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ABSTRACT High-throughput next-generation sequence-based genotyping and single nucleotide poly-
morphism (SNP) detection opens the door for emerging genomics-based breeding strategies such as
genome-wide association analysis and genomic selection. In polyploids, SNP detection is confounded by
a highly similar homeologous sequence where a polymorphism between subgenomes must be
differentiated from a SNP. We have developed and implemented a novel tool called SWEEP: Sliding
Window Extraction of Explicit Polymorphisms. SWEEP uses subgenome polymorphism haplotypes as
contrast to identify true SNPs between genotypes. The tool is a single command script that calls a series of
modules based on user-defined options and takes sorted/indexed bam files or vcf files as input. Filtering
options are highly flexible and include filtering based on sequence depth, alternate allele ratio, and SNP
quality on top of the SWEEP filtering procedure. Using real and simulated data we show that SWEEP
outperforms current SNP filtering methods for polyploids. SWEEP can be used for high-quality SNP
discovery in polyploid crops.
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Single nucleotide polymorphism (SNP) markers are powerful genomic
tools because they are ubiquitous in the genome, codominant, and can
be in coding regions and act as functional markers. In diploid organ-
isms, including plants, SNPs have become the preferred marker type in
genome-wide studies (Rafalski 2002; Shirasawa et al. 2013; Wallace
et al. 2014; Lee et al. 2015). In polyploid crops, however, accurate SNP
detection becomes challenging due to the ambiguous mapping of
highly similar homeologous loci, which increases the false-positive
rate of detected SNPs. Despite this difficulty, SNPs have been utilized
in some auto-polyploid and allo-polyploid crops with great success (Li
et al. 2012; Byers et al. 2012; Ersoz et al. 2012; Cavanagh et al. 2013;
Nagy et al. 2013; Uitdewilligen et al. 2013; Huang et al. 2013;
Clevenger et al. 2015). In peanut, SNP discovery and utilization as
markers have been difficult. There is promise in using SNPs from
wild diploid progenitor species to genotype cultivated germplasm
when breeding with populations incorporating wild introgressions

(Bertioli et al. 2014), but SNP detection within cultivated germplasm
has been limited. There has been one SNP-based A. hypogaea genetic
map (Zhou et al. 2014) and one genetic diversity study using SNP
markers (Khera et al. 2013) published. Compared to other species, the
number of SNP markers in those two studies was low, with 1621 and
96 SNPs, respectively. In contrast, from a 180K SNP array in soybean,
as many as 50,000 SNPs are polymorphic in a biparental population
(Lee et al. 2015). In potato, an 8300 SNP array was developed from
a set of 69,011 high-quality SNPs identified from six cultivars (Hamilton
et al. 2011). Discovery of SNPs, array design, and GBS application
has been successful in allohexaploid wheat (Cavanagh et al. 2013,
Poland et al. 2012). This success has been due to using highly strin-
gent mapping parameters for subgenome-specific mapping. Essen-
tially, if subgenomes are diverged by 3%, only allowing reads that
map with less than 3% differences will result in reads mapping to the
correct subgenome and will alleviate the problem with false posi-
tives. In peanut, this strategy is not useful because the subgenomes
comprising cultivated peanut are too similar.

Although the exact age of the hybridization event between
probable progenitor species Arachis duranensis (A genome) and
Arachis ipaensis (B genome) that led to the origin of cultivated peanut
is not known, these two diploids diverged from one another only
3–3.5 million years ago (Nielen et al. 2012; Bertioli et al. 2013). As
a comparison, the A and D genomes of cultivated cotton diverged
between 5 and 10 million years ago (Wendel 1989), and the A, B, and D
genomes of allohexaploid wheat diverged approximately 6.9 million
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years ago (Devos et al. 2005). Their recent divergence exacerbates the
problem of detecting false-positive SNP calls that are manifested by
polymorphism between subgenomes. Khera et al. (2013) could only
utilize 96 out of 1536 selected SNPs after filtering for a false-positive
rate of 93.8%. The false-positive SNP calls were actually polymor-
phisms between subgenomes and not between accessions. This was
shown nicely as Leal-Bertioli et al. (2015) used these false-positive
SNP calls to find evidence for tetrasomic recombination in Arachis
hypogaea. Zhou et al. (2014) were only able to map 1621 out of 14,663
selected SNPs after filtering for a false-positive rate of 89%. It is clear
that for SNP identification in peanut, new strategies need to be de-
veloped. Historical filtering strategies that have been successfully ap-
plied to other polyploid crops still result in excessive false-positive
SNP calls in cultivated peanut.

