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Association of human gut microbiota composition and
metabolic functions with Ficus hirta Vahl dietary
supplementation
Ruiming Xiao1,2, Guangjuan Luo1,2, Wanci Liao1,2, Shuting Chen1,2, Shuangyan Han1,2, Shuli Liang1,2 and Ying Lin 1,2✉

Ficus hirta Vahl (FHV), a traditional herbal ingredient of the tonic diet, receives increasing popularity in southern China. However, it
is largely unknown that how a FHV diet (FHVD) affects the human gut microbiome. In this exploratory study, a total of 43 healthy
individuals were randomized into the FHVD (n= 25) and Control (n= 18) groups to receive diet intervention for 8 weeks. 16S rRNA
gene sequencing, metagenomic sequencing and metabolic profile of participants were measured to assess the association
between FHV diet and gut microbiome. A preservation effect of Faecalibacterium and enrichment of Dialister, Veillonella, Clostridium,
and Lachnospiraceae were found during the FHVD. Accordingly, the pathway of amino acid synthesis, citrate cycle, coenzyme
synthesis, and partial B vitamin synthesis were found to be more abundant in the FHVD. In addition, serine, glutamine, gamma-
aminobutyric acid, tryptamine, and short-chain fatty acids (SCFAs) were higher after the FHVD. The conjoint analysis of FHV
components and in-vitro fermentation confirmed that the improved SCFAs concentration was collectively contributed by the
increasing abundance of key enzyme genes and available substrates. In conclusion, the muti-omics analysis showed that the FHVD
optimized the structure of the gut microbial community and its metabolic profile, leading to a healthy tendency, with a small
cluster of bacteria driving the variation rather than a single taxon.
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INTRODUCTION
A healthy, or tonic diet is to applying functional food into daily
diet for healthcare. It has become an emerging lifestyle element
with rapidly increasing popularity among a wide range of people
in recent decades. Ficus hirta Vahl (FHV), also called Wuzhimaotao
in southern China, belongs to the Moraceae in the genus Ficus. Its
dried root is commonly used in soups and health products in
South China. Currently, diverse biochemical components have
been identified in FHV, including flavonoids, coumarins, terpenes,
alkaloid phenolic acids and glycosides1,2. It was confirmed that
FHV, as a traditional Chinese medicine, possessed antioxidant and
anti-inflammatory activities3–5, but most concentrated on its in-
vitro functions and performed animal trials.
The FHV diet (FHVD) usually includes FHV in the daily diet in the

form of soup, the local residents are used to consumed FHVD for
healthcare, especially in hot and damp districts of South China. In
parallel with the development of preventive disease treatments,
the interaction between personalized diet and host health
received wide attention in recent years6,7. Beyond medical effects,
previous reports have emphasized the importance of disease
prevention through a customized diet such as Gluten-free diet8.
In the past decade, the development of the human genome

project has accelerated the progress of precise nutrition9. The gut
microbiome, known as the second genome of the human body,
can directly interact with ingested nutrients and alter their
efficacy, bioavailability and affecting host physiology10. More
recently, many studies have shown that gut microbiome
composition is closely related to dietary habits11. For instance,
the vegetarian diet increased the abundance of Bacteroides and
Faecalibacterium and decreased the abundance of Clostridium
cluster XIVa12. A commonly known Western diet was verified to

reduce the bacteria that metabolize dietary plant polysaccharides
such as Roseburia, Eubacterium rectale, and Ruminococcus bromii13,
suggesting that gut microbial changes were varied based on diet
habits and differences in nutrient intake. With the development of
omics technology, comparison between Western and Mediterra-
nean populations by metagenomics and metabolomics
approaches revealed that diet might have a stronger influence
on microbial metabolism than on taxa14 in which the microbiota
metabolites, such as vitamins, amino acids, and short-chain fatty
acids (SCFAs), are considered to benefit human health15. It is
known there is an important link between diet and the gut
microbiome, but it is largely unknown how the FHVD affects the
human gut microbial composition and metabolic function.
In this exploratory research, we utilized next-generation 16S

rRNA gene sequencing, shotgun metagenomic sequencing and
widely targeted metabolomics to perform a combinatorial analysis
of the effect of FHVD on the microbial taxonomy, functions, and
metabolic profiles. This study offers comprehensive insights into
the interaction between the FHV tonic diet and gut microbiota.

