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Abstract

Body mass index (BMI) is a highly heritable polygenic trait. It is also affected by various envi-

ronmental and behavioral risk factors. We used a BMI polygenic risk score (PRS) to study

the interplay between the genetic and environmental factors defining BMI. First, we gener-

ated a BMI PRS that explained more variance than a BMI genetic risk score (GRS), which

was using only genome-wide significant BMI-associated variants (R2 = 13.1% compared to

6.1%). Second, we analyzed interactions between BMI PRS and seven environmental fac-

tors. We found a significant interaction between physical activity and BMI PRS, even when

the well-known effect of the FTO region was excluded from the PRS, using a small dataset

of 6,179 samples. Third, we stratified the study population into two risk groups using BMI

PRS. The top 22% of the studied populations were included in a high PRS risk group.

Engagement in self-reported physical activity was associated with a 1.66 kg/m2 decrease in

BMI in this group, compared to a 0.84 kg/m2 decrease in BMI in the rest of the population.

Our results (i) confirm that genetic background strongly affects adult BMI in the general pop-

ulation, (ii) show a non-linear interaction between BMI genetics and physical activity, and (iii)

provide a standardized framework for future gene-environment interaction analyses.

Introduction

Body mass index (BMI) is a complex measure that has been robustly associated with cardiome-

tabolic traits and diseases [1]. BMI is a highly heritable complex trait, with heritability esti-

mated to be between 30–40% [2–5]. Studying how genetic variation affects BMI is important

to understand the biology of BMI-related diseases.

Genome-wide association studies (GWAS) have identified a multitude of BMI-associated

genetic variants at the genome-wide significance threshold (p< 5 x 10−8). The largest meta-
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analysis of GWAS so far, including ~700,000 adults, identified 941 genetic variants associated

with BMI [6]. From the significant variants, genetic risk scores for BMI (BMI GRS) have been

constructed representing the number of BMI-increasing risk alleles, weighted by their respec-

tive effect sizes within the discovery GWAS. However, the GRS constructed in the study

explained only 6.0% of BMI variance, which is substantially less than the estimated heritability

of BMI. This finding represents a marked case of missing heritability. There are many potential

reasons for heritability missing from the GWAS findings [7], including non-significant vari-

ants with small effect size, rare variants, structural variation, and gene-gene and gene-environ-

ment interactions.

One of the substantial reasons for the missing heritability of BMI is that BMI is a polygenic

trait. Thus the set of genetic variants identified at the genome-wide significance threshold have

limited predictive ability. The genetic susceptibility to BMI is accumulated from numerous

genetic variants with individually small to modest effects [8]. Recently, computational algo-

rithms have been developed to derive polygenic risk scores (PRS) that combine all available

common genetic variants into a single quantitative measure [9]. Applied to BMI, a BMI PRS

was shown to be a better predictor of BMI than a BMI GRS comprised of 141 BMI-associated

genetic variants [10], as expected based on the highly polygenic nature of BMI.

Another source of the unexplained variation of BMI stems from gene-environment interac-

tions [11, 12]. An interaction occurs when the biological effect of a genetic variant depends on

a risk factor, such as an environmental stimulus or a lifestyle factor [13, 14]. For example,

physical activity attenuates the effect of a common SNP rs9939609 within the FTO locus on

BMI [15, 16], the strongest common SNP known to associate with BMI. However, detection of

the interactions driven by individual SNPs is challenging. A meta-analysis of 200,452 adults

[12] reported only one additional SNP, rs986732, on top of the known FTO locus. Attempts to

aggregate genetic background using GRS to increase power to detect gene-environment inter-

actions have been made. Recently, a large study in up to ~360,000 unrelated participants from

UK Biobank identified several risk factors–alcohol intake, physical inactivity, socioeconomic

status, mental health, and sleeping patterns–that influenced the effect of a BMI GRS comprised

of 94 BMI-associated genetic variants on BMI [17].

In the present study, we investigated the interactions of a BMI PRS with environmental and

lifestyle risk factors and used the interaction to develop a criterion for stratifying a population

into two risk groups. We constructed and validated a BMI PRS. We validated an interaction

between the BMI PRS and physical activity, which remained highly significant even when

omitting FTO variants. Finally, we developed a simple non-linear criterion to translate this

interaction into clinical practice and future research. We showed that in a subset of individuals

with the highest 22% of BMI PRS values, self-reported physical activity was associated with a

two-fold higher difference in BMI than in the remaining 78% of the individuals.