Here, we describe a novel SNP filtering method called SWEEP
(Sliding Window Extraction of Explicit Polymorphisms) that can be
used as a tool to filter out false positives from a set of SNP calls. Our
method uses the ubiquitous false-positive SNP calls and transforms
them from a weakness to a strength by using their information to pull
out the true SNPs that are polymorphic between genotypes of interest.
SWEEP is implemented in a Perl script that is easy to use; the user
only needs to supply sorted and indexed bam files and the reference

genome used to map sequence reads. In addition, previously generated
vcf files can be used. SWEEP will call SNPs using Samtools (Li et al.
2009) and implement our novel filtering method. If desired, then the
user can filter further based on additional common metrics. We show
the accuracy and efficacy of our method in cultivated peanut by calling
SNPs in leaf transcriptome RNAseq data from six Arachis hypogaea
genotypes and also on simulated data. SWEEP is also applicable for
other allopolyploid crops.

MATERIALS AND METHODS

Leaf tissue RNA-seq and read mapping
Six accessions that are parents of F6:8 recombinant inbred line
populations were assayed: Tifrunner (TR); Florida-07 (F07); SPT06-06
(SPT); NC 3033 (NC); New Mexico Valencia A (NM); and C76-16
(C76). SPT06-06 has been released as GP-NC WS 16 (Tallury et al.
2014). These data were previously published in Clevenger et al. (2015).

Raw reads were trimmed for adaptor sequences. Sequence
quality was assessed using FASTQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) and reads were further trimmed
for base quality (.30) and base usage bias. Due to nonrandom
base usage in the first 10 bases of these libraries, 10 bases were

Figure 1 (A) Logic for SWEEP pipeline. (B) Example
of detection of a SNP between genotypes. Blue bar
represents the reference consensus sequence.
Green bars represent one subgenome-derived
sequence. Orange bars represent the alternative
subgenome-derived sequence. Bases in red are
within genome polymorphisms and in this instance
are the anchor SNPs. Bases in yellow are the true
between-genotype SNPs.
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trimmed from the 59 end. Trimmed libraries were then filtered for
rRNA contamination by mapping to a set of known rRNA sequen-
ces using Bowtie (Langmead et al. 2009) and allowing two mis-
matches in the 25 bp seed.

A de novo assembly was constructed using New Mexico Valencia
A and the Trinity software package for de novo assembly (Haas et al.
2013) with the following parameters: "–normalize_reads–CuffFly–
min_glue 4." The assembly was then filtered for redundancy if any
transcript covered more than 75% of a longer transcript with more
than 95% nucleotide identity. Final assembly statistics are in Supporting
Information, Table S1.

Processed sequences for each genotype were first normalized to
a maximum kmer coverage of 30 using the insilico_read_normalization.pl
script of Trinity. Normalized reads were then mapped to the de novo
assembly using Bowtie2 (Langmead and Salzberg 2012) and the
following parameters to only allow proper and complete read pairs
mapping with no clipping: "–end-to-end–no-mixed." Average read
mapping across all libraries was 59.62% with 16.95% unique map-
ping. Mapping statistics are shown in Table S2. SNPs were called
using Samtools mpileup with default parameters (Li et al. 2009). No
filtering is used in this step because all possible SNPs will subse-
quently be filtered using our SWEEP algorithm. SWEEP was used to
filter called SNPs using default parameters. SWEEP is available on
Github at https://github.com/jclev-uga/SWEEP/ as free software.