RESULTS
Nutrition intake during intervention
To reduce the impact of daily dietary intake on gut microbiota, all
participants were required to repast at a specific dining hall and
record their food for calculating the daily intake of energy, protein,
fat, and carbohydrate at the sampling weeks (week 0 and week 8),
for which there were no significant differences (P > 0.05) in
micronutrient intake (Supplementary Table 3), while the intake of
FHV roots in two treatment groups was distinctly different
(P < 0.001), as presented in Supplementary Table 1. Besides, a
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preliminary experiment of FHVD intervention was conducted
within 9 individuals. However, little significant difference of blood
biochemicals was found as presented in Supplementary Table 4.

Gut microbial taxonomy alteration in the Ficus hirta Vahl diet
After 8 weeks of intervention, genomic DNA was extracted from
each of 86 fecal samples for 16S rRNA gene sequencing of the V4
region to examine the gut microbiota. The Shannon curve
indicated that the sequencing depth covered virtually the full
range of the gut microorganisms (Supplementary Fig. 2). A total of
2085 OTUs were identified according to Fig. 1a, of which 58, 70,
77, and 67 OTUs were characteristic among NFHVD-Pre, NFHVD-
Post, FHVD-Pre, and FHVD-Post, respectively. In addition, the FHVD
influence on the amount and proportion of bacteria was assessed
in individuals by the discovered species and Shannon index, as
shown in Fig. 1b, c. The number of species in the two treatment
groups were not significantly different, but there was a slight
significant increase of Shannon index after FHVD intervention.
Then, we assessed the gut microbiota composition through
principal co-ordinate analysis over the unweighted UniFrac
distance (Fig. 1e), none of the changed beta diversities were

significantly different between groups during intervention
(P > 0.05).
The taxa changes were further investigated at different

classification levels horizontally and vertically in different cohorts.
Specially, At the phylum level (Fig. 1f), the predominant taxa were
Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. In
particular, the relative abundance of Firmicutes showed a
significant increase after NHFVD intervention (P= 0.0385), while
other phyla showed no significant changes. As shown in Fig. 1d,
the B/F ratio decreased after NFHVD intervention, with no
significant difference (P= 0.0814), but significantly increased after
the FHVD intervention (P= 0.0105).
At the genus level (Fig. 1g), there were 16 dominant genus taxa

in healthy individuals. The high-abundance of Bacteroides and
Prevotella were not obviously changed by FHVD intervention.
Faecalibacterium, was significantly reduced with the NFHVD
(P= 0.0268) but recovered with the FHVD by horizontal compar-
ison (P= 0.0389). In addition, the abundances of Dialister
(P= 0.0499), Veillonella (P= 0.0163), and an unclassified Lachnos-
piraceae organism (P= 0.0001) were increased specifically by the
FHVD. Both diets increased the abundance of Coprococcus after
intervention, but it only showed significance in the NFHVD
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(P= 0.0385). Holdemania was the only taxon that was significantly
enriched by both the NFHVD and FHVD. In addition, Shigella and
Desulfovibrio were found to had a similar reducing tendency in the
FHVD, however, only the latter (P= 0.0163) showed significant
difference.

Co-occurrence network differences between diet
interventions
Next, to investigate the patterns of interactions between gut
microbial communities, the co-occurrence networks of the FHVD
and NFHVD were constructed based on 16S rRNA gene sequen-
cing data (Fig. 2). A total of 35 and 41 nodes were discovered in
FHVD-Pre and -Post respectively, including 21 mutual nodes. For
another, 39 and 49 nodes were found in NFHVD-Pre and -Post
severally with 29 shared nodes in two groups. In addition,

significant correlations including 28 positive and 16 negative
correlations were revealed before the FHVD, while the number
changed to 29 positive and 22 negative after the intervention. For
the NFHVD, 35 positive and 16 negative correlations were
revealed before the intervention, followed by 25 positive and 23
negative correlations after the NFHVD. Notably, the core taxa
showed slight variation, with disappearance of Shigella, Sutterella,
Desulfovibrio, and appearance of Parabacteroides in the FHVD.