Materials and methods

Overall analysis workflow

The workflow of the analysis is present at Fig 1. The polygenic risk score of BMI was built on

UK Biobank and GIANT summary statistics as the source dataset and a “Training” subset

from the Inter99 cohort as the target dataset, as described in the “BMI Polygenic Risk Score”

section. The resulting PRS was validated in an independent “Validation/Discovery” subset of

Inter99, using phenotypes described in the “Phenotypes” section. Both parts of the Inter99

dataset are described in the “Inter99 dataset” section. Interaction analyses were done in the

same subset of Inter99 between the BMI PRS and risk factors described in the “Risk Factors”

section. Both analyses were performed, as described in the “Statistical Analysis” section. A post
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hoc criterion to stratify the individuals was developed using the “Validation/Discovery” subset,

as described in the “Building the PRS Criterion” section. The criterion was validated in an

independent “Replication” Genotek cohort of different origin, described in the “Genotek Data-

set” section.

BMI polygenic risk score

To generate a polygenic risk score (PRS), a source summary statistics dataset from the relevant

GWAS study and a target cohort dataset with individual genotypes and phenotypes are

required. A meta-analysis of UK Biobank and GIANT [6] (N ~ 700,000) was used as the source

of summary statistics. PRS was generated using LDpred tool (v.1.0.6) [9] and its standard

workflow. Briefly, a Danish population-based cohort Inter99 [18] (N = 6,179) was used. The

cohort was randomly split into training (N = 1,000) and validation (N = 5,179) subsets. SNPs

available in the input data, comprising subsets and the summary statistics of the BMI GWAS,

were aligned using LDpred coord command. Eleven BMI PRS were generated for the different

parameter f, representing what LDpred calls the “fractions of causative variants”. The following

parameters f were used to cover different orders of magnitude: 1.0, 0.3, 0.1, 0.03, 0.01, 0.003,

0.001, 0.0003, 0.0001, 3 x 10−5, 1 x 10−5. The scores were generated using LDpred gibbs and

their performance was assessed in the training subset only using R2 provided by LDpred score
command. The best performing score was selected. The score values were calculated for the

samples in the validation subset using LDpred score command. These values and this subset

were used for the subsequent analyses.

A genetic risk score (GRS) was constructed using only the genome-wide significant (p< 5

x 10−8) variants from the same meta-analysis of UK Biobank and GIANT [6] and calculated in

the validation subset of the Inter99 dataset.

To exclude the FTO effect from the PRS, all the SNPs within ± 100,000 nucleotides from the

lead SNP rs9939609 were excluded from the score. This covered at least all the SNPs with esti-

mated linkage disequilibrium R2� 0.1.

Phenotypes

We have reviewed the literature and created a shortlist of cardiometabolic phenotypes, which

were previously reported to associate with BMI. For evaluation of the association between the

BMI PRS and cardiometabolic traits, we selected well-known obesity-related traits. The litera-

ture review highlighted multiple biochemical and anthropometric measurements and func-

tional tests associated with BMI. The following twenty phenotypes were available in the

Inter99 cohort for analysis:

Fig 1. The overall workflow of the analysis. The flow of the data and the steps of the analysis. The subsets of data are named “Training”, “Validation/

Discovery”, and “Replication”, according to the naming in the text. Orange color highlights steps of analysis where models were trained, blue color

highlights steps of analysis where models were validated. The N = 5,179 subset of Inter99 was used both for the validation of the BMI PRS and for the

discovery of the interactions with risk factors.

https://doi.org/10.1371/journal.pone.0258748.g001
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• Dyslipidemia markers: fasting total cholesterol, high-density lipocholesterol, triglycerides,

• Inflammation markers: fasting serum C-reactive protein (high sensitive hs-CRP), interleu-

kin-18 (IL18),

• Cardiovascular diseases markers: diastolic blood pressure, systolic blood pressure, pulse

pressure,

• Glucose level markers: hemoglobin A1C, fasting plasma glucose, 30 min & 120 min plasma

glucose during oral glucose tolerance test (OGTT),

• Insulin sensitivity or resistance markers: homeostatic model assessment of insulin resistance

(HOMA-IR), fasting serum insulin,

• Satiety markers: fasting leptin (LEP),

• Anthropometrics: hip, waist circumference, waist-to-hip ratio, weight, height.

