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Abstract: Proteomics is a powerful approach to study the molecular mechanisms of cancer. In
this study, we aim to characterize the proteomic profile of gastric cancer (GC) in patients with
diabetes mellitus (DM) type 2. Forty GC tissue samples including 19 cases from diabetic patients
and 21 cases from individuals without diabetes (control group) were selected for the proteomics
analysis. Gastric tissues were processed following the single-pot, solid-phase-enhanced sample
preparation approach—SP3 and enzymatic digestion with trypsin. The resulting peptides were
analyzed by LC-MS Liquid Chromatography—Mass Spectrometry (LC-MS). The comparison of
protein expression levels between GC samples from diabetic and non-diabetic patients was performed
by label-free quantification (LFQ). A total of 6599 protein groups were identified in the 40 samples.
Thirty-seven proteins were differentially expressed among the two groups, with 16 upregulated
and 21 downregulated in the diabetic cohort. Statistical overrepresentation tests were considered
for different annotation sets including the Gene Ontology(GO), Kyoto Encyclopedia of Genes and
Genomes (KEGG), Reactome, and Disease functional databases. Upregulated proteins in the GC
samples from diabetic patients were particularly enriched in respiratory electron transport and
alcohol metabolic biological processes, while downregulated proteins were associated with epithelial
cancers, intestinal diseases, and cell–cell junction cellular components. Taken together, these results
support the data already obtained by previous studies that associate diabetes with metabolic disorders
and diabetes-associated diseases, such as Alzheimer’s and Parkinson’s, and also provide valuable
insights into seven GC-associated protein targets, claudin-3, polymeric immunoglobulin receptor
protein, cadherin-17, villin-1, transglutaminase-2, desmoglein-2, and mucin-13, which warrant further
investigation.

Keywords: gastric cancer (GC); diabetes mellitus (DM); proteomics; label free quantification (LFQ)

1. Introduction

Gastric cancer (GC) is the fifth most frequent cancer and the third leading cause of
cancer deaths worldwide [1]. The rate of incidence for GC is two-fold higher in men than
in women and represents the most commonly diagnosed cancer, as well as the leading
cause of cancer death in men from Eastern Asian countries [1].

Various risk factors are associated with this disease. One of the most common risk
factors is infection by Helicobacter pylori, a World Health Organization (WHO) class I
carcinogen that is thought to be responsible for the majority of GCs [2]. Behavioral factors
such as smoking, low fruit and vegetable intake, and high salt intake increase the risk
of developing GC [2,3]. A complex interplay of several risk factors, including genetic
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susceptibility, microbial community, and dietary habits, contributes to create a prone
environment for gastric carcinogenesis [2,4].

Diabetes mellitus (DM) is a leading cause of death worldwide and is known to be
associated with an increased risk for several cancer types, including hepatocellular, pan-
creatic and urothelial carcinoma. A possible relationship between DM and GC has been
discussed for several years due to their common characteristics, including hyperinsuline-
mia, hyperglycemia, and inflammation [5]. It is estimated that in 2030, the DM population
will be five times higher than that in 2000, thus substantially increasing the risk of cancer
and related mortality worldwide [6]. Importantly, the above-mentioned risk factors for GC
are also associated with an increased risk of DM [7].

However, the relation between GC and DM has not been completely elucidated.
In 2011, Lin et al. noted hyperglycemia as a possible risk factor for the imbalance of
energy/metabolism and impairment of the immune system as a cause of GC [8]. In this
study, the authors observed an increased risk of GC in diabetic patients, regardless of their
Body Mass Index. This theory was also confirmed in a meta-analysis performed by Cheung
et al., in which type 2 DM was linked to gastric carcinogenesis in patients treated for
Helicobacter pylori infection [9]. More recently, Mansory et al. performed a meta-analysis of
case-control studies and observed a positive association between Helicobacter pylori infection
and DM [10]. However, a review article by Tseng et al. published in 2014 concluded that
the previous publications relating DM to a higher risk of GC had several limitations [11].
More recently, Zheng J et al. studied the relationship between prediabetes or diabetes
and GC in a cohort including more than 110,000 participants with a long follow-up. In
this Swedish cohort study, the authors did not find a clear association between the two
diseases [12].