Metabolic function variation of gut microbiota in the Ficus
hirta Vahl diet
More recently, MicroPITA was commonly applied to select specific
samples from microbiome data to gain insight into the mechan-
ism by which the gut microbiome may interact with the host16,17.
Based on the 16S rRNA gene sequencing results of 86 samples, we
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selected 32 typical fecal samples (8 samples in each group) by
supervised method to conduct metagenomic sequencing. In total,
293701 core genes were detected. 511365, 238137, 306631, and
346350 feature genes were observed in NFHVD-Pre, -Post, FHVD-
Pre, and -Post, respectively (Fig. 3a). Principal component analysis
(PCA) in different cohorts showed that the sample variation of the
FHVD (Fig. 3c) was distinctly higher than that of the NFHVD (Fig.
3b). These genes belonged to 7256 KEGG Orthologs (KOs) and
were distributed in 259 metabolic pathway modules. Furthermore,
69 KEGG pathway modules (34 enriched) showed significant
differences in the FHVD, and 58 modules (29 enriched) were
significantly changed by the NFHVD. The variation in the
corresponding KEGG modules is displayed in Fig. 3d, and
significance were shown according to the reporter score (|reporter
score | > 1.65) of each module.
Particularly, The FHVD had a higher abundance of the synthesis

pathways involving vitamin B1 (thiamine, RS= 1.932), B5 (pan-
tothenate, RS= 2.313), and K2 (menaquinone, RS= 1.938), while
the latter was only enriched by the NFHVD (RS= 3.843). Besides,
NAD synthesis (RS= 2.463), citrate cycle (RS= 2.345), and the
glyoxylate cycle (RS= 2.275) were enhanced by the FHVD. In
contrast, the pentose-phosphate pathway was significantly

decreased (RS= 3.194). The enhanced pathways from essential
amino acids synthesis, including threonine (RS= 2.615), methio-
nine (RS= 2.879), tryptophan (RS= 3.551), lysine (RS= 2.583), and
isoleucine (RS= 1.840), was profiled in the FHVD, while only
tryptophan (RS= 2.693) and lysine (RS= 1.843) were enriched by
the NFHVD.

Widely targeted metabolic profiles difference in the Ficus hirta
Vahl diet
To further reveal the metabolic functional variation driven by the
FHVD, widely targeted metabolic profiles were used to evaluate
the effect of the FHVD on the host metabolite profiles from fecal
samples. In this part, the variable importance in projection (VIP)
scores were applied to estimate the enrichment or reduction in
metabolites through intervention with the two diets. It was
observed that the widely significant changes were enriched with
98 metabolites and downregulated with 27 metabolites by the
FHVD, while a few changes were observed after the NFHVD: an
increase in 2 metabolites and a reduction in 5 (Fig. 4a, b). The
significant changes in the abundance of the main metabolites are
shown in Fig. 4c. In particular, the FHVD mainly contributed to
metabolites such as l-serine (P= 0.0122), l-methionine
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(P= 0.0489), gamma-aminobutyric acid (GABA, P= 0.0083),
l-glutamine (P= 0.0228), and tryptamine (P= 0.0461). Other
metabolites received little attention because of the fewer report
with host health and gut microbiota.

Concentration and gene abundance variation of short-chain
fatty acid in the Ficus hirta Vahl diet
Our study also showed clear relevant changes in a number of gut
microbial fermentation metabolites. As shown in Fig. 5a–c, acetate
(P= 0.0122), propionate (P= 0.0122), and butyrate (P= 0.0122)
were distinctly improved by the FHVD but not by the NFHVD.
Meanwhile, there was an increase in the key gene abundance of
the butyrate synthesis pathway in the FHVD (P= 0.0391), although
no significant changes were observed in acetate and propionate
production (Figs. 5d–f). Next, the nutrient contents in water
extract of FHV was measured Supplementary Fig. 3), including
total sugar, protein, flavonoid, and polyphenol. The results showed
that FHV provided a larger amount of carbohydrate than other
components. In-vitro fermentation of FHV extract by the human
gut microbiota also showed significant increases in acetate,
propionate, and butyrate (Table 1).

