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Abstract
In the Laurentian Great Lakes region, the double-crested cormorant (Phalacrocorax auritus)
has seen a thousand-fold population increase in recent decades. These large colonies

of birds now often conflict with socioeconomic interests, particularly due to perceived com-

petition with fisheries and the destruction of terrestrial vegetation in nesting habitats. Here

we use dated sediment cores from ponds on islands in eastern Lake Ontario that receive

waste inputs from dense colonies of cormorants and ring-billed gulls (Larus delawarensis) to
chronicle the population rise of these species and assess their long-term ecological

impacts. Modern water chemistry sampling from these sites reveals drastically elevated

nutrient and major ion concentrations compared to reference ponds not influenced by water-

birds. Geochemical tracers in dated sediment cores, particularly δ15N and chlorophyll-a
concentrations, track waterbird influences over time. Fossil diatom assemblages were

dominated by species tolerant of hyper-eutrophic and polluted systems, which is in marked

contrast to assemblages in reference sites. In addition to establishing long-term ecological

impacts, this multi-proxy paleoecological approach can be used to determine whether

islands of concern have been long-term nesting sites or were only recently colonized by cor-

morant or ring-billed gull populations across the Great Lakes, facilitating informed manage-

ment decisions about controversial culling programs.

Introduction
Animals that deposit large amounts of waste products to specific receptor sites are gaining
increased attention due to their ability to shape the structure and function of ecosystems [1]. In
addition to humans, prominent examples include migrating salmon [2] and Arctic seabirds [3]
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that may potentially focus large quantities of nutrients and bioaccumulated contaminants into
their spawning and nesting areas, respectively. Temperate seabirds, such as gulls and cormo-
rants, have also been assessed for their role in transporting marine-derived nutrients to nesting
islands in the Gulf of Maine [4]. A topical example from the freshwater realm is that of the
double-crested cormorants (Phalacrocorax auritus; hereafter cormorants), whose exponential
population rise in North America has raised concern over their ecological impacts, many of
which have socioeconomic implications. Cormorants have been closely intertwined with
human activities for centuries and are now controversial in the North American Great Lakes
region because large nesting colonies concentrate toxic amounts of ammonia-rich guano that
kill native vegetation on islands, including portions of what is left of the northernmost stands
of Carolinian forests not already impacted by human development [5]. In addition, cormorants
are thought to interact with fish farms along the Mississippi River in the winter [6] and have
been possibly linked to declining sports fisheries (i.e. smallmouth bass,Micropterus dolomieu)
in the Great Lakes [7]. Cormorants have also been cited as a potential threat to the nesting hab-
itats of other bird species due to their aggressive competition for space and resources [8]. The
anti-cormorant sentiment may be undeserved, however, as studies show that cormorants eat
mainly small non-sport fish and do not necessarily overlap in feeding niche with sport fishes
[9]. Nonetheless, it is clear that cormorant numbers in the Great Lakes region of North Amer-
ica have increased exponentially and their potential ecological impacts warrant investigation.

In the mid-20th century, cormorants in the Great Lakes were nearly extirpated due to the
heavy use of organochlorine pesticides (especially DDT) that caused reproductive failure, as
well as from human eradication attempts due to their perceived role as competitors with
commercial fisheries [10, 11]. Ironically, after their near extirpation, cormorants became a
“poster-species” for environmental recovery in the Great Lakes region. Following the ban of
DDT in 1972, their numbers began to recover, also aided in part by increases in the invasive
alewife (Alosa pseudoharengus), which was then the main component of their summer diets
[12]. Cormorants in the Great Lakes have since experienced exponential population growth
beyond historical levels of the pre-DDT era, moving from a low of ~136 breeding pairs in the
1970s to over 100,000 breeding pairs in the early 2000s [13]. Though numbers of breeding cor-
morants on the Great Lakes have been characterized recently [10], data are absent for popula-
tion numbers prior to the early-1900s, and data are sparse for even before the mid-1900s, as
large scale inventories of waterbirds did not begin until 1976 [14]. Here, we employ a limnolog-
ical and paleoecological approach to determine the effects of water bird populations on island
pond ecology and to determine if the recent increase in cormorants is unprecedented.

Lake Ontario contains many islands, some of which have notable breeding and post-breed-
ing populations of cormorants and other waterbirds. In terms of the entire Great Lakes system,
Lake Ontario currently hosts the highest concentrations of cormorant nests, and eastern Lake
Ontario (our study location) has numerous islands that continue into the St. Lawrence River
and provide ideal cormorant nesting habitat [10]. Large, densely-packed cormorant colonies
release tremendous amounts of nutrient-rich wastes to the surrounding environment, includ-
ing guano, regurgitated food, feathers, and carcasses. Small freshwater ponds that exist on
these nesting islands act as receptor sites for waterbird wastes. The nesting islands also host
dense colonies of ring-billed gulls (Larus delawarensis), which are by far the most common
waterbird on the Great Lakes and have also had population increases beginning in the early
20th century [15, 16].

Here, we track the rise in cormorants and ring-billed gulls, as well as their ecological
impacts, using modern limnological analyses coupled with a multi-proxy paleolimnological
approach. We reconstruct changes in bird influence and aquatic production over the past ~150
years using stable nitrogen isotopes (δ15N), spectrally-inferred chlorophyll-a, and fossil diatom
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assemblages. Specifically, we demonstrate how this approach can be used to assess the impacts
of waterbirds on water quality and obtain data on past population histories that are critical to
making informed wildlife management decisions.