Risk factors

Different behavioral and environmental traits (called together “risk factors” in the text for sim-

plicity) were shown to affect the BMI via a gene-environment interaction [17] using a GRS

approach. While Inter99 did not contain exactly the same risk factors, we have found similar

risk factors available in Inter99. The following factors were matched to the previously reported

and analyzed in this study:

• Smoking status [19], four categories: “smoking daily”, “smoking occasionally”, “never smok-

ing”, and “previously smoking” (N = 5,155).

• Alcohol consumption [20], two categories: “no or moderate alcohol consumption” defined

as� 6 units/week for women and� 12 units/week for men; “high alcohol consumption”

defined as> 6 units week for women and > 12 units/week for men. 1 unit is equivalent to

12 g of pure alcohol (N = 5,002).

• Diet quality, two categories: “poor diet” defined as 4–8 points on the diet quality score

(DQS) system described at [21]; “healthy diet” defined as� 9 points on the DQS score sys-

tem (N = 5,020).

• Physical activity level [22], two categories: “inactive” defined as self-reported commuting

and leisure-time physical activity� 225 min/week; “active” defined as self-reported com-

muting and leisure-time physical activity > 225 min/week (N = 4,859).

• Mental health [23], two categories: “high” defined as mental health component score (MCS)

higher than the 75th percentile within the study population of the same sex; “low” defined as

MCS lower than the 75th percentile. MCS has been calculated as described in [23], using the

Short Form 12 (SF-12) questionnaire [24] (N = 4,878).

• Quality of sleep, two categories: “good” defined by the answer ‘no’ to the question ‘do you

often suffer from insomnia’; “poor” defined by the answer ‘yes’ (N = 5,129).

• Socioeconomic class [20], five categories: “not working, no education”, “not working,� 1

year of education”, “working, no education”, “working, 1–3 years of education”, “working,

� 4 years of education”. Education is counted after mandatory school years. The categories

were combined from education and employment statuses, reported in [20] (N = 4,807).
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All risk factors were measured by self-report questionnaire in the Inter99 cohort.

Statistical analysis

The validation subset of the Inter99 was used for the analysis of associations. Exploratory data

analyses and linear regression analyses were done using python (Python 3, including numpy,

pandas, matplotlib, seaborn and statsmodels packages).

Explained variances of the BMI by the PRS and GRS were calculated using ordinary least

squares models. For regression analysis, robust linear models were used. Formulas are pro-

vided inline in the Results text using the python statsmodels standard, identical to the R glm
standard [25]. Terms with “C()” represent categorical phenotypes. Terms, combined using the

semicolon as “X:Y”, represent the interaction between X and Y. Term “1” represents Intersect.

Findings were reported if they have passed a study-wise Bonferroni-adjusted p-value signif-

icance cut-off. I.e., the Bonferroni correction for multiple testing was applied for each analysis

separately. Specifically, p-values in the analysis of associations of cardiometabolic phenotypes

with the BMI PRS were adjusted for the number of the outcome phenotypes tested (twenty

tests, p = 2.5 x 10−3). Analyses for the associations and interactions with categorical risk factors

were each independently adjusted for the number of associations or interactions tests per-

formed (twelve tests, p = 4.17 x 10−3).

The presence of the non-linear associations between the BMI PRS and the BMI was ana-

lyzed by regressing out the linear effect of the PRS and covariates (age and sex) and checking if

the square of the PRS was significantly associated with the residuals.

Building the PRS criterion

The selection of the PRS cut-off for the stratification was made in the discovery subset of the

Inter99. Ordinary least squares model “BMI ~ 1 + age + C(sex)” was used to regress out inter-

cept, age, and sex fixed effects. Residuals of BMI were fitted to a family of models of the form

“BMI residuals ~ 0 + PRS + C(physical activity) + C(physical activity):I(PRS> ith percentile)”. “I
(PRS> ith percentile)” is a binary indicator, true when PRS is greater than the ith percentile of

observed PRS values and false otherwise. One hundred models with cut-offs i = 0,1,..,99 were

calculated. The cut-off i producing a model with the highest R2 was selected.

The criterion model was combined as “BMI ~ 1 + age + C(sex) + PRS + C(physical activity)
+ C(physical activity):I(PRS> ith percentile)”. It splits all the population individuals into two

groups based on their BMI PRS for measuring the interaction with physical activity, instead of

using precise PRS values. The model was validated and analyzed in the independent Genotek

replication dataset.