Association analysis of Gut gut metagenome associated with
feature metabolites in FHVD
A total of 41 pathways were significantly correlated with 21
metabolites and 18 significantly enriched species, which high-
lighted the importance of microbial functions and taxa in
interactions with fecal metabolites to affect host health (Fig. 6).
For instance, biotin was positively correlated with the citrate cycle
and coenzyme synthesis, while less significance was found in

association with enriched species. Most of essential amino acids
were positively correlated with FHVD-enriched species, such as
Streptococcus spp., Blautia spp., and Lactobacillus kalixensis, while
the latter was only significantly co-enriched with Methionine.
Besides, GABA levels were positively associated with a wide range
of enriched species, especially acid-production bacteria such as
Blautia spp., Lactobacillus spp., and Acidaminococcus spp. More-
over, the citrate cycle and vitamin synthesis pathways exhibited a
positive correlation with Bacteroides dorei, Ruminococcus bromii,
and Blautia obeum, while few metabolites showed distinct
correlation with these pathways.

DISCUSSION
Dietary intervention in vivo simulated food intake in normal
human daily life with complex interactions between gut micro-
biota and hosts. It was concluded that the intake of nutrients was
not significantly impacted by following an FHVD (Supplementary
Table 3), indicating that the variation of gut microbial composition
and function were mainly driven by additional FHV in daily diet.
Besides, the FHVD improved the taxa diversity after 8 weeks of
intervention (Fig. 1b), and the result of principal co-ordinate
analysis over the unweighted UniFrac distance (Fig. 1e) showed
that the entire diversity was mainly driven by individual
differences, because there was no overlap between paired
samples with the individuals clustering together. Thus, it was
found that there were significant differences in the diversity
between pre- and post-intervention with the FHVD (horizontal and
vertical), but interindividual variation seemed to contribute more
to horizontal differences, leading to no significant variation on
blood biochemicals (Supplementary Table 4).
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significance of each metabolite was listed as P-value.
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It was also obvious that the overall microbial structure showed
significant alterations by the FHVD and NFHVD, however, their
variation tendency was distinctly different. Although fewer
significant change of Bacteroidetes was found during treatments,
it was worth noting that the decrease of Bacteroidetes during the
NFHVD and increase during the FHVD might jointly impact the
Bacteroidetes/Firmicutes ratio (B/F ratio). Recently, a large-scale
population study of the gut microbiota revealed that most OTUs
from Bacteroidetes were more prevalent among healthy indivi-
duals in Guangdong Province18. In addition, as the report
described, a higher B/F ratio was related to decreased obesity
risk and maintaining gut homeostasis19; our results suggested that
the additional FHV in the diet had the potential of healthcare by
altering the gut microbiota composition. Moreover, the

enterotype-determined Bacteroides and Prevotella were not
significantly changed by FHVD intervention, suggesting that
neither of the two medium diets could influence the individual
enterotypes, while some low abundance clusters showed note-
worthy differences. In the FHVD, the enriched Dialister spp. and
Veillonella spp. are recognized to be propionate producers
through the succinate pathway20. Meanwhile, some species from
Lachnospiraceae are known to utilize acetate and lactate to
produce butyrate21. Another butyrate producer, Coprococcus spp.,
was enriched in both diets, but it only showed significance in
the NFHVD.
Faecalibacterium prausnitzii, a species from the Faecalibacterium

genus which was listed as a live biotherapeutics22, is beneficial to
human health by generating immunoregulatory molecules such as
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Fig. 5 FHVD altered gut microbiota fermentation of carbohydrates to produce SCFAs. Changes in fecal concentrations of (a) acetate, (b)
propionate, and (c) butyrate. Changes in the abundance of genes that encode the key enzymes in (d) acetate production [formate-
tetrahydrofolate ligase fhs and acetate kinase ack], (e) propionate production [lactoyl-CoA dehydratase lcd, propionaldehyde dehydrogenase
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Table 1. Concentrations of SCFAs in in-vitro incubation solutions at different time points.

