivity index of the basic reproduction number corresponding to the parameters.

Figure 4.  Mean prevalence of infection during the ZIKV epidemic.
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approximately 20 weeks, the ZIKV epidemic will be over, even if no prevention program is implemented. Since 
our model does not include demographic birth-death and the disease death terms, the final outbreak size can be 
calculated by integrating the term β S t I t( ) ( )h h m  from the beginning of infection to the time when epidemic ends. 
We found that the final size of the epidemic can reach nearly 100% without prevention indicating that almost the 
entire island population can be infected with ZIKV during the epidemic period.

Effect of prevention programs on disease outcomes.  We evaluated two illustrative prevention pro-
grams: one that reduces contact between mosquito and human, and another that decreases the mosquito lifespan. 
Reducing the contact between mosquito and human refers to a variety of programs, such as wearing skin-covering 
clothes and using mosquito repellents. Similarly, decreasing the mosquito lifespan refers to the program such as 
the use of insecticides or other chemicals which aim to inhibit mosquito population growth. In our model, 
mosquito-to-human (β̂h) and human-to-mosquito transmission rate (βm) are the parameters related to preven-
tion programs that focus on reducing contact between humans and mosquitos, while the mosquito life-span (λm) 
can be associated with the preventive measures that aim to destruct the mosquito population.

If φ with 0 ≤ φ ≤ 1 is an effectiveness of the first prevention program (i.e. the reduction of contact between 
human and mosquito), implementing such programs causes the following transformation of our model: 
β φ β→ −ˆ ˆ(1 )h h and β φ β→ −(1 )m m. Our model suggests that reducing mosquito and human contact by at 
least 60% (i.e., when φ ≥ 0.6)would decrease the prevalence of ZIKV to an almost negligible level (Fig. 5). In this 
case, the final outbreak size reduces dramatically from 100% to nearly 10%.

Similarly, a decrease in mosquito lifespan (the second prevention program) with effectiveness θ, i.e., the reduc-
tion of mosquito lifespan by θ times, changes our model causing λ θλ→m m. With such prevention programs, the 
prevalence of ZIKV decreases to a negligible level when mosquito death is increased by at least a factor of three, 
i.e., θ ≥ 3 (Fig. 5). Also, this prevention effort can reduce the final outbreak size from about 100% to nearly 10%.

Discussion
In this study, we developed a sensitivity analysis based method, which utilizes the transmission dynamics model 
of ZIKV infection and the recently expanded complex-step approximation technique22,33, to identify parameters 
that can be estimated from the available limited data set. Using the estimated parameters by this technique, we 
also computed the basic reproduction number for ZIKV transmission dynamics and performed analysis and 
simulation of the models to investigate the disease outcomes and the effectiveness of prevention programs on 
controlling ZIKV infections.

Implementing our technique to seven island data (six French Polynesia and one Yap), we identified that these 
data sets do not contain sufficient information to estimate more than three parameters in islands of French 
Polynesia and more than two parameters in Yap island with a reasonable degree of certainty attached to the esti-
mates. Note that previous studies21 used some of these island data to estimate up to six parameters. However, the 
previous study21 used the stochastic approach with a Bayesian fitting procedure and whether this approach expe-
riences similar effects is not known. Importantly, our analysis also showed that the number of estimable parame-
ters and the estimated values varies from island to island, suggesting that the same set of parameters cannot be 
estimated from every island and thus attempting to estimate the same parameters across all islands may not pro-
vide reasonable information about the ZIKV transmission dynamics. Identification of parameters that can be 
estimated as done in our study may help to obtain important information about parameters related to ZIKV 
transmission dynamics. As a result, our method provides reasonably small confidence intervals implying more 
reliability to the estimated parameters (Table 2) while assuring significantly well model fitting to the island data. 

Figure 5.  Peak prevalence during an epidemic and final outbreak size predicted by the model for the prevention 
programs focused on reducing contact between humans and mosquitoes (left column) and mosquito lifespan 
(right column).
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Compared to a previous study21 that used the six islands of French Polynesia, some of the estimates from our 
method are quite different. In general, our estimates provided higher β̂h, lower βm, and lower η than the previous 
estimates.