Traditional filtering
For the purposes of comparison with SWEEP, we have compiled
a consensus filtering procedure. These criteria include filtering for
mean read depth across all samples covering a SNP to be at least four
reads, for minor allele frequency greater than 0.35, for SNP quality
.30, and for SNPs that are not within 35 bp of another SNP. To
accomplish these filtering criteria we have used the freely available
software, vcftools (Danecek et al. 2011), and custom scripts.

VCF files were first filtered for depth (four reads per genotype
covering base of interest) using a custom python script. Then vcftools
(Danecek et al. 2011) was run with the following parameters: "–maf
0.35–minQ 30–remove-filtered-all–remove-indels –recode." Finally,
SNPs within 35 bp of another called SNP were filtered out using
a custom python script.

SNP validation by SANGER sequencing
A set of 28 randomly chosen SNPs were selected for validation
using Sanger sequencing. Sequence was extracted from 300 bases
upstream and downstream of the SNP of interest and primers
were designed with the SNP in the center of the product using

primer3 (Untergrasser et al. 2012). Two accessions called as ref-
erence and two accessions called as alternate were sequenced for
validation.

Analysis of SWEEP-filtered SNPs
All analyses of polymorphic SNPs and false-positive rates were
performed using custom python scripts. False-positive rate was
measured by using the Samtools-derived genotype probabilities for
calling genotypes and then searching for the following genotypic
pattern among the sets of five, four, three, and two genotypes:

If every genotype has reads with the alternate base at the site of
interest, then the called SNP is a false positive.

If at least one genotype has all reads with the reference base at the
site of interest, then the called SNP is determined to be a true
allelic SNP.

Simulation
De novo assembled transcripts of New Mexico Valencia A were re-
duced to a nonredundant set of 28,967 transcripts using the Evigene
pipeline (http://arthropods.eugenes.org/genes2/about/EvidentialGene_
trassembly_pipe.html) (Nakasugi et al. 2014). A copied set of tran-
scripts was then mutated randomly at 1% divergence using a custom
python script. Illumina reads were simulated at 20· coverage of
the mutated set of transcripts using ART (Huang et al. 2012) and
mapped back to the original set of transcripts to identify the induced
"homeologous" mutations. The set of original transcripts and the mu-
tated set were then used to generate three genotypes, mutated randomly
again at 0.01%, 0.02%, and 0.0001% divergence. Reads were simulated
using ART 100 bp paired-end reads with an insertion size of 250 bp at
5·, 10·, 15·, and 20· coverage. Reads for each simulated genotype for
all coverages were mapped to the original set of 28,967 transcripts and
SNPs were called using Samtools mpileup with default parameters.
GATK UnifiedGenotyper was used with the following parameters:
"-stand_call_conf 30 –ploidy 4." Traditional filtering methods were
performed as above. SWEEP filtering was performed with the following
parameters: "-s 1 -d 5 -r 0 –ultimate."

Figure construction
All graphs were made using R statistical software (r-project.org) and
the package ggplot2.

Data availability
SWEEP is freely available under the MIT license at https://github.
com/jclev-uga/SWEEP/. Any other scripts used in this study for

Figure 2 SWEEP filtering vs. traditional filtering
methods. (A) Samtools-called SNPs were filtered us-
ing vcftools and SWEEP and evaluated for computa-
tional time using combinations of all five, four, three,
and two genotypes. (B) SWEEP filtering and tradi-
tional filtering were evaluated for false-positive rate
using combinations of all five, four, three, and two
genotypes.
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filtering, simulation, etc. are available upon request. Supplementary
Information contains Table S1, Table S2, and Table S3.

RESULTS AND DISCUSSION

SWEEP
SWEEP is a Perl wrapper script that calls a series of python scripts to
implement the sliding window strategy of identifying true allelic SNPs
between polyploid genotypes. We define "allelic" SNP in a polyploid
crop as originating from the same subgenome, within the same locus,
and being polymorphic between genotypes. In contrast, a homeologous
SNP we define as a polymorphism that exists at homeologous loci
and is polymorphic between subgenomes within genotypes. The user
can input sorted and indexed bam files from as many genotypes as
needed, and SWEEP will use Samtools to call the SNPs, filter them
using the sliding window strategy, and filter them based on metrics
that can be good identifiers of high-quality SNP calls (Clevenger et al.
2015). Additionally, the user can input a vcf file generated by their
tool of choice and SWEEP will filter the SNPs based on the supplied
options. These metrics include genotypic likelihood, read depth, and
ratio of reference base to alternate base containing reads spanning
the locus.