SCFAs Samples Anaerobic incubation time (h)

(mM) 0 3 6 12 24

Acetate Control
FHVD

0.31 ± 0.02 0.34 ± 0.10 a
2.35 ± 0.25 b

1.99 ± 0.40 a
2.69 ± 0.41 b

2.07 ± 0.28 a
9.13 ± 0.70 b

5.79 ± 0.11 a
6.40 ± 0.80 b

Propionate Control
FHVD

0.29 ± 0.02 0.51 ± 0.02 a
1.67 ± 0.15 b

1.36 ± 0.19 a
2.67 ± 0.27 b

1.26 ± 0.10 a
7.38 ± 0.46 b

3.40 ± 0.07 a
6.04 ± 0.57 b

Butyrate Control
FHVD

0.33 ± 0.01 0.42 ± 0.02 a
0.88 ± 0.01 b

0.92 ± 0.06 a
1.59 ± 0.08 b

1.25 ± 0.10 a
5.54 ± 0.25 b

2.41 ± 0.02 a
5.46 ± 0.45 b

Each data was conducted in triplicates, and the value was presented as Mean ± SD. Different lowercase letters indicate significant differences (P < 0.05) among
different groups.
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butyrate23 and negatively connected with a variety of diseases,
such as T2DM24, colitis25, and gout26. Interestingly, Faecalibacter-
ium was dramatically reversed in FHVD-Post (compared with
NFHVD-Post) (P < 0.05), suggesting a preservation of the probiotics
by the FHVD. For the reducing taxa, genera from Proteobacteria,
such as Shigella and Desulfovibrio, have been considered to
contain opportunistic pathogens and proinflammatory bac-
teria27,28. Simulated results were also found in an in-vitro
fermentation system of prebiotics by the gut microbiota29. Overall,
it was suggested that the addition of FHV enriched the abundance
of Faecalibacterium and SCFA-producing bacteria and inhibited
potential pathogens, thereby protecting the gut microbiome in
healthy individuals.
Obviously, The gut microbiome is an ecosystem with complex

interactions. It was suggested that microbial interactions are
promoted in both diets (Fig. 2). Notably, the core taxa showed
slight variation, with disappearing Shigella, a potential pathogen in
Proteobacterium28. Comparable results were also found in
Sutterella and Desulfovibrio. The results indicated that the relative
abundance and correlation of pathogenic bacteria were restrained
by the FHVD. Meanwhile, Parabacteroides appeared to be a core

node after the FHVD, which was reported to play an opposing role
with diverse conditions in recent research30. With the NFHVD
intervention, the decrease in the positive correlation and increase
in the negative correlation suggested that the microbial structure
tended to be enriched in specific taxa, although the topological
nodes showed an obvious improvement. Moreover, Faecalibacter-
ium and Blautia had a positive correlation with the FHVD-Pre and
-Post networks, reflecting a possible synergistic relationship
between beneficial bacteria. A positive correlation was also found
between Clostridium and Blautia. However, the underlying
mechanism remains to be revealed because the functions of taxa
in Clostridium are complex31,32. In summary, these phenomena
indicate that gut microbiota co-occurrence networks are struc-
tured to be healthier by an FHVD.
Furthermore, the effect of the FHVD on gut microbial

metabolism showed distinct diverse in the two diets. In particular,
the synthesis pathway of B vitamins were found specifically
enriched in the FHVD. Previous studies have emphasized the
importance of microbial water- and fat-soluble vitamins in
modulating the gut microbiota and host immunoreactions in
disease33,34. Besides, The FHVD seems to modulate energy
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metabolism via strengthening the citrate cycle. Usually, the citrate
cycle occurs in the mitochondrial matrix and is a core integration
center for the carbohydrate, lipid, and protein metabolic path-
ways. As a critical component of the citrate cycle, citric acid exerts
antioxidant, antiapoptotic, and anti-inflammatory actions in the
liver, brain, and cardiac tissues35. The decrease in the sulfate
reduction pathway was enhanced by the FHVD compared with the
NFHVD, as the major product of this pathway, and it was reported
that the effect of H2S on health was complex36, further studies will
need to assess with clinical phenotypes. Moreover, despite the
same partial trends in the NFHVD, a global enrichment pathways
of amino acid synthesis was found with the FHVD, such as
threonine, methionine, and isoleucine, there is an increasing body
of evidence indicating that the synthesis and metabolism of
amino acids are crucial pathway to modulate host physiology.
Amino acids can be synthesized by gut bacteria and are released
into the intestinal tract for further entry into the circulatory system
or utilized for the synthesis of bacterial cell components and
functional metabolites such as SCFAs37, meanwhile, they could
further alter energy homeostasis, nutrition metabolism, gut health,
and immunity38. Other metabolic pathways also showed dis-
persive enrichment by intervention with the FHVD. However, most
of them were less frequently reported to be connected with host
physiology.
Widely targeted metabolic assay was used to evaluate the effect