Several proteomics approaches have been developed to study GC in recent years. In
2019, Rostami-Nejad et al. reviewed 65 proteomics studies focusing on GC [13]. The authors
highlighted the importance of heat shock proteins, metabolic proteins, and galectins, among
other proteins, which may play a major role in gastric carcinogenesis. In a recent study
combining transcriptomics and proteomic data with the objective of understanding the
relation between DM and colon cancer, several signaling processes were found to be
overrepresented in normal diabetic colon mucosa adjacent to malignant tissues that may
be related with carcinogenesis in the setting of DM [14].

To the best of our knowledge, no proteomics studies have addressed GC patients in
the context of type 2 DM.

In the current study, we performed a comprehensive proteomics approach on GC
samples from 40 patients aiming to elucidate the possible links between DM and GC.

2. Experimental Section
2.1. Sample Selection

The study design was approved by the Ethical Committee of Centro Hospitalar
Universitário de São João at 16 March 2017 under the Project entitled “Diabetes & obesity
at the crossroads between Oncological and Cardiovascular diseases—a system analysis
NETwork towards precision medicine (DOCnet)”. Forty samples of GC from 19 individuals
with DM and 21 individuals without DM (controls) were processed for proteomic analysis.
A diagnosis of diabetes mellitus was considered when at least 1 of the following criteria
was met: (1) DM clearly listed in the clinical records; (2) the presence of analytical studies
complying with the DM diagnostic criteria of the 2020 American Diabetes Association
guidelines; and/or (3) the patient taking antidiabetic medication. The clinicopathological
features of the 40 patients were collected from the clinical records and from the files of
the Department of Pathology. To avoid confounding results and selection biases, the
selection of DM and non-DM patients was performed rigorously by creating two groups of
patients with an equivalent male:female ratio, median age of diagnosis, tumor stage, and
histological type.
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2.2. Protein Extraction

Frozen GC samples in Optimal Cutting Fluid (OCT) from each patient were indepen-
dently processed in 2 mL tubes containing lysing matrix A (MP Biomedicals, Irvine, CA,
USA) and a lysis buffer (100 mM Tris-HCl pH 8.5, 1% sodium deoxycholate (SDC), 10
mM tris (2-carboxyethyl) phosphine (TCEP), 40 mM chloroacetamide (CAA), and protease
inhibitors. Protein homogenization was performed using FastPrep-24 equipment (MP
Biomedicals) at 6.0 m/s in 3 cycles of 30 s each with intervals of 5 min on ice. Then, the
protein extracts were centrifuged for 5 min at 13,400 r.p.m. using a benchtop centrifuge and
transferred into 1.5 mL low protein binding tubes. Further, the extracts were incubated for
10 min at 95 ◦C at 1000 r.p.m. (Thermomixer, Eppendorf, Hamburg, Germany), sonicated
(Bioruptor, Diagenode, Liège, Belgium) for ten cycles, 30 s on and 30 s off at 4 ◦C, followed
by new centrifugation. The clarified lysate was then transferred into a new 1.5 mL vial,
and the protein concentration was measured. One-hundred micrograms of protein from
each sample were processed for proteomic analysis following the solid-phase-enhanced
sample-preparation (SP3) protocol as described in [15]. Enzymatic digestion was performed
with trypsin/LysC (2 micrograms) overnight at 37 ◦C at 1000 rpm. The resulting peptide
concentration was measured by fluorescence.