Sliding window procedure
SWEEP tackles the uniquely polyploid issue of detecting false-positive
SNPs that are polymorphisms between subgenomes. To do this, the
program visits each called SNP using a sliding window of three called
SNPs within a set window size. The user can adjust the size of this
window. It is recommended that the size of this window should be set
to the average length of the sequenced reads. Confidence in the actual
sequence of that locus that the read represents declines if not
contained in a continuous read. Ends of reads have a higher
percentage of sequencing errors, so further confidence can be attained
by setting a smaller window size (Song et al. 2014). The SNP of in-
terest is anchored by called SNPs up-stream and down-stream. The
procedure checks all genotypes and looks for a case where: (1) the
SNP of interest is homozygous for the reference allele in at least one
genotype while (2) the "anchor" SNPs are always heterozygous alter-
nate allele. If a SNP of interest lies at the end of a known sequence or
only has one anchor SNP within the window size, then SWEEP will
use only one anchor. The elegance of the procedure is that it uses the
false-positive, homeologous SNPs as a guide to find the true SNPs. A
flow chart of the procedure is shown in Figure 1A and a representative
sequence example with a detected allelic SNP is shown in Figure 1B.

User-determined filtering
Samtools mpileup calculates the phred scale genotype probabilities for
each SNP in the following format: AA/AB/BB, where A represents the
reference allele and B represents the alternative allele. A value of 0 is
the highest probability that the genotype represented is correct and the
least likely probability will have a value of 255. For example, 0,255,255
represents the highest probability that the sample is homozygous for
the reference allele. These scores are calculated based on a Bayesian
statistical model for characteristics of the mapped reads that cover the
base in question, including mapping quality, base quality, etc. The
SWEEP filtering option is simple, allowing three levels of stringency
for filtering. The default filters out homozygous genotype calls if the
phred-based score of a heterozygous call is less than 20, medium
stringency filters at less than 125, and high stringency filters at less
than 200. The lowest stringency filter was used on the set of SNPs
selected for sequencing and produces robust results. Higher stringency

can be used when the number of SNPs between genotypes is high and
only the best SNPs are needed.

Read depth can be an important filter for high-quality SNP calls. It
is more critical in an allopolyploid context where sufficient sequence
information is needed to discern homeologous read mapping. SWEEP
allows the user to filter based on per sample average read depth. For
example, setting the option to "4" will filter out any SNPs that have
less than four reads per sample covering the base.

Increasing the ratio increases the likelihood that the alternate allele
is present in more than one genotype, which will reduce rare SNPs. In
the context of SNP detection in polyploids from next-generation
sequence data, confidence in the veracity of a rare SNP is low. This
filter is best utilized when the number of genotypes assayed is high
and total SNPs is not a concern.

The –ultimate filter
SWEEP gives the user the option to include the ultimate filter. This
option is more computationally intensive and will require longer
run times (Table S3). The default SWEEP program relies heavily on
Samtools-calculated genotype probabilities. Manual inspection of align-
ments revealed that in some cases, reads map to the locus with the
alternate base even when the genotype probability score of 0 for homo-
zygous reference is calculated. These reads may have lower mapping
quality or have been clipped. In the case of a SNP where only one
genotype has been called homozygous reference, it is important to make
sure no single read in the experiment from that genotype contains the
alternate base, no matter the mapping quality of the read. These cases
can cause false-positive SNP calls and lead to spurious downstream
analysis. As an alternative to manually checking every individual
SNP, the user can implement the –ultimate function, which, after
SWEEP filtering, checks every base from a genotype covering the
SNP of interest that was called homozygous reference. If one read
covering the SNP contains the alternate allele, then the SNP is filtered
out. Running –ultimate is recommended in all cases for optimal quality.