Inter99 dataset

Inter99 is a previously described Danish population-based dataset consisting of 6,179 individ-

uals [18]. The study was approved by the Regional Scientific Ethics Committee (KA 98 155)

and the Danish Data Protection Agency.

Briefly, all individuals were genotyped using Illumina HumanOmniExpress-24 (v1.0A /

v1.1A). Genotypes were called using the Genotyping module (version 1.9.4) of GenomeStudio

software (version 2011.1; Illumina). Only individuals having a call rate�98% were included.

Monomorphic SNPs and SNPs with Hardy-Weinberg expectation p-value < 10−5 were

excluded. Genotypes were imputed using the Michigan imputation server with the HRC1.1

[26] reference panel.
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The dataset was randomly split into two subsets. A “Training” subset (N = 1,000) was used

for PRS generation. A “Validation/Discovery” subset (N = 5,179) was used for the analysis of

the PRS, its interactions with risk factors, and building the stratification criterion.

Genotek dataset

Genotek is an unpublished Russian population-based set consisting of 3,415 unrelated individ-

uals aged between 20 and 60 years old with self-reported measures.

All individuals were genotyped using Illumina Infinium Global Screening Array (v1.0 /

v2.0). SNPs with call rate<0.9, the calls on Y chromosome for women and the heterozygous

calls on X chromosome for men were removed. Genotypes were imputed using BEAGLE 5.1

with the HRC reference panel. After imputation, variants with MAF below 1% or DR2 below

0.7 were excluded.

The following phenotypes were used from questionnaire information: age, weight, height,

sex, and physical activity. Three categories of physical activity levels were available: “sedentary”

defined as self-reported “I have sedentary lifestyle”, “moderate” defined as self-reported “I take

walks every single day”, and “high” defined as self-reported “My job involves physical activity,

or I do a lot of sports”. To match the physical activity measures between the datasets, the “sed-

entary” group from the Genotek dataset was considered equivalent to the “inactive” group

from the Inter99 dataset, and the “moderate” and “high” groups from the Genotek dataset

were considered equivalent to the “active” group from the Inter99 dataset.

The dataset was used for validation of the stratification criterion.

Results

BMI polygenic risk score

To have a tool for measuring the genetic susceptibility to BMI, we have constructed a BMI

PRS. BMI PRS was a score corresponding to the LDpred parameter “fraction of causative vari-

ants” f = 0.3, selected using a procedure described in “Materials and methods”. The explained

variance of the score was 13.0% in a training subset (N = 1,000) and 13.1% in a validation sub-

set (N = 5,179). In comparison, the best currently available GRS of BMI, which utilizes 941

SNPs [6], explained only 6.1% of the variance in the same validation subset. In the validation

subset, we observed a significant association between the BMI and the BMI PRS (p = 3.36 x 10-

172, linear regression BMI ~ 1 + PRS). The difference in the median BMI between the top and

the bottom deciles of the individuals, according to their PRS, was 5.17 kg/m2 (Fig 2A), also

showing an improvement over the GRS, which showed a median difference of 3.41 kg/m2 (Fig

2B) in the same dataset.

To check if the BMI PRS captures other BMI-related risk phenotypes, we analyzed whether

known BMI-associated cardiometabolic traits were also correlated with BMI PRS. First, we

confirmed that BMI was associated with all twenty known cardiometabolic traits in our dataset

(p< 2.5 x 10-3) (S1 Table). Next, we analyzed associations between the BMI PRS and the cardi-

ometabolic traits. Each of the cardiometabolic traits was also associated (p< 2.5 x 10−3) with

the generated BMI PRS (S1 Table), when adjusted for age, sex and genetic principal compo-

nents (gPCs) (linear regression trait ~ 1 + PRS + age + C(sex) + gPC1 + gPC2 + gPC3). The dis-

tributions of all traits across individuals stratified by PRS deciles are shown in S1 File.

While GWAS is based on univariate linear associations, the cumulative increase in risk may

be non-linear. To understand if the impact of the genetic load for BMI was linear, we checked

for the non-linear effects of the BMI PRS. We observed a significant association between the

square of BMI PRS and the BMI residuals corrected for the covariates (age and sex) and the
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Fig 2. BMI distribution of individuals, stratified by genetic risk. (A): Individuals stratified by BMI PRS deciles. (B):

Individuals stratified by BMI GRS deciles. Both graphs are plotted in the same scale and cut at 10th / 90th percentiles on

the y-axis. Box plots represent the median and 25th / 75th percentiles. Whiskers are set at 1.5 IQR. Both graphs show

BMI, unadjusted for age and sex. Adjusted BMI residuals and outliers are available at Online Supplementary.

https://doi.org/10.1371/journal.pone.0258748.g002

Table 1. Associations of the risk factors with BMI.