2.3. Proteomics Data Acquisition

Protein identification and quantitation were performed by nanoLC-MS/MS. This
equipment is composed of an Ultimate 3000 liquid chromatography system coupled to a
Q-Exactive Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Scientific, Bremen,
Germany). Five hundred nanograms of peptides of each sample were loaded onto a
trapping cartridge (Acclaim PepMap C18 100 Å, 5 mm × 300 µm i.d., 160454, Thermo
Scientific, Bremen, Germany) in a mobile phase of 2% ACN, 0.1% FA at 10 µL/min. After 3
min loading, the trap column was switched in-line to a 50 cm × 75 µm inner diameter EASY-
Spray column (ES803, PepMap RSLC, C18, 2 µm, Thermo Scientific, Bremen, Germany)
at 250 nL/min. Separation was achieved by mixing A: 0.1% FA and B: 80% ACN, 0.1%
FA with the following gradient: 5 min (2.5% B to 10% B), 120 min (10% B to 30% B), 20
min (30% B to 50% B), 5 min (50% B to 99% B), and 10 min (hold 99% B). Subsequently,
the column was equilibrated with 2.5% B for 17 min. Data acquisition was controlled by
Xcalibur 4.0 and Tune 2.9 software (Thermo Scientific, Bremen, Germany).

The mass spectrometer was operated in the data-dependent (dd) positive acquisition
mode alternating between a full scan (m/z 380-1580) and subsequent HCD MS/MS of
the 10 most intense peaks from a full scan (normalized collision energy of 27%). The ESI
spray voltage was 1.9 kV. The global settings were as follows: use lock masses best (m/z
445.12003), lock mass injection Full MS and chrom. peak width (FWHM) of 15 s. The full
scan settings were as follows: 70 k resolution (m/z 200), AGC target 3 × 106, maximum
injection time 120 ms; dd settings: minimum AGC target 8 × 103, intensity threshold 7.3 ×
104, charge exclusion: unassigned, 1, 8, >8, peptide match preferred, exclude isotopes on,
and dynamic exclusion 45 s. The MS2 settings were as follows: microscans 1, resolution
35 k (m/z 200), AGC target 2 × 105, maximum injection time 110 ms, isolation window
2.0 m/z, isolation offset 0.0 m/z, dynamic first mass, and spectrum data type profile.

2.4. Data Analysis

The raw data were processed using the Proteome Discoverer 2.5.0.400 software
(Thermo Scientific, Bremen, Germany). Protein identification analysis was performed with
the data available in the UniProt protein sequence database for the Homo sapiens Proteome
2020_05 with 75,069 entries and a common contaminant database from MaxQuant (version
1.6.2.6, Max Planck Institute of Biochemistry, Munich, Germany). Two protein search
algorithms were considered: (i) the mass spectrum library search software MSPepSearch,
with the NIST human HCD Spectrum Library (1,127,970 spectra and (ii) the Sequest HT
tandem mass spectrometry peptide database search program. Both search nodes consid-
ered an ion mass tolerance of 10 ppm for precursor ions and 0.02 Da for fragment ions. The
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maximum allowed missing cleavage sites was set as 2. Cysteine carbamidomethylation
was defined as constant modification. Methionine oxidation, asparagine and glutamine
deamidation, peptide N-terminus Gln->pyro-Glut, protein N-terminus acetylation, and
loss of methionine and Met-loss+Acetyl were defined as variable modifications. Peptide
confidence was set to high. The Inferys rescoring node was considered for this analysis.
The processing node Percolator was enabled with the following settings: maximum delta
Cn 0.05; decoy database search target False Discovery Rate—FDR 1%; validation based on
q-value. Protein-label-free quantitation was performed with the Minora feature detector
node at the processing step. Precursor ion quantification was performing at the processing
step with the following parameters: Peptides: unique plus razor; precursor abundance
was based on intensity; normalization mode was based on the total peptide amount; the
minimum amount of replicate files that a feature must be detected in to be used was set
to 50% in the sample group; the pairwise protein ratio calculation and hypothesis test
were based on a t-test (background based). The Feature Mapper node from the Proteome
Discoverer software was used to create features from unique peptide-specific peaks within
a small retention-time and mass range. This was achieved by applying a chromatographic
retention time alignment with a maximum shift of 10 min and 10 ppm of mass tolerance
allowed for mapping features from different sample files. For feature linking and mapping,
the minimum DM vs. control signal to noise (S/N) threshold was set at 5.