of the FHVD on the fecal metabolite profiles. Previous study
reported that serine in the gut improved colonic morphology and
alleviated inflammatory responses in mice with colitis39. Gluta-
mine, one of the most abundant amino acids in the human body,
protects gut health by repairing intestinal barrier function40.
However, little evidence has been obtained to confirm whether
these enriched metabolites were originated from the gut
microbiota. In recent decades, tryptophan metabolites have been
verified to be closely connected with human health by regulating
neurotransmission and cytokine signaling41. Tryptamine is mainly
transferred from tryptophan by decarboxylases encoded in a
variety of Firmicutes genomes, such as Blautia spp., Ruminococcus
spp., Clostridium spp., and Lachnospiraceae spp42., and the latter
pair was found to be significantly enriched in an FHVD. 5-Hydroxy
tryptamine, another health-related tryptophan metabolite, was
found to increase 1.38-fold, although the difference was not
significant. Additionally, endogenous GABA was also considered
to be a regulator of the nervous system through the gut-brain
axis43. The enhancement of neurotransmitter-benefit metabolites
might be related to the function of the effect of supplying Qi and
reinforcing deficiencies of FHV4. However, more evidence is
needed.
A consensus has been reached that beneficial bacteria can

produce SCFAs, which lower the gut pH and inhibit the growth of
pathogenic bacteria44. In addition, SCFAs are also signal microbial
metabolites to regulate host immunoreactions through G protein-
coupled receptors (GPCRs) and fatty acid receptors (FFARs)45. In
our study, the dry weight of three predominate SCFAs in the feces,
including acetate, propionate, and butyrate were promoted by the
FHVD. There are two major pathways by which exogenous herbal
nutrients of promote SCFA levels in the gut46, one of which
provides a fermentable carbon source that can only be
metabolized by the gut microbiota. We considered that the most
abundant carbohydrate could sever as available substrate for the
fermentation of gut microbiota, and the results of in-vitro
fermentation also confirmed the contribution of FHV extract on
SCFAs. Our subsequent study will focus on the further functions of
saccharides derived from FHV. In fact, by concluding the key
enzyme gene abundance of the synthesis pathway of above
SCFAs, the gene abundance of the butyrate synthesis pathway
was found significantly increased in the FHVD. On the other hand,
Acetate- and propionate-producing genera, including Lachnospir-
aceae and Dialister, were enriched in the FHVD, and the increased

SCFA levels could also be related to enzyme activity in variety
taxa46.
Given the major metabolite differences driven by the FHVD,

tripartite correlation analysis was performed to demonstrate the
relationship between microbial pathway modules, taxa and
metabolites (Fig. 6). The positive correlation between essential
amino acids and FHVD-enriched Streptococcus spp., Blautia spp.,
and Lactobacillus kalixensis, rather than functional pathway,
suggested that the increased amino acids were likely driven by
interaction of these species. Additionally, GABA levels were
positively associated with a wide range of enriched species,
especially acid-production bacteria such as Blautia spp., Acidami-
nococcus spp. and Lactobacillus kalixensis. Another opinion is that
GABA could be observed only in an acidic environment (pH < 5.5)
in vitro47, suggesting that an FHVD might promote these species
to improve GABA concentrations by enhancing the SCFAs
synthesis pathway. Despite the citrate cycle and vitamin synthesis
pathways were co-enriched with several indistinctive and
enriched bacteria (Bacteroides dorei, Ruminococcus bromii, and
Blautia obeum), but few metabolites showed a distinct correlation
with these pathways. This implied that the influence of an FHVD
on the fecal metabolite profiles was more likely through
alterations in the gut microbial consortium to modulate pathway
abundance indirectly rather than individual species.
Overall, our results emphasized the clear microbial taxa

variation with an FHVD and its close association with metage-
nomic functions and fecal metabolic profiles, providing a new
understanding of the role of dietary FHV in modulating host
physiology. Current evidences verified that the healthcare
function of FHVD might be associated with enhancing the
connection of potential benefited bacteria and health-promoted
metabolites. Future studies in larger clinical trial cohorts and
animal experiments still need to be conducted to obtain a better
understanding of the relationship between FHV components and
gut microbiota in specific disease phenotypes.