Risk factor Category � Effect size P-value

Smoking Never smoker Reference group

Previous smoker + 0.06 kg/m2 0.648

Smoking occasionally + 0.27 kg/m2 0.341

Smoking daily - 1.06 kg/m2 6.49 x 10−18

Physical activity Active Reference group

Inactive + 0.79 kg/m2 8.49 x 10−13

Alcohol consumption No or moderate Reference group

High - 0.36 kg/m2 9.00 x 10−4

Diet quality Healthy Reference group

Poor - 0.25 kg/m2 0.024

Socioeconomic class Working, � 4 years of education Reference group

Working, 1–3 years of education + 0.00 kg/m2 0.99

Working, no education + 0.21 kg/m2 0.24

Not working,� 1 year of education + 0.18 kg/m2 0.40

Not working, no education + 0.01 kg/m2 0.98

Mental health High Reference group

Low - 0.06 kg/m2 0.62

Quality of sleep Good Reference group

Poor + 0.15 kg/m2 0.28

� The categories are described in the “Risk Factors” section of Materials and methods.

Effect sizes and p-values for each category are reported relative to the Reference group.

https://doi.org/10.1371/journal.pone.0258748.t001
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BMI PRS (p = 2.61 x 10-3). In contrast, BMI GRS did not show significant non-linear effects

(p = 0.50).

No evidence was observed for associations between BMI and any of the three genetic prin-

cipal components (linear regression BMI ~ 1 + PRS + age + C(sex) + gPC1 + gPC2 + gPC3,

p> 0.05). To simplify the analysis, we have excluded the adjustment for the gPCs in the subse-

quent analysis.

Associations between the BMI-associated risk factors and BMI

Several risk factors (environmental stimuli and lifestyle factors) are known to be associated

with a change in BMI as described in Materials and methods. To study these factors, we first

validated associations between them and BMI in our dataset. BMI was associated (Table 1)

with smoking, physical activity, and alcohol consumption groups (twelve tests performed,

p< 4.17 x 10−3) when adjusted for age, sex, and BMI PRS (linear regression BMI ~ 1 + PRS
+ age + C(sex) + C(risk factor)). The same risk factors were found to be significantly associated

when using the BMI GRS instead of the BMI PRS in our data (S2 Table). BMI was only nomi-

nally (p< 0.05) associated with diet quality, and BMI was not associated with socioeconomic

class, mental health, or quality of sleep in our dataset (Table 1).

Interactions between the BMI PRS and BMI-associated risk factors

To analyze if the presence of the risk factor alters the effect of BMI PRS on BMI, we examined

potential interactions between the BMI PRS and all seven risk factors (linear regression BMI ~
1 + PRS + age + C(sex) + C(risk factor) + PRS:C(risk factor)). We found a significant interaction

(twelve tests performed, p< 4.17 x 10-3) only between the BMI PRS and physical activity.

Physically active individuals demonstrated 0.81 kg/m2 (p = 2.24 x 10-13) lower BMI than inac-

tive and an additional 0.33 kg/m2 (p = 3.13 x 10−3) lower BMI per each standardized BMI PRS

unit. Unadjusted BMI values per BMI PRS decile are visualized in Fig 3A. Unlike the generated

BMI PRS, the BMI GRS did not demonstrate significant (p< 4.17 x 10−3) interactions with

any of the risk factors, but it showed a nominal significance (p = 0.045) for the interaction with

physical activity in the same direction as PRS. Unadjusted BMI values per BMI GRS decile are

visualized in Fig 3B. Physical activity was not itself significantly associated with the BMI PRS

(logistic regression physical activity ~ 1 + age + C(sex) + PRS, p = 0.053).

The FTO locus is the primary locus known to interact with physical activity. In particular,

the minor allele of the FTO lead SNP rs9939609 is associated with increased BMI. This effect

was shown to be attenuated in physically active individuals in Inter99 before [15]. To check if

the BMI PRS interaction with physical activity was driven only by the effect of FTO, we have

performed the interaction analysis with a PRS without the FTO region. We still demonstrated

a significant interaction between the residual PRS and physical activity (p = 3.23 x 10−3).