Site Description
Small freshwater ponds from four islands in the Canadian portion of eastern Lake Ontario
were sampled for modern water chemistry and for sediment cores. Ponds from two of these
islands—East Brother Island (pond EB) (44°12’18.43”N, 76°37’28.33”W) and Pigeon Island
(pond PGN) (44°03’59.41”N, 76°32’51.51”W) (Fig 1)–were considered “high-impact” sites as
they were surrounded by large numbers of cormorants and ring-billed gulls. Permission to
sample EB was granted by private landowner, John Weatherall, and by the Canadian Wildlife
Service for PGN. Cormorant occupation was first noted and measured on East Brother Island

Fig 1. A map of eastern Lake Ontario near Kingston, ON. Study ponds (with name and impact level) are on East Brother Island (EB, high-impact), Pigeon
Island (PGN, high-impact), False Duck Island (FD1, low-impact), and Main Duck Island (MD2, no-impact).

doi:10.1371/journal.pone.0134167.g001
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in 2001 with ~200 nests (2 individuals per nest), and with an average of ~1300 nests between
2003 and 2012 (S1 Table). Cormorants were first noted on Pigeon Island in 1962 with a few
reproductively unsuccessful cormorant pairs [17]. During a 1989–1991 census, ~600 cormo-
rant pairs were noted breeding on Pigeon Island [17]. However, Pigeon Island was dominated
by a large colony of ring-billed gulls that had ~5000 nests in 1990 [14], but later deserted the
island sometime between 1991 and 1997 [17]. Pigeon Island now hosts a colony of ~2100 cor-
morants (Table 1). The high-impact ponds on East Brother and Pigeon islands have virtually
no remaining terrestrial vegetation in their catchment, except dead trees and a few shrubs and
vines that can tolerate the high levels of ammonia from the excessive guano deposition. Cor-
morant breeding pairs arrive on these islands in April, breed until early August, and stay until
early November [10, 17]. Guano, feathers, egg shells, regurgitated fish, and some cormorant
carcasses were commonly noted during the breeding season in ponds EB and PGN.

In addition to high-impact ponds, we sampled two reference ponds on southwestern False
Duck Island (pond FD1) (43°56’53.98”N, 76°48’11.94”W) and Main Duck Island (pond MD2)
(43°55’28.39”N, 76°36’51.34”W), both of which have little-to-no cormorant or gull influence
and are part of marshes (Fig 1). A research permit for collections on False Duck Island was
granted by the Canadian Wildlife Service. A research and collection permit was issued by the
Parks Canada Agency for our sampling on Main Duck Island. The study pond on False Duck
Island has evidence of some modest cormorant activity in its catchment and thus we classified
it as a “low-impact” site. Cormorants were first noted on False Duck Island in 1986 with ~100
nests (S1 Table). The pond on Main Duck Island has no evidence of nesting cormorants in its
catchment and so we classified it as a “no-impact” site. Recent approximate cormorant num-
bers on all study islands, as well as pond morphology and water chemistry, are summarized in
Table 1.

Materials and Methods

Water chemistry
Water samples were taken from EB (high-impact) and FD1 (low-impact) on May 28th 2012,
as well as fromMD2 (no-impact) on September 11th 2013, and were sent to the National

Table 1. Cormorant impact andmorphological characteristics of study ponds.

Pond ID EB PGN FD1 MD2

Impact High High Low None

Cormorant arrival 2001 1962 1986 -

Approx. # nests 1300 2100 >10 0

Diameter (m) ~50 ~20 ~20 ~100

Max. depth (m) ~0.5 ~0.1 ~0.45 ~1

pH 7.6 7.0 7.3 7.6

Specific conductivity (μS/cm) 800 1650 433 252

Total unfiltered phosphorus (μg/L) 3500 - 542 86.9

Total unfiltered nitrogen (mg/L) 8.79 - 7.5 1.46

Pond abbreviations are as follows: East Brother (EB), Pigeon (PGN), False Duck Pond 1 (FD1), and Main

Duck Pond 2 (MD2). The arrival of cormorants to East Brother and False Duck is based on data from D.V.

C. Weseloh (S1 Table) and based on data from [17] for PGN. Numbers for nests, as well as pond diameter

and depth, are estimates made in the field at the time of sampling. Details of water chemistry sampling

methods and dates are provided in the materials and methods section.

doi:10.1371/journal.pone.0134167.t001
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Laboratory for Environmental Testing (Burlington, ON) to be analyzed for nutrients, major
ions, and trace metals using their standard procedures [18, 19]. Specific conductivity and pH
measurements were taken on-site using a calibrated YSI meter for all aforementioned ponds, as
well as from PGN (high-impact) on June 16th 2011 (which had very little water at the time).
Additional water chemistry was acquired using the same methods for the high-impact pond
(EB) twice in 2013 (S2 Table). Seasonal differences (either environmental or bird-related) were
assumed to be negligible between measurements for high-impact ponds collected at the end of
May and middle of June. Measurements from the no-impact pond (MD2) were taken closer to
the end of the season, and so some seasonal differences (due to evaporation) may be apparent.

Sediment sampling and dating
A sediment core was retrieved from each pond using a Glew [20] corer with a 7.6-cm diameter
Lexan tube on the following dates: EB on May 28th 2012, PGN and FD1 on June 16th 2011, and
MD2 on September 11th 2013. Each core was sectioned into 0.5-cm intervals using a Glew [21]
extruder. Freeze-dried sediments from all sites were dated using excess 210Pb activities, and
independently verified with 137Cs. All radioisotopes were measured at the Paleoecological Envi-
ronmental Assessment and Research Laboratory (PEARL) (Queen’s University, Kingston, ON)
using an Ortec high purity Germanium gamma spectrometer (Oak Ridge, TN, USA). Chronol-
ogies based on 210Pb data were developed using the constant rate of supply (CRS) model [22]
at PEARL with the ScienTissiME (Barry’s Bay, ON, Canada) software created for Matlab. Only
the 137Cs independent dating marker defining the ~1963 peak in atomic bomb testing was used
for EB, as we did not attain reliable 210Pb dates (S1 Fig).

Sedimentary δ15N and spectrally-inferred chlorophyll-a
Sediments from every other 0.5-cm interval for all ponds were analyzed for δ15N at the Univer-
sity of Ottawa (Ottawa, ON, Canada) following procedures modified from Yamamuro and
Kayanne [23]. Briefly, (unacidified) freeze-dried sediments were combusted at 1800°C in an
elemental analyzer (EA 1110, CE Instruments, Italy), and resultant gases were run through an
isotope ratio mass spectrometer (Delta-Plus Advantage IRMS, ThermoFinnigan, Germany)
using a Conflo III Interface. Internal standards calibrated with international standards
(IAEA-CH-6, IAEA-NBS22, IAEA-N1, IAEA-N2, USGS-40, USGS-41, with a precision of
±0.2‰) were used to normalize data. Elevated sedimentary δ15N in the study ponds would
indicate the influence of birds, as cormorants in eastern Lake Ontario have δ15N values of
~15‰ because they occupy the top of the pelagic food web [24]. In contrast, ring-billed gulls
have a more varied diet and often feed lower on the food chain (i.e. on landfills [25]) compared
to cormorants, with δ15N values for various tissues ranging from 7–11‰ [26]. For reference,
pre-industrial sediments of Lake Ontario prior to any large-scale human activities had a back-
ground δ15N value of ~4‰ [27].