2.5. Protein Functional Enrichment Analysis

For determination of differentially expressed proteins between the DM and control
cases, the following filters were considered additionally: (1) the minimum number of
samples that a protein must be detected to be used was set to 50% per experimental group;
(2) the use of at least two unique peptides and the p-value adjusted using Benjamini–
Hochberg correction for the FDR set to ≤0.05; (3) the DM/control considered ratio was set
to ≥1.50 for the selection of upregulated proteins and to ≤0.667 for downregulated proteins;
(4) at least 50% of samples (minimum 21 out of 40) with protein-related peptides sequenced
by MS/MS. Volcano plot analysis was performed with the Proteome Discoverer software
after applying the above described filters. The Principal Component Analysis—PCA—was
carried out with the ClustVis software (https://biit.cs.ut.ee/clustvis/).

Protein functional enrichment analysis was performed with the WebGestalt (WEB-
based Gene SeT AnaLysis Toolkit) [16]. The Over-Representation Analysis (ORA) was
performed under the following conditions: minimum/maximum number of genes for a
category 5/2000 and significance level p ≤ 0.05, with the p-values adjusted following the
Benjamini–Hochberg methodology. The following parameters were considered for the
Gene Set Enrichment Analysis (GSEA) analysis: minimum/maximum number of genes
for a category, 5/2000; significance level p ≤ 0.05; 1000 permutations. The t-statistic value
between the two groups was determined for all quantified proteins. For both ORA and
GSEA approaches, the following Functional Databases were considered: Gene Ontology
(BP—Biological Process, CC—Cellular Component and MF—Molecular Function), Pathway
(KEGG—Kyoto Encyclopedia of Genes and Genomes, Panther, Reactome, Wikipathway,
and Wikipathway cancer) and Disease (Disgenet, GLAD4U and OMIM).

3. Results
3.1. Clinical Data

The clinicopathological data from the 40 GC patients are listed in Table 1. There were
no significant differences in the clinicopathological features of the two groups, including
gender, median age of diagnosis, tumor stage, and histological type (p > 0.05). A schematic
representation of the proteomics workflow performed in this study is depicted in Figure 1.

https://biit.cs.ut.ee/clustvis/
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Table 1. Clinicopathological data from GC patients with DM and without DM.

Non-DM Patients DM Patients

Patients (N) 21 19
Gender (male: female) 7:14 7:12
Median age (range) 75 (57–85) 75 (58–87)
Laurén classification (n—%)
Intestinal 13 (61.9) 10 (52.6)
Diffuse 1 (4.8) 1 (5.3)
Mixed 7 (33.3) 6 (31.6)
Indeterminate 0 (0) 2 (10.5)
pT category (N—%)
pT1a, pT1b 1 (4.8) 2 (10.5)
pT2 2 (9.5) 1 (5.3)
pT3 13 (61.9) 12 (63.1)
pT4a, pT4b 5 (23.8) 4 (21.1)
pN category (N—%)
pN0 6 (28.6) 9 (47.4)
pN ≥ 1 15 (71.4) 10 (52.6)
M category (N—%)
M0 20 (95) 16 (84.2)
(p)M1 1 (4.8) 3 (15.8)

GC: Gastric Cancer; DM: Diabetes Mellitus.
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3.2. Proteomics Analysis

A total of 6625 protein groups were identified among the 40 GC samples analyzed.
After the removal of common contaminants, the number of identified protein groups
decreased to 6599. In total, 5982 protein groups were quantified (Supplementary File S1).
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Relative quantification of the protein expression levels was performed using the LFQ—
Label Free Quantification approach. A comparison of differentially expressed proteins
between diabetes mellitus (DM) and the control (C) was performed (Table 2). Considering
the diabetes/control ratio, 37 proteins were found to be differentially expressed in samples
from patients with DM; 16 proteins were found to be upregulated and 21 downregulated.