The observed BMI PRS interaction with physical activity was reproduced in a replication

dataset of different origin (Russian). In this dataset, physically active individuals had 0.97 kg/

m2 (p = 9.10 x 10-14) lower BMI than inactive individuals and an additional 0.45 kg/m2

(p = 5.57 x 10−4) lower BMI per one standardized BMI PRS unit.

A criterion for stratification based on the BMI PRS

In clinical genetics practice, simple binary criteria are preferred over numerical variables. To

utilize our findings in future studies, we have in post hoc analysis developed a PRS-based crite-

rion to divide the individuals into two different groups of genetic risk in a clinical setting. We

have selected the cut-off between the groups in a data-driven manner by selecting the highest

R2 for BMI (S1 Fig, Materials and methods). The cut-off was selected at PRS = 78th percentile
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(PRS = 0.783 units in our dataset), dividing all the individuals into two groups. Here we coin

the term “PRS0-78%” group for the individuals with PRS< 78th percentile, and the “PRS78-100%”

group for the individuals with PRS� 78th percentile. We observed a significant interaction

between the two risk groups of BMI PRS and physical activity (p = 2.83 x 10−6, regression

model BMI ~ 1 + age + C(sex) + PRS + C(exercise)�I(PRS> 78th percentile)). In the PRS0-78%

group, the average BMI of the inactive individuals was only 0.65 kg/m2 higher than the average

BMI of the active individuals. In the PRS78-100% group, the average BMI of the inactive

Fig 3. BMI distribution of individuals, stratified by genetic risk and levels of physical activity. (A): Individuals

stratified by BMI PRS deciles. (B): Individuals stratified by BMI GRS deciles. Both graphs are plotted in the same scale

and cut at 10th / 90th percentiles on the y-axis. Box plots represent the median and 25th / 75th percentiles. Whiskers are

set at 1.5 IQR. Both graphs show BMI, unadjusted for age and sex. Adjusted BMI residuals and outliers are available at

Online Supplementary.

https://doi.org/10.1371/journal.pone.0258748.g003
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individuals was 2.07 kg/m2 higher than the average BMI of the active individuals. The BMI dis-

tribution is shown in Fig 4A.

We replicated the interaction between BMI PRS risk groups and physical activity at the 78%

cut-off in the replication dataset. In the PRS0-78% group, the average BMI of the inactive indi-

viduals was 0.84 kg/m2 higher than the average BMI of the active individuals. In the PRS78-100%

group, the average BMI of the inactive individuals was 1.66 kg/m2 higher than the average

Fig 4. BMI distribution of individuals, stratified by PRS groups and levels of physical activity. (A): Discovery

Inter99 dataset. (B): Validation in Genotek dataset. Graphs are cut at 10% / 90% quantiles on the y-axis (note the

different scales on the panels). Solid lines represent median, boxplot outlines represent 25% / 75% quantiles, whiskers

represent 10% / 90% quantiles. Dashed lines represent the mean of the respective box, which were compared in the

statistical test. The difference in mean values and p-value of respective tests are shown on the plot. Both graphs show

BMI, unadjusted for age and sex. Adjusted BMI residuals and outliers are available at Online Supplementary.

https://doi.org/10.1371/journal.pone.0258748.g004
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BMI of the active individuals. The BMI distribution is shown in Fig 4B. The addition of the

cut-off interaction increased R2 by +0.55% compared to the model without interaction. In

comparison, the linear interaction increased R2 only by +0.22%.

Discussion

In this study, we have detected a non-linear interaction between BMI genetics and physical

activity using BMI PRS. We have constructed a BMI PRS and assessed its performance. The

BMI PRS demonstrated a substantial improvement in the explained variance of BMI over the

BMI GRS. Using the BMI PRS, we have detected an interaction between the genetic compo-

nent of BMI and physical activity in a relatively small dataset. This interaction was neither lim-

ited to the interaction driven by the FTO locus nor significant when using the BMI GRS for

the same analysis. The application of PRS enabled us to identify 22% of individuals with the

highest PRS. In this group, self-reported physical activity was associated with a 2-fold higher

difference in BMI than in the remaining 78% of study participants. The model with a non-lin-

ear two-group division of individuals showed higher R2 than a model with a linear interaction.