Sedimentary chlorophyll-a concentrations were used to determine if coincident increases in
primary production occurred with the addition of cormorant wastes, as tracked by δ15N. Chlo-
rophyll-a concentrations in freeze-dried and sieved (using a 125-μmmesh) sediments were
determined using visible near-infrared reflectance spectroscopy, according to the methods out-
lined in [28]. Every 0.5-cm interval was analyzed for EB, PGN, and MD2. Every other interval
was analyzed for FD1. Importantly, this approach tracks both the primary chlorophyll-a pig-
ment, plus all chlorophyll-a isomers and degradation products, including pheophytin a and
pheophorbide a, (hereafter collectively referred to as “chl-a”).

Long-Term Cormorant Influences on Aquatic Ecosystems in Lake Ontario

PLOS ONE | DOI:10.1371/journal.pone.0134167 July 27, 2015 5 / 15



Subfossil diatom assemblages
Subfossil diatom assemblages were isolated from the sediments (of every other interval) by
digesting 0.05-g subsamples of freeze-dried sediment in a 1:1 (molar weight) mixture of H2SO4

and HNO3 at 80°C for 2 hours, and then aspirating samples to neutral pH before mounting
dilutions permanently on slides using Naphrax [29]. Diatom valves were identified with a Leica
DMR HC light microscope at 1000x magnification, following the taxonomy of Krammer and
Lange-Bertalot [30]. A minimum of 200 diatom valves was identified for each interval and the
chrysophyte cyst to diatom ratio (C:D) was also calculated for each sediment section [31]. The
C:D can be used as an indicator of trophic status in temperate freshwaters, as chrysophytes are
typically more common in oligotrophic waters [31]. As diatoms are sensitive indicators of
many limnological variables (e.g. pH, nutrients) [32], they can be used to track environmental
changes in our ponds that may then be related to cormorant occupation by our geochemical
analysis.

Results

Water chemistry
Large differences in water chemistry were noted between the high-impact pond (EB) and the
reference ponds (FD1 and MD2), with particularly elevated concentrations of ions (reflected in
specific conductivity) and nutrients in the pond heavily influenced by cormorant waste inputs
(Table 1, Fig 2). Major ions (K+, Mg2+, Na+, Ca2+, Cl-, SO4

2-) were enriched in the high-impact
pond (EB) by 5–110 times, with the greatest enrichment occurring in potassium ions (S3
Table). The specific conductivity increased by a factor of two between each pond moving along
a gradient of increasing cormorant influence (i.e. MD2 to FD1 to EB to PGN) (Fig 2A). Total
unfiltered phosphorus (TP-u) was 3500 μg/L in EB, and was 6 times lower (but still high) in
FD1 (542 μg/L) and 40 times lower in MD2 (86.8 μg/L) (Fig 2B). Total unfiltered nitrogen
(TN-u) was slightly higher in EB (8.79 mg/L) than in FD1 (7.5 mg/L), and much lower in MD2
(1.46 mg/L) (Fig 2B).

Radiometric dating of sediment cores
The 210Pb radioactivity profiles for the sediment cores collected from PGN, FD1, and MD2
showed decay with time, allowing for the development of a 210Pb-based chronology (S1 Fig). In
the EB core, the 210Pb radioactivity profile indicated mixing from the surface to a depth of ~12
cm (S1 Fig). The intrinsic time resolution, or estimation of the span of time that mixing has
affected [33], is ~60 years for the EB core. The peak in 137Cs radioactivity (indicating the height
in atomic bomb testing circa 1963) occurred at ~13.5 cm depth, which is below the mixed
depth of 12 cm, and was therefore reported (Fig 3A). However, it should be noted that there is
a discrepancy of ~10 years between the intrinsic time resolution of the mixed layer (60 years)
and 137Cs peak (~1963), and thus this independent dating marker should be used as an approx-
imate guideline for the mid-19th century only.

Sedimentary δ15N and spectrally-inferred chlorophyll-a
Similar to large differences in water chemistry between bird-affected sites and bird-free sites,
sedimentary δ15N is higher in EB and PGN (high-impact ponds) than in FD1 and MD2 (low-
and no-impact ponds, respectively) throughout the sediment records (Fig 3). Increases in
sedimentary δ15N occurred in EB (high-impact) from ~5 to 13.5‰ between 14 and 12 cm
depth (~ mid-19th century). The sedimentary δ15N profile in PGN (high-impact) increased
around 11 cm (pre-1850) from a minimum of ~15‰ to a maximum of ~20‰. Even the low-
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impact pond, FD1, experienced a small increase in δ15N from ~6 to 9‰ gradually over the
entire sediment record (beginning before ~1900). However, sedimentary δ15N in MD2 (no-
impact) remained low at ~1–2‰ for the duration of the record.

Similarly timed changes to those recorded in our δ15N data occurred in chl-a in EB, PGN, and
FD1 (Fig 3), with values in EB exceeding those of PGN and FD1. Chl-a in EB (high-impact)

Fig 2. Water chemistry for impacted and reference sites. (A) Specific conductivity (μS/cm) in high-impact ponds in black and hashed (ponds EB and
PGN, respectively), the low-impact pond (FD1) in grey, and the no-impact pond (MD2) in white. Major cations and anions are listed in the inset by decreasing
concentration. (B) Major nutrients in three study ponds, including total unfiltered nitrogen (TN) concentrations (mg/L) and total unfiltered phosphorus (TP)
concentrations (μg/L).

doi:10.1371/journal.pone.0134167.g002
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shifted from 0.05 mg/g to 0.1 mg/g around 12–14 cm (~ mid-19th century). Chl-a concentrations
were at or below detection limits (~0.01 mg/g) at 14 cm or deeper in PGN (high-impact), and
increased notably at ~5 cm (~1960), reaching a maximum of ~0.025 mg/g at the surface. In con-
trast, chl-a in FD1 (low-impact) remain stable at>0.01 mg/g from the bottom of the core until
12 cm (~1900), and then gradually increased to 0.04 mg/g at the surface. Chl-a in MD2 (no-
impact) stayed approximately constant at 0.25 mg/g with a slight increase to 0.36 mg/g at the
surface.