We found that only a small portion of infections was reported (2.85–19.99%) as suspected cases across the 
islands (Table 2). This indicates that actual epidemic size could be quite larger than the documented epidemic 
size. Those non-reported zika infections might be either asymptomatic infections and/or infections with mild 
symptoms that did not enter the healthcare system. This phenomenon was supported by the household survey 
following the Yap island outbreak in 20079. Having a large number of non-reported cases estimated in this study 
warns higher severity of zika burden in epidemic regions and underscores a need for better surveillance and 
detection strategies.

Computed basic reproduction number, R0, from our study slightly varies from island to island (Table 2) and 
reflects that the ZIKV spreads rapidly throughout the islands. Based on a sensitivity analysis of basic reproduction 
number, we found that the value of R0 is mostly dependent on the mosquito life span, though other parameters 
can also have some impacts on R0. This indicates that the most effective prevention strategy to avoid zika epidem-
ics could be the control of mosquito growth or life span.

Our investigation on prevalence and infection provided some valuable implications to ZIKV epidemics. The 
prevalence started to increase at the beginning and reached its peak in between 8 to 10 weeks of the outbreak 
(Fig. 4). Then, it gradually decreased since more humans were recovering from the virus than those with the new 
ZIKV infections. Our study found that almost 100% of the island people were infected during the outbreak and 
the result is consistent with the other studies21. Since mosquito bite is the main reason for disease transmission, 
our result showed that reducing the human and mosquito contact could create a safe environment. Reducing the 
contact about 60% between human and mosquito can drastically reduce both peak prevalence and final outbreak 
size and almost eradicate the ZIKV infection (Fig. 5). The outcome is almost identical with the reduction of the 
mosquito lifespan (Fig. 5). The disease can completely be exterminated by lowering the mosquito lifespan by a 
factor of 3 to 4 times its base case. We note that the evaluation of these prevention programs was based on the 
sensitivity of prevention-related model parameters. Further evaluations with detailed models and the data related 
to the prevention programs are necessary before recommending these programs to practical applications.

We acknowledge some limitations of our study. In this study, we modeled the island situation in which 
humans and mosquitos usually have close proximity to one another. While our study is relevant to many settings 
that share characteristics of our population, including military units, college campus, nursing homes, boarding 
schools, and other rural communities, these results may not be generalizable to other conditions where uniform 
mixing between humans and mosquitos is not the case. Secondly, we did not consider the seasonal variation 
in transmission in our analysis as a result of climate factors. However, the outbreaks ended before there was 
a substantial seasonal change in rainfall or temperature and hence might have very less influence on disease 
transmission. If the outbreaks had ended because of seasonality rather than the depletion of susceptible popula-
tions, it would reduce the estimated proportion of the infected population. Our parameter estimates and related 
confidence intervals are based on limited data sets, thus there might be some quantitative difference between our 
predictions and the real scenarios. Our results on prevention programs are based on the parameter sets averaged 
over islands. However, we acknowledge that the same parameters may not provide reasonable outcomes for all 
islands, or even for the same island at different time points. We have also ignored potential stochastic effects in 
ZIKV transmission, which may be important, particularly during the early phase of the infection. The estimates 
may be improved by incorporating stochastic effects in our model28. However, our data contain entire epidemic 
periods, rather than only initial growth, thereby reducing the stochastic effects. Further study with stochastic 
modeling is necessary to accurately evaluate the stochastic effects on ZIKV dynamics of these islands.

The main goals of this study were to gain deeper insight into the epidemiological parameters of ZIKV trans-
mission and to evaluate appropriate prevention strategies. The results identified the importance of the informa-
tion contained in the data in estimating the ZIKV related parameters from the available limited data. This work 
offered novel insights into ZIKV related parameters as well as ZIKV infection dynamics and effect of prevention 
programs on disease outcomes, which might be useful for developing ideal prevention and control strategies.

Methods
Experimental data.  In this study, we utilized the published data containing number of suspected ZIKV 
infections from six main regions (Tahiti, Iles Sous-le-vent, Moorea, Tuamotu-Gambier, Marquises, and Australes) 
of French Polynesia, reported weekly between October 2013 and March 201434, and one region of the Federated 
States of Micronesia (Yap Island), reported weekly between April 2007 and July 20079. In the ZIKV outbreak 
data of French Polynesia, clinical cases were defined as suspected cases if they were presented to health practi-
tioners with rash and/or mild fever and at least two of the following signs: conjunctivitis, arthralgia, and edema. 
In total, 8,744 suspected cases were reported from the health sentinel sites. Similarly, in the Yap Island data, 
researchers reviewed medical records and conducted prospective surveillance at the hospital and all four health 
centers on Yap to identify patients with suspected ZIKV disease9. Suspected cases had the following characteris-
tics: acute onset of generalized macular or papular rash, arthritis or arthralgia, or nonpurulent conjunctivitis. Out 
of the total 1,276 households tested on Yap Island, 185 cases were identified as suspected ZIKV disease, which we 
extrapolated for the whole population of Yap Island. We obtained population data for these Islands from the 2012 
French Polynesia Census35 and the Federated States of Micronesia 2000 Census36.