Studies of BMI indicate that BMI is a highly heritable phenotype. However, existing tools to

measure the genetic predisposition to BMI, namely BMI GRS, fail to capture most of this heri-

tability. As a result, the predictive power of BMI GRS is limited, preventing BMI GRS from

being used in clinical practice. Lack of proper genetic tools to assess predisposition to BMI hin-

ders progress in this area of research. To address this limitation we used a polygenic risk scor-

ing approach. Studying interactions between the environmental and behavioral risk factors

and BMI genetics is important to understand the mechanisms by which risk factors modify

genetic predisposition to BMI. To address this we analyze interactions between BMI PRS and

seven previously known risk factors.

Different socioeconomic and behavioral factors are known to affect BMI. Here we demon-

strate a particularly strong connection between the genetics of BMI and physical activity. Phys-

ical activity levels have been shown to interact with BMI-associated variants using the GRS

approach [17]. Here we also demonstrate the interaction between the BMI PRS and physical

activity levels. Interestingly, this interaction was not significant when applying the BMI GRS,

although we replicated the interaction effect in the same direction with nominal significance.

This probably means that our study sample size was not large enough for the GRS to show a

significant association. Application of the BMI PRS, whose interaction with physical activity

was stronger than that of the BMI GRS, likely enabled us to see this interaction in a smaller

dataset (N = 5,179) than the one used before (N = 362,496) [17]. It supports the idea that BMI

PRS may enable analyses of phenotypes and their interactions in small datasets. This property

of PRS would allow detailed phenotypes that are difficult to sample and are lacking from large

biobanks to be studied using a PRS approach.

The SNP rs9939609 (also commonly referred to by the nearby gene name, FTO) is of partic-

ular interest for studies of obesity. Previously, the effect of FTO locus on BMI has been shown

to interact with physical activity in a European population analysis [12]. When we excluded

the FTO locus from the BMI PRS, the remaining PRS still showed significant interaction with

physical activity, in line with previous GRS studies [17]. This observation indicates that our

PRS captures more than just an interaction of physical activity with FTO by integrating weaker

interactions of other SNPs. This demonstrates that a PRS may facilitate analyses of the interac-

tion between BMI-associated genetic markers and physical activity in future studies.

We succeeded in replicating the interaction between physical activity and the BMI PRS

observed in the Danish population. We replicated it in a Russian population sample with a

similar effect size, despite genetic and cultural differences between the two populations. PRS
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prediction accuracy is known to decline when applied in populations different from the origin

population of the source summary statistics [27]. In this study, we utilized previously unpub-

lished data from a Russian study sample. Despite being geographically close, genetic PCA [28]

clearly separates the Russian from the European population from which the GWAS was

derived. Successful replication in Russians strengthens our findings, suggesting that both our

European-based BMI PRS and the observed cut-off are generalizable and may be applied in

other populations.

One issue we observed with the replication dataset was that R2, explained by the regression

models, was higher on average in the replication dataset than in the discovery dataset. This dif-

ference was driven by higher R2 explained by age and sex alone. R2 for the model BMI ~ 1 + C
(sex) + age was 21.5% in the replication dataset, while only 2.7% in the discovery dataset. The

individuals’ age, height, and weight in the replication dataset were self-reported, in contrast to

the discovery dataset, where these measures were collected objectively. We speculate that the

observed difference in the R2 might have been caused by biased reporting of variables by indi-

viduals in the replication sample.

There are few potential caveats in the performed research. First, the observed interaction

between BMI PRS and physical activity should be interpreted cautiously. The association

between weight and physical activity is believed to be bi-directional [29]. Reduction in physical

activity directly shifts energy balance in favor of weight gain. However, increased BMI also

causes a reduction in physical activity, which may create artifacts in the analysis of the interac-

tion between the BMI PRS and physical activity. Our study is cross-sectional, and it cannot

provide insights into directionality nor causality. In our cohort, 60–70% of the individuals

within any BMI PRS decile were physically active, and physical activity did not decrease signif-

icantly with increased BMI PRS. Therefore, we speculate that the observed interaction is

caused by physical inactivity directly and is not an artifact. If this hypothesis is correct, our

findings would indicate that physical activity would be more beneficial for individuals with a

genetic predisposition to high BMI than for individuals without such predisposition.