Leaf transcriptome case study
As a case study we used RNAseq data from leaf tissue of six A.
hypogaea genotypes (Clevenger et al. 2015). RNAseq data are suited

Figure 3 Pairwise polymorphism between genotypes. The upper
diagonal above shows pairwise fraction of polymorphic SNPs relative
to total SNPs called. The heatmap in the lower diagonal reflects the
range of pairwise polymorphic SNPs. Genotypes are Tifrunner (TR),
NC3033 (NC), C76-16 (C76), Florida-07 (F07), and SPT06-06 (SPT).
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for SNP discovery in repetitive, complex genomes due to inherent
complexity reduction and have been used successfully in many poly-
ploid crops (Clevenger et al. 2015). As a reference we used a de novo
assembled transcriptome of New Mexico Valencia A, the genotype
with the highest number of sequenced reads.

SWEEP filtering
Samtools called a total of 610,942 SNPs relative to the de novo refer-
ence transcriptome. After SWEEP filtering with default parameters,
a total of 49,876 SNPs was retained. After using the –ultimate func-
tion, a final set of 5025 SNPs was retained. This result shows the
importance of the –ultimate function because in some cases it is
difficult to select a confident genotype likelihood cut-off. We selected
50 random SNP loci to validate for Sanger sequencing. We sequenced
two genotypes that were designated as reference and two genotypes
that were designated as alternate. Out of the 50 sequenced loci, we
obtained reliable sequence data for 28. Of the 28 loci, 25 were con-
firmed as true SNPs called using SWEEP for all genotypes and three
were false positives for 89% accuracy. During pilot experiments, we
sequenced 21 randomly chosen loci and confirmed 17 of them for
85% accuracy (Clevenger et al. 2014). Combined, these data represent
49 sequenced loci from four different genotypes per locus with a com-
bined 86% accuracy.

Traditional filtering
Traditionally, SNP identification in polyploid crops has relied on
filtering using a set of criteria that has been identified as representing
how a true SNP will be described in a SNP call (Clevenger et al. 2015).
For purposes of comparison with SWEEP, we have compiled a con-
sensus filtering procedure relying on read depth, SNP quality, minor
allele frequency, and physical proximity to adjacent called SNPs. Tra-
ditional filtering resulted in 69,874 of the 610,942 called SNPs being
retained.

SWEEP vs. traditional filtering
A comparison between the computational times for vcftools filtering
and SWEEP of different numbers of genotypes showed that the two
methods are comparable (Figure 2A). The –ultimate function requires
more computational time and is an optional quality check (Table S3).
It is important to test for the efficacy of the filtering method. Without
a known set of validated SNPs, we cannot fully verify the SNPs iden-
tified in silico, but we can evaluate them based on a set of assumptions.
The assumption we make is that given a locus with a minimum
number of reads mapping to it, if all the reads mapping to that locus

have the reference base for a particular genotype, then that genotype
does not have a SNP at that position. If, however, every genotype
assayed contains at least one read that exhibits the alternate base at
the position of interest, then we can reliably say that the base of
interest is showing either a polymorphism in all genotypes relative to
the reference or a polymorphism between subgenomes. In the latter
case the SNP is not a true allelic SNP and can be determined to be
a false positive. We compared the SWEEP filtering method with the
traditional filtering method based on these assumptions and using
different numbers of genotypes (Figure 2B). For SWEEP, the false-
positive rate is near zero, ranging from 0.01% for five genotypes and
0.02% for two genotypes (Figure 2B). Using the traditional filtering
method, the false positive rate is, in contrast, very high, ranging from
80% for five genotypes and 96.9% for two genotypes. SWEEP filtering
results in good polymorphism between genotypes. Figure 3 shows the
polymorphism among detected SNPs with SWEEP. The pairwise SNP
polymorphisms between genotypes ranged from 32% to 66%.