Subfossil diatom assemblages
Common diatom taxa (greater than 5% relative abundance) were plotted for all cores, and
large floristic differences were noted between the high-impact sites and reference sites (Fig 3).
In all study ponds, diatom remains were too sparse to enumerate in the lower sections of the
cores (with signs of dissolution), although siliceous chrysophyte cysts were well-preserved

Fig 3. Subfossil diatom assemblages and geochemical tracers from sediment cores.Data are shown for the high-impact ponds on (A) East Brother
Island (EB) and (B) Pigeon Island (PGN), as well as from the reference sites on (C) False Duck Island (FD1) and (D) Main Duck Island (MD2). The cyst to
diatom ratio (C:D), sedimentary δ15N (‰) and spectrally-inferred sedimentary chlorophyll-a (chl-a) concentrations (mg/g) are given to the right of each
stratigraphy. All profiles are presented on the same scales, except the C:D ratio for PGN. Grey boxes at the bottom of each core indicate sediment intervals in
which diatom remains were too sparse to be enumerated.

doi:10.1371/journal.pone.0134167.g003
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throughout the sedimentary record. The diatom assemblages recovered from EB (high-impact)
were dominated by Fistulifera saprophila (>80%) and the C:D fluctuated between 0–8
throughout. The diatom assemblage in PGN (high-impact) consisted primarily of Navicula
atomus (~60%), as well as lower abundances of Navicula aerophila, Navicula subminiscula,
Nitzschia palea, and Nitzschia perminuta (Fig 3B). A decrease in N. atomus was concurrent
with increases in N. subminiscula, N. palea, and N. perminuta between 8 and 2 cm. The C:D in
PGN decreased from ~90 at 14 cm to ~40 at the surface. In the FD1 core (low-impact), the dia-
tom assemblage was comprised of primarily Achnanthes lanceolata (~20–40%) and Navicula
minima (~20–40%), with subtle shifts occurring between these benthic taxa and some less
dominant species (Fig 3C). The C:D in FD1 remained stable at<1 throughout the core. The
MD2 (no-impact) sediment core was dominated by Staurosirella pinnata (~50%) and Sella-
phora pupula (~20%) throughout, with low abundances of other benthic taxa (Fig 3D). Again,
some subtle shifts between the benthic taxa of MD2 are noted, as with FD1. The C:D for the
MD2 core remained stable near values of ~6 throughout.

Discussion
Our limnological and paleolimnological comparisons of ponds differentially affected by dou-
ble-crested cormorants and ring-billed gulls clearly document the impacts of dense waterbird
colonies on local ecosystems. Furthermore, geochemical and biological proxies preserved in
dated sediment cores highlight the potential for using paleolimnology to qualitatively extend
estimates of cormorant occupation and influence into the past where monitoring records are
absent. Below we summarize these findings.

High-impact sites (East Brother Island and Pigeon Island)
Our water chemistry analyses demonstrate the fertilizing effects of cormorant and gull guano.
The elevated specific conductivity and nutrient (TP-u and TN-u) concentrations in the cormo-
rant-affected EB site compared to reference sites (Fig 2) reflect the large amounts of high ionic
and nutrient content waste deposited by the>3000 cormorants that nest in the area from April
to September. Even though detailed water chemistry was unavailable for PGN (because of low
water depths), the extremely elevated specific conductivity (1650 μS/cm) at this site, surpassing
that of EB (~800 μS/cm) by more than double (Fig 2), clearly reflects the influence of ornitho-
genic waste inputs. Indeed, this is not a surprising finding considering the enrichment of
nitrates, phosphates, and potassium ions in soils impacted by cormorants has previously been
documented in the Gulf of Mexico [34] and by cormorants (Phalacrocorax carbo sinensis) in
Poland [35]. Furthermore, limnological surveys in shallow Arctic ponds affected by seabirds
record similar water chemistry changes [36]. The effect that pond size has on water chemistry
measurements should also be noted, as PGN is much smaller than EB and therefore more sus-
ceptible to evaporative concentration of solutes.

While the limnological effects of cormorant waste on modern water chemistry is undeni-
able, only the sediment core data can assess the pre-monitoring history of cormorants on these
islands. With a multi-proxy paleolimnological approach, we show the strong influences that
cormorants and gulls have on sedimentary geochemical profiles, which can be used to track
past populations, as well as the aquatic ecological changes that accompany their arrival. The
δ15N value in EB from 28–12 cm is approximately 5‰, which is close to the background values
of Lake Ontario sediments before human impact (~4‰, [27]). The sharp rise in sedimentary
δ15N to ~13.5‰ around 13 cm is close to values recorded in cormorant tissues (15‰, [24]).
The increase in δ15N occurs synchronously with a rise in chl-a around the mid-1960s (13 cm
depth), suggesting cormorants arrived on the island and, as a result, nutrient-rich wastes
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increased the primary production of the pond. Although these two independent proxies could
demarcate an easily interpretable timeline for cormorant arrival, historical records document
that cormorants did not arrive to East Brother Island until 2001 (S1 Table), postdating the
change in our proxies by four decades according to our 137Cs independent dating marker. This
discrepancy in timing is possibly due to ornithogenic bioturbation of the sediments (as
reflected in the 210Pb radioactivity profile, S1 Fig) that likely occurred when cormorants first
appeared in large numbers on the island. Cormorants (especially the young) have been
observed wading into the pond on East Brother Island, however mixing of the sediments could
also be due to strong winds and storm events, as the pond becomes shallower toward the end
of the summer due to evaporation. Nonetheless, the EB core clearly reflects the influence of
cormorants as the diatom assemblage is dominated (>80%) by Fistulifera saprophila, which
can tolerate hyper-eutrophic and highly polluted waters [37, 38]. The C:D of EB also tracks the
eutrophic nature of the pond [31], as it remains low (but fluctuating) in the top 8 cm of the
core. Overall, the paleolimnological analysis of EB demonstrates that cormorants not only
leave strong geochemical signatures in sediments that are useful for qualitative observations of
past occupation, but they also drastically alter the ecology of the pond in agreement with the
vast enrichment of nutrients and ions in the water.