Second, the sample size of our study (N = 5,179) was relatively small for reaching high levels

of significance in performed tests and drawing strong conclusions. To resolve this issue, we

have used study-wise correction for multiple testing. I.e., each analysis was corrected for multi-

ple testing in the number of phenotypes independently, as described in detail in Materials and

methods. Stronger claims could be made in future studies, where more samples would be

available.

Third, in this paper we focus on BMI, but there is a piling amount of evidence that other

body composition measures are important, when assessing obesity. Fat vs. fat free mass distri-

bution is an important measure [30], capturing differences in body constitution between the

people with the same BMI. Another important set of measures are waist-to-hip ratio, waist cir-

cumference and similar [31], capturing the fat distribution around the body. These measures

are orthogonal to BMI. Future studies of genetics of these parameters using PRS approach

could provide additional value to understanding of obesity.

Last, typically, the cut-offs for “high PRS” groups are selected arbitrarily by picking PRS

percentiles [32] or selecting a group based on the corresponding increase in risk [33]. We

decided not to select the BMI PRS cut-off for population stratification a priori but to create it

as a part of a post hoc analysis. In our study, we have optimized the cut-off to increase the vari-

ance explained by the resulting criterion. Such a criterion would perform better than an arbi-

trary selected one, but it would also be more prone to overfitting. To ensure that the resulting

cut-off is not an artifact of overfitting, we have performed an independent replication. We

found the cut-off using the Inter99 dataset as a discovery dataset and then validated and ana-

lyzed the criterion in an independent Genotek dataset. The replication was successful, and we
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observed similar effect sizes and improvements in the regression models’ performance. These

observations prove the criterion validity and generalizability.

Application-wise, BMI PRS may support a path towards personalized obesity prevention

and treatment. BMI PRS enabled us to make a criterion to stratify the population into two

groups–PRS0-78% and PRS78-100%, with genetic predispositions to different BMI levels. These

two groups showed a difference in the sizes of the physical activity effects on BMI. Using the

criterion, we have observed that for 78% of the examined population sample, the average

increase in BMI associated with physical inactivity was 0.84 kg/m2. In comparison, for the top

22%, the average increase was 1.66 kg/m2. This cut-off interaction model also provided a larger

explained variance than the linear interaction model. Together, the large effect size observed

only in the PRS78-100% group, and the simplicity of the criterion, open a path for better research

and clinical practice. The criterion may be applied to future recall-by-genotype intervention to

dissect the causal interplay between the BMI-associated genetic factors and physical activity in

defining BMI. If physical inactivity is shown to drive the BMI increase, while BMI PRS defines

how large the increase will be, then differential prevention of obesity could be implemented

based on the individual’s genetic risk group.

In conclusion, our work showcases an important example of enabling gene-environment

interactions analyses by using PRS as a genetic tool and provides a useful criterion for future

genetic studies of BMI. Our results demonstrate that a BMI PRS is a better instrument to mea-

sure the genetic predisposition to BMI than a BMI GRS. By discovering the interaction

between BMI PRS and physical activity, we show how a PRS may be used for studying gene-

environment interactions in small datasets, where a GRS is unlikely to reveal significant find-

ings. The developed cut-off model shows how findings from analyzing a PRS may be translated

into clinical research. While the interaction between the BMI PRS and physical activity war-

rants a careful interpretation, we suggest that our work may support the path towards person-

alized physical activity-based prevention of obesity based on genetic risk.

Supporting information

S1 File. Distributions of the BMI-associated phenotypes of individuals, stratified by BMI

polygenic risk score (PRS) deciles.

(ZIP)

S1 Fig. Performance of models using two groups of genetic risk for interaction with physi-

cal activity.

(DOCX)

S1 Table. p-values of associations between cardiometabolic traits and BMI or BMI PRS.

(XLSX)

S2 Table. Associations of the risk factors with BMI adjusted for BMI GRS.

(XLSX)

S1 Appendix. List of online supporting materials.

(DOCX)

Acknowledgments

The authors would like to thank Sophia Metz and Jonathan J. Thompson for an independent

review of the manuscript and valuable feedback.

PLOS ONE Interaction between physical activity and polygenic risk score of BMI

PLOS ONE | https://doi.org/10.1371/journal.pone.0258748 October 18, 2021 13 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0258748.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0258748.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0258748.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0258748.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0258748.s005
https://doi.org/10.1371/journal.pone.0258748


Author Contributions

Conceptualization: Dmitrii Borisevich, Theresia M. Schnurr, Line Engelbrechtsen, Alexander
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