Mathematical model.  We developed a compartmental mathematical model to describe the ZIKV transmis-
sion dynamics, similar to the ones previously used for vector-borne transmission37,38. The humans were modeled 
using a susceptible-exposed-infectious-recovered (SEIR) framework, whereas the mosquitos were modeled as 
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susceptible-exposed-infectious (SIE) framework (Fig. 6). In this model, exposed classes were incorporated to 
include delays as a result of intrinsic (human) and extrinsic (mosquito) incubation periods.

In the model system, Sh represents the number of susceptible humans, Eh is the number of humans currently 
in their incubation period, Ih is the number of infectious humans, and Rh is the number of humans that have 
recovered from the ZIKV infection. Similarly, Sm, Em, and Im represent the susceptible, exposed, and infectious 
mosquito populations, respectively. The dynamics of our ZIKV epidemiological model are governed by the fol-
lowing system:
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where = + + +N S E I Rh h h h h represents the total number of humans and = + +N S E Im m m m represents the 
total number of mosquitos. The parameters 1/αh represents the human incubation period, 1/αm is the mosquito 

Figure 6.  Schematic representation of human-mosquito ZIKV transmission.
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incubation period, 1/γh represents the human infectious period, and 1/λm is the mosquito life-span. In this model, 
susceptible humans get infected through the bites by infected mosquitos at a mosquito-to-human transmission 
rate βh and a susceptible mosquito get infected when it bites infected humans at the human-to-mosquito trans-
mission rate βm. We presented our model with density-dependent infection rate from mosquito to human trans-
mission. In this model, the total human population and the total mosquito population remain constant over time, 
i.e. = = 0dN

dt
dN
dt

h m . Therefore, with scaling β β→ Nh h h , the density-dependent infection rate and the 
frequency-dependent infection rate are equivalent, and with this scaling, our model can easily recover the model 
with frequency-dependent rate.

Since the death due to ZIKV was not reported during the period of epidemics, we have ignored disease death 
rate terms in the model. We also consider a closed population (i.e. a population with no births, deaths or contin-
ual immigration), since the mean human lifespan is much longer than the outbreak duration, and entry and exit 
of people inside the island are negligible during this short period of the outbreak. We assumed all people trans-
mitted at the same rate, regardless of whether they displayed symptoms or were reported as cases. We considered 
that no transmission typically occurs before the exposed individuals enter the infectious class.

We now introduce variables =s S N/h h h, =e E N/h h h, =i I N/h h h , =r R N/h h h , =s S N/m m m, =e E N/m m m, and 
=i I N/m m m, scaled to their corresponding total population size. This allows the standard simplification of 
= − − −r s e i1h h h h and = − −s e i1m m m, thereby reducing the population-wide ZIKV model to the follow-

ing five-dimensional system:
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where β β=ˆ Nh h m.

Initial population, mosquito lifespan and mosquito incubation period.  Serological analysis of samples 
from blood donors between July 2011 and October 2013 suggested that only 0.8% of the population of French Polynesia 
were seropositive to ZIKV39. We, therefore, assumed that the population was fully susceptible initially. We also assumed 
that the outbreak began with one initial exposed and one infectious human (i.e., eh(0) = ih(0) = 1/NH),  
and one exposed and one infectious mosquito (i.e., em(0) = im(0) = 0.005). The mosquito lifespan and the mos-
quito incubation period were previously estimated to be 10 days40,41 and 15 days41,42, respectively. Therefore, we 
took constant values of 1/αm = 10 days and 1/λm = 15 days for all islands. With these parameters and initial con-
ditions fixed, the remaining five model parameters, αh, γh, β̂h, βm and η (η is the proportion of case reported) are 
required to be estimated using epidemic data from ZIKV outbreaks in Yap island and the islands of French 
Polynesia.