In the PGN core, sedimentary δ15N values of 15‰ in pre-1850s sediment indicate that birds
have been nesting on Pigeon Island for the period encompassed by the core. As ring-billed
gulls were common in this area in the 19th century [39] and the island was dominated by this
species up until recently [17], it is possible that Pigeon Island has been a long used habitat for
ring-billed gull colonies. Furthermore, cormorants were common in North America at this
time [40], and may have used Pigeon Island for nesting, though there are no historical docu-
ments to confirm this possibility. In PGN, the gradual increase in sedimentary δ15N that began
around 11 cm (~1850) indicates an increase in influence of higher trophic levels, which could
be attributed to the building of a lighthouse and permanent settlement of people on Pigeon
Island in 1870 (contributing human wastes to the landscape), as well as the increasing popula-
tions of ring-billed gulls that occurred later in the 1930s and 1940s [16]. This increase to 20‰
is higher than even those δ15N values recorded in cormorant tissues [24], and further δ15N
enrichment by denitrification and ammonification is likely to be occurring. In particular, vola-
tilization of ammonia is expected at pH 9, and this might elevate δ15N levels in the sediment
because 14N is preferentially evaporated [41]. Denitrification occurs generally under anaerobic
conditions resulting in enhanced δ15N in sediments. This could also be further exacerbated by
recent climate warming, which has been documented to affect many freshwaters in the North-
ern Hemisphere [42]. Although the δ15N signal could be altered following its release into these
ponds, these effects should collectively serve to enrich δ15N under conditions of high ornitho-
genic nutrient inputs. It is therefore not surprising that the arrival of cormorants on the island
in the 1960s [17] is not recorded by any further increases in δ15N, as the already elevated back-
ground values of δ15N (~15‰) early in the sediment record is equal to that of cormorant tis-
sues. Nonetheless, the increase in sedimentary chl-a circa 1960 (5 cm depth) indicates rising
primary production, likely tracking the arrival of cormorants (as documented in [17]) and
their large nutrient inputs, as well as the continuing increase in ring-billed gulls [15]. Here, the
use of multiple proxies facilitates the interpretation of possible historical bird occupation.

The diatom assemblage of PGN (high-impact) reflects the current eutrophic nature of the
pond, and possibly the arrival of cormorants to the island. Here the diatom assemblage is
dominated by Navicula atomus, a eutrophic and aerophilic species [43], reflecting the nutrient-
rich and ephemeral nature of this pond. Changes in diatom relative abundance also appear to
track cormorant influence with the presence of Navicula subminuscula and Nitzschia palea
at relative abundances of 10–20%, both of which are tolerant of high nutrients and organic
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pollution [43, 44] and begin increasing in relative abundance in synchrony with chl-a concen-
trations around 1960 (5 cm depth) in PGN. This suggests that the arrival of cormorants
increased primary production and led to a shift to more eutrophic diatom species. The C:D
also tracks the eutrophication of PGN, as it decreases from the bottom of the sediment record
to the surface, indicating declining proportions of oligotrophic chrysophytes compared to dia-
toms as the pond became more productive [31]. However, it should be noted that the C:D of
PGN is much higher than all other study ponds regardless of bird impacts, which could be
related to the extremely ephemeral nature of PGN. Similar to the paleolimnological evidence
from EB, the sediment record from PGN contains distinct signals of cormorant influence that
are consistent with historical records and strengthened when using a multi-proxy approach.

Reference sites (False Duck Island and Main Duck Island)
Although both of our reference sites are nutrient-rich temperate ponds adjoined to marshes,
they do not exhibit the elevated nutrient and ionic concentrations of our bird-affected sites
(Table 1, Fig 2). This is evident in the specific conductivity values that range from ~200–
400 μS/cm in the reference ponds MD2 and FD1 (which are close to 40-year averages from
Lake Ontario of ~300 μS/cm [45]), compared to high-impact ponds EB and PGN that have ele-
vated values of 800 and 1650 μS/cm, respectively (Fig 2A). The drastic difference in water
chemistry between impacted and reference ponds is particularly evident in nutrient measures
that show approximately doubled concentrations of nitrogen in ponds receiving cormorant
wastes, and even more with phosphorus, which is 40 times greater in EB (high-impact) com-
pared to MD2 (no-impact). Because all of our islands are located in similar geographic regions,
it is reasonable to conclude that strong variations in water chemistry are due to the presence of
dense cormorant colonies at our high-impact sites, which not only have direct effects on water
chemistry through waste inputs, but also very likely indirect or latent effects due to drastic
alterations to the catchments that are intimately linked to the ponds.

We also analyzed sediment cores from ponds with little-to-no bird activity to compare with
the paleolimnological history of our bird-affected sites. In the low-impact pond (FD1), a slow
subtle rise in δ15N and chl-a occurred around 1940 until the present (Fig 3B). This change is
minor compared to the dramatic increases at our high-impact sites and is likely due to the pres-
ence of other nesting birds such as ring-billed gulls, which returned to this area of Lake Ontario
in the 1930s and subsequently experienced large population increases after World War II as a
result of adapting to urban resources like landfills [16, 25]. Because FD1 is part of a marsh, it
does not have large colonies of cormorants or gulls in its immediate catchment (because they
nest on solid and open ground), and therefore records only subtle influences in its sediment
record. Moreover, the diatom assemblage of FD1 (low-impact) was dominated by benthic spe-
cies that do not indicate large nutrient additions (Fig 3). The low C:D throughout, however,
does reflect the productive nature of FD1, as well as a lack of the open-water habitat in which
many chrysophytes thrive (as FD1 is a marsh) [31].

As expected, the sediments from our no-impact site (MD2) recorded unchanging low values
of sedimentary δ15N that reflect the absence of waterbirds at this site over the time period
recorded in the sediments. The δ15N values of MD2 (1–2‰) are even lower than those of pre-
settlement Lake Ontario sediments (~4‰, [27]), reflecting the variable nature of background
sedimentary δ15N, which may differ depending on catchment inputs and post-depositional
processes [41]. Only slight increases in chl-a concentrations were noted near the surface of the
core (~2008), which can likely be attributed to recent climate warming that has been linked to
increases in primary production in temperate regions [46]. Since this increase in chl-a is much
smaller than those recorded in the impacted ponds (Fig 3), it is likely that the large increases in
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primary production at the impacted sites are due to cormorant waste inputs and not solely an
external factor such as climate change. Similarly, the diatom assemblage of MD2 (no-impact)
is characterized by benthic species that do not indicate high levels of nutrient inputs, but are
still tolerant of eutrophic conditions, which appear to naturally exist in the productive marsh
habitat of MD2. Similarly to the C:D of the FD1 sediment record, MD2 had stable low values
for C:D that indicate its eutrophic water chemistry.