METHODS
Study design
The dried root of FHV was purchased from Jinyuan Green Life Co.,
Ltd. (Heyuan, China). The FHVD and NFHVD were prepared in the
form of soup according to the Cantonese recipe shown in
Supplementary Table 1. The control group of NFHVD contained no
FHV and was prepared the same as FHVD to reveal the effect of
the additive FHV. In total, 48 healthy participants (25 men and 23
women) were recruited for this research; no participants had
hyperglycemia, hyperlipemia or gastrointestinal disease; indivi-
duals with a history of antibiotic use within 6 months were also
excluded from this research. All participants were randomly
allocated to receive FHVD (n= 29,) or NFHVD (n= 19). There were
no significant differences (P > 0.05) in participant physical signs, as
summarized in Supplementary Table 2. The diet intervention
process was presented in Supplementary Fig. 1. After passing
through a two-week baseline measurement (week 0), the
participants entered an 8-week intervention to receive 250ml of
soup containing FHVD or NFHVD per day at a frequency of
random four times at workday per week. Individuals who failed to
complete the diet intervention were excluded from the analysis.
Fecal samples were collected before (week 0, for the Pre-
treatment assessment) and after (week 8, for the post-treatment
analysis) diet intervention for further analysis. Finally, 5 individuals
were excluded from the analysis due to protocol violations (3
individuals) and unfinished food records (2 individuals). A total of
43 individuals and 86 16S rRNA gene sequencing samples were
included in the analysis to assess the effects of FHVD on the gut
microbiota composition.
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Written informed consents were taken from all participants
before enrollment. Ethics approval was accepted by the Ethics
Committee of The First Affiliated Hospital of Guangzhou University
of Chinese Medicine (Guangzhou, China), document NO.
ZYYECK2019-032-XZ-01, ChiCTR Regis-tration NO.
ChiCTR2200056956.

Dietary intake assessment
During the intervention period, participants were required to
repast at a specific dining hall to normalize their dietary nutritional
intake. Briefly, the participants were given information on the food
nutrient content, and they were instructed to finish a continuous
three-day food record at sampling weeks. Then, the average
ingestion of macronutrients was calculated and checked for
completeness. The intake of macronutrients between -Pre and
-Post in the two diets was compared to assess dietary balance.

Fecal sample collection and pretreatment
Fecal samples were collected individually following an SOP of self-
collection (http://www.microbiome‐standards.org), and a sam-
pling kit with stabilizing solution was obtained from Beijing
Genomics Institute (BGI). Samples were sent to the laboratory
within two hours and immediately stored at −80 °C for further
sequencing at BGI and lyophilized for metabolic analyses at
Metware Biotechnology Co., Ltd. (Wuhan, China).

16S rRNA gene sequencing
Bacterial genomic DNA was used as a template to amplify the V4
hypervariable region of the 16S rRNA gene with the forward
primer 515 F (5′-GTGCCAGCMGCCGCGGTAA-3′) and the reverse
primer 806 R (5′-GGACTACHVGGGTWTCTAAT-3′). Validated
libraries were used for sequencing on the Illumina HiSeq 2500
platform and generated 2 × 250 bp paired-end reads. The quality
control and clustering results were analyzed by deblur method in
QIIME 2.0 software (version 2019.7). Optimized sequences were
clustered at a similarity of 97% and blasted with the Green Gene
Database to identify the taxa. Further analyses, such as alpha
diversity, beta diversity, and taxonomic distinctness, were
conducted in R (version 3.5.2) using the in-house script of the
vegan package (version 3.3.1).

Metagenomic sequencing
To further discern the role of FHVD in modulating gut microbiome
functions, microPITA (microbiomes Picking Interesting Taxonomic
Abundance) was applied to select typical samples of each group
for metagenomic sequencing48. A total of 32 core samples were
selected by supervised method48, with every 8 samples in FHVD-
Pre, FHVD-Post, NFHVD-Pre, and NFHVD-Post respectively. Geno-
mic DNA fragmentation and library construction were conducted
at BGI, and metagenomic sequencing was performed on the
MGISEQ-2000 platform at a depth of 10 GB. Analysis methods and
the calculation of gene abundance and Report Score were
performed according to previous studies26.