Table 2. List of Differentially Expressed Proteins (DEP) between Diabetes mellitus (DM) and Control (C) gastric cancer
patients. A total of 37 proteins were detected following the criteria defined in Section 2.4. In total, 16 proteins were
over-expressed and 21 under-expressed in DM patients. Further details can be found in Supplementary File S1.

Protein Name Accession No. Gene Symbol Fold-Change (DM/C) Unique Peptides

Immunoglobulin lambda variable 3–27 P01718 IGLV3-27 2.023 4
Desmin P17661 DES 1.968 42
Gastricsin P20142 PGC 1.885 3
Protein S100-P P25815 S100P 1.837 5
Galectin-10 Q05315 CLC 1.771 7
Aldehyde dehydrogenase, dimeric NADP-preferring P30838 ALDH3A1 1.701 21
Caveolae-associated protein 3 E9PIE3 CAVIN3 1.691 8
Gastrokine-2 Q86XP6 GKN2 1.654 6
Eosinophil peroxidase P11678 EPX 1.629 15
Marginal zone B- and B1-cell-specific protein Q8WU39 MZB1 1.586 11
Annexin A10 Q9UJ72 ANXA10 1.578 16
Protein S100-A8 P05109 S100A8 1.523 12
Immunoglobulin kappa variable 4-1 P06312 IGKV4-1 1.517 2
Carboxymethylenebutenolidase homolog Q96DG6 CMBL 1.510 10
High mobility group protein HMG-I/HMG-Y P17096 HMGA1 1.507 4
Neutrophil collagenase P22894 MMP8 1.500 11
Protein-glutamine gamma-glutamyltransferase 2 P21980 TGM2 0.667 32
Type-1 angiotensin II receptor-associated protein Q6RW13 AGTRAP 0.664 2
Glycerol-3-phosphate dehydrogenase [NAD(+)], cytoplasm. P21695 GPD1 0.654 14
Transcription factor BTF3 P20290 BTF3 0.651 7
Monoglyceride lipase Q99685 MGLL 0.643 7
Metal cation symporter ZIP14 Q15043 SLC39A14 0.642 4
Desmoglein-2 Q14126 DSG2 0.642 28
Polymeric immunoglobulin receptor P01833 PIGR 0.615 54
Fatty acid-binding protein, liver P07148 FABP1 0.613 9
Claudin-3 O15551 CLDN3 0.610 4
Myosin-14 Q7Z406 MYH14 0.606 54
Complement C1q subcomponent subunit A P02745 C1QA 0.595 3
Cellular nucleic acid-binding protein P62633 CNBP 0.584 5
Villin-1 P09327 VIL1 0.584 35
Protein POF1B Q8WVV4 POF1B 0.575 19
CD59 glycoprotein (Fragment) A0A2U3TZL5 CD59 0.574 4
Estradiol 17-beta-dehydrogenase 2 P37059 HSD17B2 0.549 12
Cadherin-17 Q12864 CDH17 0.518 21
Mucin-13 Q9H3R2 MUC13 0.515 6
Carcinoembryonic antigen-related cell adhesion molecule 5 A0A024R0K5 CEACAM5 0.480 8
YTH domain-containing family protein 1 Q9BYJ9 YTHDF1 0.010 2