Conclusions
Current limnological sampling and several palaeolimnological proxies at our sites all record
the influence of ornithogenic inputs in a manner a priori predicted based on previous studies
of biovectors on freshwaters [1]. Although isotope-based paleolimnological studies of bird col-
onies have thus far been largely limited to the remote Arctic, we show the potential for using
these methods in temperate regions, particularly the North American Great Lakes, which are
surrounded by dense urban centres. The large differences in production-related variables
between sites with extensive versus minimal bird activity further confirms the efficacy of this
approach in tracking waterbird impacts on freshwaters. Of considerable interest to Great Lakes
managers is the fact that the high density of cormorants on East Brother Island is likely unprec-
edented for at least the past ~100 years, but not necessarily so at Pigeon Island over the past
~150 years, suggesting that different management strategies may be appropriate for different
sites. This knowledge is particularly salient because cormorants are susceptible to population
management for socio-economic reasons (e.g. reducing competition with sports fisheries) and
thus consideration of past population levels is key [11]. However, it should be noted that dou-
ble-crested cormorant colonies may move to different islands over time. With this in mind,
paleolimnology can be used to determine if and when cormorants have used specific islands of
economic or cultural importance as nesting sites in order to make historically-informed man-
agement decisions that are not entirely based on human interests. Furthermore, ongoing devel-
opments in the field of paleolimnology, such as the use of taxon-specific stanol and sterol
biomarkers [47], may eventually be used to distinguish different waterbird species, which
would be particularly useful for separating inputs from cormorants versus ring-billed gulls in
the sedimentary record, as they often share nesting sites.

Previous research on the role of Arctic seabirds as biovectors of contaminants [3] has dem-
onstrated that birds which feed at high trophic positions and nest in large colonies, have the
potential to deposit contaminants including persistent organic pollutants and heavy metals, in
concentrations far beyond that of atmospheric deposition. Similar paleolimnological work for
cormorant-affected sites could have strong implications for environmental monitoring in the
Great Lakes, as this species has the potential to biomagnify contaminants from the Great Lakes
on the numerous islands that act as nesting grounds in the summer. Our ongoing research will
continue to expand our regional survey of nesting islands, and thus provide a broader historical
perspective of past waterbird populations in this area of concern.
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S1 Fig. Measurements of 210Pb, 137Cs, and 214Bi from the sediment cores of the study
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S2 Table. Selected water chemistry variables for the impacted pond on East Brother Island
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and specific conductivity (μS/cm) were collected from the high-impact pond on Pigeon Island
(PGN) on June 16th 2011. Abbreviations are as follows: dissolved organic carbon (DOC), dis-
solved inorganic carbon (DIC), particulate organic carbon (POC), particulate organic nitrogen
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(DOCX)

Acknowledgments
We would like to thank XiaowaWang and the National Laboratory for Environmental Testing
(Burlington, ON, Canada) for water chemistry analyses. We thank landowner JohnWeatherall,
for permission to access East Brother Island. Finally, many thanks to all of our field work vol-
unteers and the Paleoecological Environmental Assessment and Research Laboratory at
Queen’s University for continuing support. Finally, we would like to thank 4 anonymous
reviewers and our editor, Dr. Christopher Somers, for their helpful commentary on our
manuscript.

Author Contributions
Conceived and designed the experiments: EMS NM CG JPS. Performed the experiments: EMS
NM SSH CG LEK JMB. Analyzed the data: EMS NM SSH CG LEK JMB. Contributed reagents/
materials/analysis tools: CW JMB JPS. Wrote the paper: EMS NM CG CW JMB JPS. Supply
bird census data and consulation: CW.

References
1. Blais JM, Macdonald RW, Mackey D, Webster E, Harvey C, Smol JP. Biologically mediated transport of

contaminants to aquatic systems. Environ Sci Technol. 2007; 41: 1075–1084. doi: 10.1021/es061314a
PMID: 17593703

2. Krümmel E, Macdonald RW, Kimpe LE, Gregory-Eaves I, Demers M, Smol J, et al. Delivery of pollut-
ants by spawning salmon. Nature. 2003; 425: 255–256. doi: 10.1038/425255a PMID: 13679906

3. Blais JM, Kimpe LE, McMahon D, Keatley BE, Mallory ML, Douglas MSV, et al. Arctic seabirds trans-
port marine-derived contaminants. Science. 2005; 309: 445. doi: 10.1126/science.1112658 PMID:
16020729

4. Ellis JC, Fariña JM, Witman JD. Nutrient transfer from sea to land: the case of gulls and cormorants in
the Gulf of Maine. J Anim Ecol. 2006; 75: 565–574. doi: 10.1111/j.1365-2656.2006.01077.x PMID:
16638009

Long-Term Cormorant Influences on Aquatic Ecosystems in Lake Ontario

PLOS ONE | DOI:10.1371/journal.pone.0134167 July 27, 2015 13 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0134167.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0134167.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0134167.s004
http://dx.doi.org/10.1021/es061314a
http://www.ncbi.nlm.nih.gov/pubmed/17593703
http://dx.doi.org/10.1038/425255a
http://www.ncbi.nlm.nih.gov/pubmed/13679906
http://dx.doi.org/10.1126/science.1112658
http://www.ncbi.nlm.nih.gov/pubmed/16020729
http://dx.doi.org/10.1111/j.1365-2656.2006.01077.x
http://www.ncbi.nlm.nih.gov/pubmed/16638009


5. Boutin C, Dobbie T, Carpenter D, Herbert CE. Effects of double-crested cormorants (Phalacrocorax
auritus Less.) on island vegetation, seedbank, and soil chemistry: evaluating island restoration poten-
tial. Restor Ecol. 2011; 19: 720–727. doi: 10.1111/j.1526-100X.2010.00769.x

6. Glahn JF, Stickley AR Jr.. Wintering double-crested cormorants in the delta region of Mississippi: Popu-
lation levels and their impact on the catfish industry. Waterbirds. 1995; 18 (Special Issue 1): 137–142.
doi: 10.2307/1521533

7. Lantry BF, Eckert TH, Schneider CP, Chrisman JR. The relationship between the abundance of small-
mouth bass and double-crested cormorants in the eastern basin of Lake Ontario. J Great Lakes Res.
2002; 28: 193–201. doi: 10.1016/S0380-1330(02)70576-5