Widely targeted metabolomics detection
Widely targeted metabolomics detection was performed to
analyse the global fecal metabolites. In brief, a 20mg lyophilized
faeces was mixed with 400 μL of 70% methanol-water (internal
standard extractant), vortexed for 3 minutes and sonicated for
10minutes in an ice water bath. Then, the mixture was
centrifuged (12000 rpm, 4 °C) for 10 min, and the supernatant
was collected for analysis.
The sample extracts were analyzed using an LC–ESI–MS/MS

system (UPLC, ExionLC AD; MS, QTRAP® System). The analytical
conditions were as follows: the UPLC column was a Waters

ACQUITY UPLC HSS T3 C18 column (1.8 μm, 2.1 mm×100mm); the
column temperature was 40 °C; the flow rate was 0.4 mL/min; the
injection volume was 2 μL; the solvent system was water (0.1%
formic acid):acetonitrile (0.1% formic acid); gradient program,
95:5 V/V at 0 min, 10:90 V/V at 11.0 min, 10:90 V/V at 12.0 min,
95:5 V/V at 12.1 min, 95:5 V/V at 14.0 min. Another column was
also used for separation: UPLC column, Waters ACQUITY UPLC BEH
Amide (1.7 μm, 2.1 mm × 100mm); column temperature, 40 °C;
flow rate, 0.4 mL/min; injection volume, 2 μL; solvent system,
water (25 mM ammonium formate/0.4% ammonia):acetonitrile;
gradient program, 10:90 V/V at 0 min, 40:60 V/V at 9.0 min, 60:40 V/
V at 10.0 min, 60:40 V/V at 11.0 min, 10:90 V/V at 11.1 min, 10:90 V/
V at 15.0 min.
The ESI source operation parameters were as follows: source

temperature 500 °C; ion spray voltage 5500 V (positive), −4500 V
(negative); ion source gas I, gas II, and curtain gas were set at 55,
60, and 25.0 psi, respectively. The results were compared with the
internal database of Metware Biotechnology Co., Ltd. (Wuhan,
China).

Content analysis of components in FHV water extract
The water extract of FHV was prepared by following method:
200ml water was added to 20 g FHV powder and incubated in
boiling water for 2 h. Then, the extracting solution was
concentrated in vacuum to 50ml for components analysis. The
mass concentrations of total sugar, protein, flavonoid, and
polyphenol were measured according to previous studies49,50.

Gut microbiota fermentation in vitro
Fecal samples for in-vitro incubation were collected from 4
random participants. The pretreatment of fecal slurry and
incubation medium were prepared according to a previous
study51. A total of 5 mL water extract containing 2 g FHV dried
root was added to BNM medium and set as the FHVE group. Five
milliliters of distilled water were added and set as the control
group. Then, one milliliter of the fecal slurry was inoculated in an
anaerobic bottle with 25 mL of BNM broth, and each group was
inoculated in triplicate. Incubation was carried out under
anaerobic conditions at 37 °C, and samples from 0, 3, 6, 12, and
24 h were collected for SCFA tests.

SCFA detection
Sample pretreatment: 100mg dried fecal powder was resuspended
in 1mL of distilled water and vortexed for 2min. Then, 600 μL of
the supernatant of the fecal slurry or fermentation broth was
acidified with 20% (v/v) H2SO4. After vortexing for 1min, 500 μL of
n-butanol was added to the mixture and vortexed for 2min. The
supernatant was filtered through a 0.22 μm filter membrane for
sample injection. An Agilent 7820 A gas chromatography system
(Agilent Technologies, Santa Clara, CA) equipped with a flame
ionization detector (FID) and a DB-FFAP capillary column (Agilent,
30m × 0.25mm × 0.25 μm) was used for component separation.
The operating temperature conditions were set according to our
previous report29. Each experiment was performed in triplicate.

Statistical analysis
All statistical analyses were conducted with GraphPad Prism
7.0 software, and Student’s t test was used to analyze the in-vitro
fermentation data. Paired microbiome, metagenomics and meta-
bolomics data were analyzed by a nonparametric Wilcoxon
matched-pairs signed-rank test, while the nonpaired data of
different interventions were analyzed by the nonparametric
Mann–Whitney test comparing ranks. The Spearman correlation
was calculated to search for relations between the microbiome or
gene abundance and the biomarker levels. P < 0.05 was regarded
as a statistically significant difference.
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