The differences between the two groups can be observed at the volcano plot depicted
in Figure 2. A Principal Component Analysis—PCA—was performed to compare the
similarities between the following clinical factors: DM; Lauren classification; and pT, pN,
and M categories (Figure 3 and Supplementary File S2). The filter criteria 1, 2, and 4,
described in Section 2.4, were applied for the protein selection. No relevant differences
between the assayed clinical pathological features were found. To further explore the
data, we additionally applied criterion 3 considering the differentially expressed proteins
between DM and C gastric cancer patients and performed a PCA analysis (Figure 3). Most
of the samples of DM were separated from the C group.
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3.3. Functional Enrichment Analysis

Over-Representation Analysis (ORA) was performed for the differentially expressed
proteins observed between the DM and control sample groups with the functional en-
richment analysis web tool WebGestalt [16] (Table 3). All 6599 identified protein groups,
excluding common contaminants, were added as the “Reference Gene List” in the software.
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The information associated with the proteins for each of the analysed functional categories
is presented in Table 3 and Supplementary File S3. The interactive information from the
WebGestalt software for the ORA is available in Supplementary File S4. For the upregulated
proteins, in the Cellular Component category of Gene Ontology, the term “Extracellular
region” provided statistically significant results with 11 associated proteins and an enrich-
ment ratio of 2.76. For downregulated protein expression, the terms “Intestinal Diseases”
and “Epithelial Cancers” from the Disease GLAD4U enrichment category were found, with
enrichment ratios of 10.68 and 9.64, respectively. Both terms relate to a mutual set of five
proteins: transglutaminase 2, polymeric immunoglobulin receptor, claudin 3, villin 1, and
mucin 13, with one specific protein for each protein: The protein cadherin 17 is associated
with “Intestinal Diseases”, and the protein desmoglein-2 is associated with the “Epithelial
Cancers” category. All seven proteins have a major role in GC that is described in Section 4.

Table 3. Functional enrichment analysis of the 37 differentially expressed proteins (DEP) (+, upregulated; −, downregulated) in DM
conditions using WebGestalt (WEB-based Gene SeT AnaLysis Toolkit) with the Over-Representation Analysis (ORA) enrichment
method.

DEP Functional Database GENE Set Description Protein Name

+ GO—CC GO:0005576 Extracellular region S100 calcium binding protein A8
eosinophil peroxidase
desmin
progastricsin
matrix metallopeptidase 8
S100 calcium binding protein P
aldehyde dehydrogenase 3 family
member A1
Galectin-10
gastrokine 2
marginal zone B and B1 cell specific
protein
carboxymethylenebutenolidase homolog

− Disease—GLAD4U PA444632 Intestinal Diseases transglutaminase 2
polymeric immunoglobulin receptor
claudin 3
villin 1
cadherin 17
mucin 13, cell surface associated

− Disease—GLAD4U PA447242 Epithelial Cancers transglutaminase 2
desmoglein 2
polymeric immunoglobulin receptor
claudin 3
villin 1
mucin 13, cell surface associated

A p-value ≤ 0.05 was considered, with all 6599 proteins identified, excluding common contaminants, used as a reference list. The p values
were adjusted using the Benjamini–Hochberg approach. The Gene Ontology (GO) functional database was considered for Biological
Process (BP), Cellular Component (CC), and Molecular Function (MF) categories. The following Pathway databases were considered:
Kyoto Encyclopedia of Genes and Genomes (KEGG), Panther, Reactome, Wikipathway, and Wikipathway cancer. Three Disease functional
databases were also considered: Disgenet, GLAD4U, and OMIM.