8. Cuthbert FJ, Wires LR, McKearnan JE. Potential impacts of nesting double-crested cormorants on
great blue herons and black-crowned night-herons in the U.S. Great Lakes Region. J Great Lakes Res.
2002; 28: 145–154. doi: 10.1016/S0380-1330(02)70572-8

9. Doucette JL, Wissel B, Somers CM. Cormorant–fisheries conflicts: Stable isotopes reveal a consistent
niche for avian piscivores in diverse food webs. Ecol Appl. 2011; 21: 2987–3001. doi: 10.1890/10-
2384.1

10. Weseloh DVC, Pekarik C, Havelka T, Barrett G, Reid J. Population trends and colony locations of dou-
ble-crested cormorants in the Canadian Great Lakes and immediately adjacent areas, 1990–2000: A
manager’s guide. J Great Lakes Res. 2002; 28: 125–144. doi: 10.1016/S0380-1330(02)70571-6

11. Wires LR, Cuthbert FJ. Historic populations of the double-crested cormorant (Phalacrocorax auritus):
Implications for conservation and management in the 21st century. Waterbirds. 2006; 29: 9–37. doi: 10.
2307/4132602

12. Weseloh DVC, Ewins PJ, Struger J, Mineau P, Bishop CA, Postupalsky S, et al. Double-crested cormo-
rants of the Great Lakes: Changes in population size, breeding distribution and reproductive output
between 1913 and 1991. Waterbirds. 1995; 18 (Special Issue 1): 48–59. doi: 10.2307/1521523

13. Weseloh DVC, Cuthbert FJ, King T. Introduction: Double-crested cormorants of the Great Lakes–
St. Lawrence River Basin: Recent studies, movements and responses to management actions. Water-
birds. 2012; 35 (Special Issue 1): 1–3. doi: 10.1675/063.035.sp101

14. Blokpoel H, Tessier GD. Distribution and abundance of colonial waterbirds nesting in the Canadian por-
tions of the lower Great Lakes system in 1990. Toronto (ON): CanadianWildlife Service, Ontario
Region; 1991. Technical Report Series No. 117. Sponsored by Environment Canada.

15. Morris RD, Weseloh DV, Wires LR, Pekarik C, Cuthburt FJ, Moore DJ. Population trends of ring-billed
gulls breeding on the North American Great Lakes, 1976 to 2009. Waterbirds. 2011; 34: 202–212. doi:
10.1675/063.034.0209

16. Ludwig JP. Recent changes in the ring-billed gull population and biology in the Laurentian Great Lakes.
Auk. 1975; 91: 575–594. doi: 10.2307/4084477

17. Weir RD. Birds of the Kingston Region. 2nd ed. Kingston: Kingston Field Naturalists; 2008.

18. Environment Canada Manual of Analytical Methods. Major Ions and nutrients. vol 1. Burlington:
National Laboratory for Environmental Testing, Canadian Centre for InlandWaters; 1994.

19. Environment Canada Manual of Analytical Methods. Trace Metals. vol 2. Burlington: National Labora-
tory for Environmental Testing, Canadian Centre for InlandWaters; 1994.

20. Glew JR. A new trigger mechanism for sediment samplers. J Paleolimnol. 1989; 2: 241–243. doi: 10.
1007/BF00195474

21. Glew JR. A portable extruding device for close interval sectioning of unconsolidated core samples. J
Paleolimnol. 1988; 1: 235–239. doi: 10.1007/BF00177769

22. Appleby PG. Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP, editors.
Tracking environmental change using lake sediments. vol 1: Basin analysis, coring and chronological
techniques. Dordrecht: Kluwer Academic Publishers; 2001. pp. 172–203.

23. Yamamuro M, Kayanne H. Rapid direct determination of organic-carbon and nitrogen in carbonate-
bearing sediments with a Yanaco mt-5 CHN analyzer. Limnol Oceanogr. 1995; 40: 1001–1005. doi: 10.
4319/lo.1995.40.5.1001

24. Robinson SA, Forbes MR, Hebert CE. Parasitism, mercury contamination, and stable isotopes in fish-
eating double-crested cormorants: no support for the co-ingestion hypothesis. Can J Zool. 2009; 87:
740–474. doi: 10.1139/Z09-062

25. Belant JL, Ickes SK, Seamans TW. Importance of landfills to urban-nesting herring and ring-billed gulls.
Landsc Urban Plan. 1998; 43: 11–19. doi: 10.1016/S0169-2046(98)00100-5

26. Caron-Beaudoin É, Gentes M-L, Patenaude M, Hélie J-F, Giroux J-F, Verreault J. Combined usage of
stable isotopes and GPS-based telemetry to understand the feeding ecology of an omnivorous bird, the
Ring-billed Gull (Larus delawarensis). Can J Zool. 2013; 91: 698–697. doi: 10.1139/cjz-2013-0008

Long-Term Cormorant Influences on Aquatic Ecosystems in Lake Ontario

PLOS ONE | DOI:10.1371/journal.pone.0134167 July 27, 2015 14 / 15

http://dx.doi.org/10.1111/j.1526-100X.2010.00769.x
http://dx.doi.org/10.2307/1521533
http://dx.doi.org/10.1016/S0380-1330(02)70576-5
http://dx.doi.org/10.1016/S0380-1330(02)70572-8
http://dx.doi.org/10.1890/10-2384.1
http://dx.doi.org/10.1890/10-2384.1
http://dx.doi.org/10.1016/S0380-1330(02)70571-6
http://dx.doi.org/10.2307/4132602
http://dx.doi.org/10.2307/4132602
http://dx.doi.org/10.2307/1521523
http://dx.doi.org/10.1675/063.035.sp101
http://dx.doi.org/10.1675/063.034.0209
http://dx.doi.org/10.2307/4084477
http://dx.doi.org/10.1007/BF00195474
http://dx.doi.org/10.1007/BF00195474
http://dx.doi.org/10.1007/BF00177769
http://dx.doi.org/10.4319/lo.1995.40.5.1001
http://dx.doi.org/10.4319/lo.1995.40.5.1001
http://dx.doi.org/10.1139/Z09-062
http://dx.doi.org/10.1016/S0169-2046(98)00100-5
http://dx.doi.org/10.1139/cjz-2013-0008


27. Hodell DA, Schelske CL. Production, sedimentation, and isotopic composition of organic matter in Lake
Ontario. Limnol Oceanogr. 1998; 43: 200–214. doi: 10.4319/lo.1998.43.2.020

28. Michelutti N, Blais JM, Cumming BF, Paterson AM, Rühland K, Wolfe AP, et al. Do spectrally-inferred
determinations of chlorophyll a reflect trends in lake trophic status? J Paleolimnol. 2010; 43: 205–217.
doi: 10.1007/s10933-009-9325-8

29. Battarbee RW, Jones VG, Flower RJ, Cameron NG, Bennion H, Carvalho L, et al. Diatoms. In: Last
WM, Smol JP, editors. Tracking environmental change using lake sediments. vol. 3: Terrestrial, Algal,
and Siliceous Indicators. Dordrecht: Kluwer Academic Publishers; 2001. pp.155–202.