SWEEP vs. traditional filtering simulation
To show that SWEEP filtering performs better in an allopolyploid
context using a set of known SNPs, we performed a simulation. For
the simulation we used a compressed set of 28,967 transcripts after
redundancy reduction using the Evigene pipeline (http://arthropods.
eugenes.org/genes2/about/EvidentialGene_trassembly_pipe.html)
(Nakasugi et al. 2014). We randomly mutated these transcripts with
a divergence of 1% to form a set of homeologous transcripts; therefore,
the location of all homeologous polymorphisms was predetermined.
From these two sets we generated three distinct genotypes: one geno-
type contained additional SNPs at 0.01% divergence; a second geno-
type contained unique SNPs at 0.02% divergence; and the third
genotype maintained the SNPs from genotype two and contained
a unique set at 0.0001% divergence. Simulated Illumina reads from
these three genotypes were mapped to the original set of 28,967 non-
mutated transcripts with 5·, 10·, 15·, and 20· coverage. This
scenario mimics a situation in which the reference a researcher is using
contains “collapsed” sequences representing a consensus sequence
between homeologous or paralogous genes. We evaluated SWEEP
filtering against Samtools with traditional filtering and GATK (ploidy
set to 4·) with traditional filtering (Figure 4A). SWEEP filtering
greatly outperformed both methods for percentage of SNPs recovered
that are true SNPs relative to homeologous SNPs. At 5· coverage,
SWEEP recovers true SNPs at a rate of 65%, and that increases to 94%
at 10· coverage, 98% at 15· coverage, and 99% at 20· coverage.
Samtools with traditional filtering surprisingly outperformed GATK

Figure 4 Percentage of true SNPs compared to
false-positive, homeologous SNPs called by filtering
method. Samtools and GATK with traditional filter-
ing methods were compared to SWEEP filtering in
a simulation with 5·, 10·, 15·, and 20· coverage. (A)
Recovery of true SNPs as percentage of total SNPs
retained after SWEEP filtering and traditional filter-
ing using GATK and Samtools. (B) Recovery of true
SNPs as percentage of total simulated true SNPs.
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with the ploidy option set to 4· with 8% true SNP recovery at 20·
coverage. Neither Samtools nor GATK with traditional filtering recov-
ered true SNPs at higher than 8% with any coverage. The lower per-
centage of true SNPs identified by SWEEP at 5· coverage results from
lack of sampling both homeologous loci at low sequence coverage. In
such cases, there is no way to discern, within the experiment, a home-
ologous SNP from an allelic SNP. The higher percentage of true SNPs
recovered for SWEEP is not a consequence of identifying fewer true
SNPs overall because SWEEP recovered a larger number of true SNPs
than Samtools and GATK at 5·, 10·, and 15· coverage and retained
a comparable amount to Samtools at 20· coverage (Figure 4B).

Summary and Conclusions
We have shown that SWEEP is a reliable method for identifying true
allelic SNPs among genotypes of A. hypogaea and is a major improve-
ment of current methods. We have validated SWEEP-filtered SNPs at
an accuracy rate of 85%. SWEEP outperforms traditional filtering meth-
ods relative to the false-positive rate. The false-positive rate of tradition-
ally filtered SNPs ranges from 80% to 96%, whereas the false-positive
rate of SWEEP-filtered SNPs ranges from 0.01% to 0.02%. Using a sim-
ulation, we further validated that SWEEP greatly outperforms current
filtering methods, retaining a high percentage of true SNPs relative to
homeologous polymorphisms (65%–99% depending on coverage) com-
pared to other methods (2%–8%). A similar method was developed and
implemented in parallel to design high-quality probes for a 90k SNP
array for allo-octoploid cultivated strawberry Fragaria · ananassa
(Bassil et al. 2015). Their method uses "destabilization" sites as a method
of ploidy reduction in their array design. These destabilization sites are
similar to our anchor SNPs in our sliding window design and confirm
that using homeologous polymorphism haplotypes as contrast is an
efficacious method for discerning true genotypic SNPs in polyploid
species. Using SWEEP for outcrossing polyploids or autopolyploids
with higher levels of ploidy may not be useful. However, it is clear from
these data that SNP identification in peanut cannot rely on traditional
methods and that SWEEP is a reliable tool for genotyping using GBS
and for identifying SNPs for SNP array design for polyploids.
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