To extract further biological and clinical information on the obtained data, we also
performed a GSEA approach for the diabetes/control group comparison (Figure 4). This
approach focuses on groups of proteins that share common biological functions, pathways,
or diseases. Like ORA, only the statistically significant results are shown for a p-value ≤
0.05. The information for the proteins associated with each category and the associated en-
richment plots are provided in Supplementary File S5. The interactive information with the
WebGestalt software for GSEA is provided in Supplementary File S6. For the GO functional
database, we observed upregulation of the protein sets, with a high Normalized Enriched
Score (NES) indicating mitochondrial respiratory chain and oxidoreductase activity. Also
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relevant are the decreases in three sets related to the cellular component category: “ATPase
complex”, “DNA repair complex”, and “cell–cell junction”. The pathway analysis involved
this information with some new data, such as increases in the “Rho GTPase cycle” and
decreases in “mRNA splicing” gene sets. In the disease functional databases Disgenet
and OMIM, we observed an increase in acid lactic acidosis and mitochondrial deficiency.
Importantly, the Pathway–KEGG method also found high NES values for Parkinson’s and
Alzheimer’s diseases.
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Figure 4. Functional enrichment analysis of the 5982 quantified proteins in the diabetes mellitus
condition using WebGestalt (WEB-based Gene SeT AnaLysis Toolkit) with the Gene Set Enrichment
Analysis (GSEA) enrichment method. A p-value ≤ 0.05 was considered with adjustment using the
Benjamini–Hochberg approach. The Gene Ontology functional database was considered for the BP
(A), CC (B), and MF (C) categories. The following Pathways were used: KEGG (D), Reactome (E),
and Wikipathway (F). Two Disease functional databases were also used: Disgenet (G) and OMIM
(H). The upregulated pathways are depicted in blue, and the downregulated proteins are displayed
in orange. The proteins associated with each category can be found in Supplementary Table S3.
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4. Discussion

The intricate relationship between diabetes and cancer remains an important challenge
to be addressed. In this study, we performed a comprehensive mass spectrometry-based
proteomics study that included 40 samples of GC patients, including 19 with diabetes and
21 control cases. With more than 6000 proteins characterized, we performed a differential
protein expression analysis to compare GC samples from the diabetic and non-diabetic
patients. In addition, we performed a functional enrichment analysis, including Over-
Representation Analysis (ORA) and Gene Set Enrichment Analysis (GSEA).

One of the most relevant pathways observed by the GSEA for the Reactome database
was the “Respiratory electron transport”, which had a normalized enrichment score of
2.58. Forty-six out of 78 proteins from this pathway were enriched in diabetic patients.
Among these proteins, different subunits of NAD:ubiquinone oxidoreductase (A1, S6,
AB1, B3, and A8, among others) and NAD dehydrogenase subunits 3, 4, and 5 (complex
I) were observed (Supplementary File S5 and File S6). Other similarly related pathways
were also found to be enriched, including “Respiratory electron transport, ATP synthe-
sis by chemiosmotic coupling, and heat production by uncoupling proteins”, “The citric
acid (TCA) cycle and respiratory electron transport”, and “Complex I biogenesis”, high-
lighting the role of mitochondrial uncoupling in DM etiopathogenesis [17]. This study
also found upregulation in proteins related to RhoGTPase activation, a pathway that was
previously described [18]. We also found a negative association with ATPase complex
proteins, presenting a normalized enrichment score of −1.76. This negative correlation
was already previously described [19]. Our results agree with several studies highlighting
mitochondrial impairment in diabetes [20–22]. Diabetes-induced mitochondrial dysfunc-
tion is characterized by a shift in energetic metabolism leading to the synthesis of ATP
due to the oxidation of fatty acids and not the metabolism of carbohydrates. In addition, a
possible excessive accumulation of Ca2+ in the mitochondrial matrix membrane will lead
to a decrease in the mitochondrial membrane potential and impairment of ATP synthesis.
Another consequence is an increase of Reactive Oxygen Species (ROS) production. These
and other consequences of DM and mitochondrial dysfunction were recently reviewed [23].

Meaningful associations with well-documented diabetes-associated diseases were also
observed. We found 59 proteins associated with Parkinson’s disease in KEGG pathway
enrichment. Sergi et al. [24] recently reviewed the correlation between this condition and
diabetes. This GSEA analysis also found enrichment in 54 proteins of Alzheimer’s disease,
another well-described diabetes-related form of dementia [25].