30. Krammer K, Lange-Bertalot H. Bacillariophyceae. Stuttgart: Gustav Fisher Verkag; 1986–1991.

31. Smol JP. The ratio of diatom frustules to chrysophycean statospores: a useful paleolimnological index.
Hydrobiologia. 1985; 123: 199–208. doi: 10.1007/BF00034378

32. Smol JP, Stoermer EF, editors. The Diatoms: Applications for the environmental and earth sciences.
2nd ed. Cambridge: Cambridge University Press; 2010.

33. Eisenreich SJ, Capel PD, Robbins JA, Bourbonniere R. Accumulation and diagenesis of chlorinated
hydrocarbons in lacustrine sediments. Environ Sci Technol. 1989; 23: 1116–1126. doi: 10.1021/
es00067a009

34. Wait DA, Aubrey DP, AndersonWB. Seabird guano influences on desert islands: soil chemistry and
herbaceous species richness and productivity. J Arid Environ. 2005; 60: 681–695. doi: 10.1016/j.
jaridenv.2004.07.001

35. Ligeza S, Smal H. Accumulation of nutrients in soils affected by perennial colonies of piscivorous birds
with reference to biogeochemical cycles of elements. Chemosphere. 2003; 52: 595–602. doi: 10.1016/
S0045-6535(03)00241-8 PMID: 12738297

36. Michelutti N, Keatley BE, Brimble S, Blais JM, Liu H, Douglas MSV, et al. Seabird-driven shifts in Arctic
pond ecosystems. Proc Roy Soc B. 2009; 276: 591–596. doi: 10.1098/rspb.2008.1103

37. Spaulding S, Edlund M. Fistulifera; 2008. Database: Diatoms of the United States [Internet]. Available:
http://westerndiatoms.colorado.edu/taxa/genus/Fistulifera.

38. Stewart EM, McIver RM, Michelutti N, Douglas MSV, Smol JP. Assessing the efficacy of chironomid
and diatom assemblages in tracking eutrophication in High Arctic sewage ponds. Hydrobiologia 2014;
721: 251–268. doi: 10.1007/s10750-013-1667-6

39. Audubon JJ. The Birds of America. vol. 7. New York: J.J. Audubon; 1844.

40. Audubon JJ. The Birds of America. vol. 6. New York: J.J. Audubon; 1843.

41. Kendall C, McDonnell JJ. Isotope Tracers in Catchment Hydrology. New York: Elsevier Science;
1998.

42. Williamson CE, Saros JE, Vincent W, Smol JP. Lakes and reservoirs as sentinels, integrators, and reg-
ulators of climate change. Limnol Oceanogr. 2009; 54: 2273–2282. doi: 10.4319/lo.2009.54.6_part_2.
2273

43. Van Dam H, Mertens A, Sinkeldam J. A coded checklist and ecological indicator values of freshwater
diatoms from The Netherlands. Neth J Aquat Ecol. 1994; 28: 117–133. doi: 10.1007/BF02334251

44. Rott E, Duthie HC, Pipp E. Monitoring organic pollution and eutrophication in the Grand River, Ontario,
by means of diatoms. Can J Fish Aquat Sci. 1998; 5: 1443–1453. doi: 10.1139/f98-038

45. Dove A. Long-term trends in major ions and nutrients in Lake Ontario. Aquat Eco Sys Health Manag.
2009; 12: 281–295. doi: 10.1080/14634980903136388

46. Hyatt CV. A diatom-based paleolimnological investigation of historical water-quality and ecological
changes in the Lake of the Woods, Ontario. M.Sc. Thesis. Queen’s University. 2010. Available: https://
qshare.queensu.ca.

47. Korosi JB, ChengW, Blais JM. Organic Pollutants in Sediment Core Archives. In: Blais JM, Rosen MR,
Smol JP, editors. Developments in Paleoenvironmental Research. vol 18: Environmental Contami-
nants: Using Natural Archives to Track Sources and Long-Term Trends of Pollution. Dordrecht:
Springer; 2015. pp. 161–186. doi: 10.1007/978-94-017-9541-8_8

Long-Term Cormorant Influences on Aquatic Ecosystems in Lake Ontario

PLOS ONE | DOI:10.1371/journal.pone.0134167 July 27, 2015 15 / 15

http://dx.doi.org/10.4319/lo.1998.43.2.020
http://dx.doi.org/10.1007/s10933-009-9325-8
http://dx.doi.org/10.1007/BF00034378
http://dx.doi.org/10.1021/es00067a009
http://dx.doi.org/10.1021/es00067a009
http://dx.doi.org/10.1016/j.jaridenv.2004.07.001
http://dx.doi.org/10.1016/j.jaridenv.2004.07.001
http://dx.doi.org/10.1016/S0045-6535(03)00241-8
http://dx.doi.org/10.1016/S0045-6535(03)00241-8
http://www.ncbi.nlm.nih.gov/pubmed/12738297
http://dx.doi.org/10.1098/rspb.2008.1103
http://westerndiatoms.colorado.edu/taxa/genus/Fistulifera
http://dx.doi.org/10.1007/s10750-013-1667-6
http://dx.doi.org/10.4319/lo.2009.54.6_part_2.2273
http://dx.doi.org/10.4319/lo.2009.54.6_part_2.2273
http://dx.doi.org/10.1007/BF02334251
http://dx.doi.org/10.1139/f98-038
http://dx.doi.org/10.1080/14634980903136388
https://qshare.queensu.ca
https://qshare.queensu.ca
http://dx.doi.org/10.1007/978-94-017-9541-8_8

