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Infiltration of inflammatory cells into adipose tissue causes
insulin resistance in animal models and is associated with
insulin resistance in humans (1,2). Among potential ther-
apeutic approaches, the hormone erythropoietin (EPO)
exerts anti-inflammatory effects in a variety of nonery-
throid tissues (3), in which the receptor for EPO (EPO-R) is
widely expressed (4). Various observations suggest a rela-
tionship between EPO and diabetes. There is an increased
prevalence of anemia with inadequate EPO response in
diabetes (5), and treatment of anemia slows the progres-
sion of microvascular and macrovascular complications
(6). EPO reduced glucose levels in nondiabetic humans
(7) and reduced diet-induced obesity and suppressed glu-
coneogenesis in rodents (8,9). While EPO increases adi-
pose tissue oxidative metabolism and deletion of EPO in
adipocytes results in obesity (10), failure to reproduce
this highlights potential genetic and environmental influ-
ences (11). EPO has cytoprotective, proliferative, and anti-
inflammatory effects in a variety of tissues including
pancreatic b-cells, protecting against experimental models
of both type 1 and type 2 diabetes (12,13).

In this issue, Alnaeeli et al. (14) elegantly demonstrate
a pharmacologic role of EPO in attenuating adipose tissue
inflammation prior to changes in body weight. The authors
show that EPO-R is disproportionately highly expressed
in adipocytes and adipose inflammatory cells, and both
pharmacologic and endogenous EPO promote the skew-
ing of adipose macrophages to an alternatively activated,
predominantly M2 state. Beneficial roles of EPO are not
only abolished when EPO is given to mice lacking EPO-R
except in erythroid cells, but these EPO-R2deficient mice
have an unopposed proinflammatory phenotype with pre-
dominance of M1-activated macrophages. Thus, the pre-
dominance of anti-inflammatory M2 macrophages in the
lean nondiabetic state may be at least in part restrained by
endogenous EPO. As M2 macrophages play an important

role in tissue growth and differentiation, beneficial effects
of EPO in tissue injury may be achieved through effects on
macrophages in addition to a direct cytoprotective role.

While Alnaeeli et al. attributed EPO’s metabolic benefit
to effects on adipose tissue macrophages, their finding
that EPO expression is high in stromal vascular fraction
cells suggests that EPO might exert its effects via other
inflammatory cells, which in turn could impact the in-
flammatory status of adipose macrophages (15). As EPO’s
effects on glucose tolerance and inflammation were more
striking than on insulin sensitivity, these effects may rep-
resent an association rather than a causal relationship.
Indeed, some of the observed metabolic effects may be
attributable to EPO’s effects on b-cells (12). Could there
be an additional role for the brain in mediating EPO’s
effects? EPO-R is abundantly expressed in hypothalamic
proopiomelanocortin (POMC) neurons (16), and glucose
sensing by POMC neurons contributes to regulation of
systemic glucose metabolism (17). Another intriguing
question is whether some of the insulin-sensitizing effects
might be mediated by EPO-induced decreases in systemic
iron stores (18), given the known association between
iron overload and insulin resistance (19) (Fig. 1).

The study by Alnaeeli et al. (14) provides novel insights
into both pharmacologic and endogenous roles of EPO
that improve glucose tolerance and reduce inflammation.
Thus, EPO’s extra-erythropoietic actions may offer novel
approaches to diabetes prevention and treatment. As in-
creased risk of thrombogenesis and hypertension (4) sug-
gest that EPO be used cautiously in diabetes, selectively
harnessing EPO’s favorable metabolic effects may have
therapeutic potential (20).
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Figure 1—Erythroid and nonerythroid effects of EPO. Under hypoxic conditions, EPO promotes increased production of red blood cells
(RBC). In the hypothalamus, EPO-Rs expressed in POMC-producing neurons regulate food intake and energy expenditure. In white
adipose tissue, EPO decreases inflammation, normalizing insulin sensitivity and reducing glucose intolerance. In the pancreas, EPO exerts
anti-apoptotic, anti-inflammatory, proliferative, and angiogenic effects on b-cells.
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