In the ORA, we found two downregulated disease pathways, “Intestinal Disease”
and “Epithelial Cancers”, in DM patients with GC, with 10.7 and 9.6 enrichment ratios,
respectively. This result has particular relevance since the five shared proteins together
with one protein specifically associated with each of the gene sets—seven in total (Table 3)—
were already reported as being associated with GC and gastric pre-malignant lesions, as
follows: (1) the down-regulation of claudin-3, a tight junction protein, was associated with
GC progression [26]; (2) the polymeric immunoglobulin receptor protein, a major player of
the mucosal immune system that mediates epithelial transcytosis of immunoglobulins, was
observed to be higher in gastric intestinal metaplasia compared to in normal tissues and
cancer [27]; (3) cadherin-17, a transmembrane glycoprotein and member of the cadherin
family with an important role in tumorigenesis, was found to be over-expressed in GC [28];
(4) villin-1, an actin-binding protein, was observed to be significantly lower in GC compared
to non-neoplastic mucosa [29]; (5) GC patients whose tumors featured high expressions of
Transglutaminase-2 (protein-glutamine gamma-glutamyltransferase 2), an acyltransferase
enzyme that also serves as a G protein for several transmembrane receptors and acts as a
co-receptor for integrin β1 and β3 integrins [30], were observed to have a worse prognosis
than those with a low expression of this enzyme [31]; (6) mucin-13, a glycoprotein mainly
expressed in the digestive tract, was found to be overexpressed in intestinal-type GC [32];
(7) desmoglein-2, a major component of the desmosomes, is a cell adhesion molecule with
functional similarities to E-cadherin and was described to be abnormally expressed in
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GC [33]. Taken together, these seven downregulated proteins in DM patients form a panel
of candidate targets to be addressed in future studies to better understand the interactions
between these diseases.

In addition, it is noteworthy that some of the deregulated pathways are associated with
cancer. We observed an important negative correlation with the DNA repair complex [34],
featuring six proteins integrating with this group, as well as a decrease in the cell–cell
junction, including 58 proteins with a pivotal role in cancer progression [35]. Our results
add new data to a previous study [12] in which a clear association between GC and DM
was not found.

One limitation of this study is the lack of validation for some of the selected targets
using a complementary approach, such as Western Blot or Immunofluorescence. The PCA
analysis also showed only a limited correlation between the studied clinical settings. In a
future study, further information, such as transcriptomics/genomics data and additional
specific disease settings of the patients, will be included. However, it is noteworthy that
both the GSEA and ORA of differently expressed proteins provided here agree, in great
proportion, with previous observations in different disease settings, thus validating the
results of this study.

To summarize, in this study, we performed a comprehensive proteomics analysis on
a total of 40 GC patients to understand the relevance of DM conditions in this disease.
The developed pipeline included protein extraction; mass spectrometry data acquisition;
analysis of differentially expressed proteins; and functional analysis of gene ontology,
pathway, and disease categories. Upregulated proteins in the GC samples from diabetic
patients showed a strong fold-enrichment associated with respiratory electron transport
and alcohol metabolic biological processes, while downregulated proteins were associ-
ated with epithelial cancers, intestinal diseases, and cell–cell junction cellular components.
We also observed the enrichment of proteins previously described in well-documented
diabetes-associated diseases and detected seven proteins downregulated in DM patients
with potential clinical relevance, meriting investigation in future studies to further under-
stand the correlation between DM and GC.
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of differentially expressed proteins—Over-Representation Analysis (ORA); Supplementary File S4:
WebGestalt information of the ORA; Supplementary File S5: Functional Enrichment Analysis of
differentially expressed proteins—Gene Set Enrichment Analysis (GSEA); Supplementary File S6:
WebGestalt information of the GSEA.
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