Model fitting to the data.  We fitted the model to cumulative weekly new infection data. The cumulative 
new infections predicted by our model, P(t), are given by the solution of the following equation:

α= η .
dP
dt

e N (6)h h h

We solved the system of differential equations numerically using a fourth order Runge–Kutta method. 
Assuming that the errors are independent and normally distributed with mean zero, we used the solutions to 
obtain the best-fit parameters via a nonlinear least squares regression method that minimizes the following sum 
of the squared residuals.

∑Φ = Φ −
=

J( ) [P ( ) P ] ,
(7)k 1

n

t t
2

k k

where Φ = Φ Φ … Φ( , , , )m1 2  is a set of m parameters to be estimated; Ptk
 and Ptk

 are cumulative infected popu-
lation values predicted by the model and those obtained from the survey data, respectively. Here, n represents the 
total number of data points available for the model fitting. All computations were carried out in MATLAB (The 
MathWorks, Inc.). In addition to fitting the model to cumulative data, we also fitted the model directly to weekly 
new infection data (see “Final parameter estimates” section).

Computation of confidence intervals.  To obtain confidence limits for the estimated parameters, we com-
pute standard errors for Φ by using similar ideas as described in Banks, et al.26. For this, we first compute the 
sensitivity matrix Ψ of the parameters.
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Since we are unable to formulate the closed form of = …
Φ
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model, we use the following complex-step approximation to compute the partial derivatives described briefly 
below and in Supplementary Materials.

We consider the Taylor expansion of Ptn
 using a complex step ih, where h is taken to be a small positive con-

stant (h = 10−40 in our computations) and i is the unit imaginary number.
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With these, we compute an approximation to the sensitivity matrix Ψ denoted by Ψ̂ . Then we take 
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standard deviation for the parameter Φ = ….j m, 1, 2j . We also compute the standard errors using the usual 
forward finite difference method for comparison and validation. A brief derivation of the method is provided in 
Supplementary Materials and more detailed description can be found in Banks, et al.43,44.

Sensitivity analysis and stepwise parameter fixation.  Since we have available data only on P, the 
information content in the data may not be sufficient to estimate all of the parameters in the model based on the 
inverse problem formulation. By performing sensitivity analysis, that is, studying the rate of change of P due to 
change in Φ = …j m, 1 ,j , we can determine and identify the maximum number of parameters that can be 
estimated using each individual island data26,27. The procedure of sensitivity driven estimation is as follows.

	 1.	 Solve the ZIKV model system with m estimated parameters.
	 2.	 If the ratio of obtained standard error (SEj) to the estimated parameter value (Φj) is less than a desired 

threshold (ϑ), i.e. < ϑ
Φ

SEj

j
, for each estimate j = 1, 2, …, m, then STOP. Otherwise, go to step 3 and 4.

	 3.	 Choose the parameter which the model solution is least sensitive to (i.e., magnitude of ∂ ∂ΦP/ j close to 
zero) and fix this parameter at a reasonable value.

	 4.	 Estimate remaining m − 1 parameters using data-fitting process discussed above.
	 5.	 Replace m with m − 1 and go back to step 1.

Note that the choice of the parameters, which are the least sensitive to the model solution, as done in Step-3 
of our algorithm, has been successfully used in many previous studies23–27. The rationale for choosing the least 
sensitive parameters is that it would help maintain the goodness of model fitting to the data, compared to fixing 
other highly sensitive parameters.

Statistical analysis.  To evaluate the statistical significance of the fits obtained with the model with all five 
parameters free (Model-a) versus those obtained with the model with some parameter fixed (Model-b), we per-
formed an F-test45. Note that Model-a and Model-b can be taken as nested models. Similar to Bates and Watts 
(2007)45, we calculate the F-ratio = s s/e f

2 2, where se
2 is the difference between the residual mean square (RSS) of the 

two models divided by the number of additional parameters (i.e., two in islands of French Polynesia and three in 
Yap island). And sf

2 is calculated by dividing the RSS of Model-a by the difference between the number of data 
points and the number of free parameters. We then compare the ratio with an F distribution with the appropriate 
degrees of freedom.

Data Availability
All data generated during this study are included in this published article (and its Supplementary Information 
files). The analyzed raw data and MATLAB codes are available in the figshare public repository. https://doi.
org/10.6084/m9.figshare.5937274.v1, https://figshare.com/articles/Matlab_code_and_data/8148785.
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