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Materials with negative permittivity and permeability can overcome the diffraction limit, thereby making
the sub-wavelength imaging possible. In this study, we analyze the effects of gradient index on a half-infinite
perfect lens. We assume that the sharp interface between the vacuum and the negative-index material is
replaced by a smooth transition profile such that the index gradually changing from positive to negative.
Interestingly, we find that if the graded index profile is modeled by a tanh function, we can have closed-form
analytical solutions for this problem, which is a distinct advantage as numerical solutions are not accurate
for evanescent waves with large transverse wave vectors. By analyzing the analytical formulas we confirm
that a nonzero total absorption can occur even for a near-zero absorption coefficient in the steady-state limit
and the image plane contains multiple sub-wavelength images of an object.

P
endry1 proposed that a slab with E~m~{1 can overcome the diffraction limit leading to the perfect lens
concept. The mechanism is that the perfect lens can amplify the evanescent waves and restore the high-
spatial-frequency information of an object. The effects of absorption on perfect imaging of a finite-length

slab were adequately considered2,3. Several experimental demonstrations on the subwavelength imaging system4,5

have been achieved.
In practice, a negative-index material cannot have an infinitely sharp interface between the material and

vacuum. From an effective medium point of view, the transition from vacuum to negative index should be a
smooth function. In that sense, the perfect lenses can be modeled as positive-to-negative transition materials6. As
such, they have been modeled as layered optical materials with gradient optical indexes E and/or m continuously
changing from positive values to negative ones. In Ref. 7 and 8, it is found that near the transition point for E, the
fields for oblique incidence present large enhancement with enhanced absorption. The absorption is found to be
nonzero even in the lossless limit. In Ref. 6, similar effects are obtained when both E and m linearly pass the same
transition point. The question we are addressing here is the effect of the zero-index point on the quality of perfect
imaging.

In order to answer that question we consider a simplified case, a half infinite negative-index material with a
gradient index profile described by the function tanh. For simplicity, that material is free of frequency dispersion.
To study the imaging effects, we need to analyze the whole spectrum of the object. However, numerical methods
(such as transfer matrix method) for evanescent waves can be challenging as the accuracy depends on the
cancelation of large matrix elements (as we discuss later). Fortunately, it turns out that the tanh function model
enables us to analytically treat the transmission and reflection of propagating waves as well as properties of
evanescent waves. Therefore, the analytical results can provide us with a precise description of imaging and
absorption in these novel systems.

Before we systematically investigate the imaging properties of this structure, we confirm the existence of the
large absorption near the zero-index point according to Ref. 6. The maximum absorption and several asymptotic
properties are also addressed. We then analytically and numerically answer the question posted above about the
effects of large absorption (arising from the zero-index point) on the perfect imaging. The main feature is that the
image plane contains multiple subwavelength images of an object and the distance between the subimages is
proportional to the characteristic transition length. This is a unique feature attributed to the gradient index of the
perfect lens.

We note that this study provides an example of transition materials9–13 that can be treated fully analytically even
for oblique incidence.
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Results
Material model and its analytical solutions. The permittivity and
permeability we use to model a gradient-index passing from positive
to negative index are E~m~tanh rxzidð Þ. We note that E~m?{1
for x R 2‘ and E~m?z1 for x R 1‘. The parameter r
characterizes the gradient of the transition. The imaginary part of E
and m is positive for 0 , d , p/2, and therefore the material is a
passive absorbing material under that condition. One example is
shown in Figure 1. For simplicity, we set the velocity of light c 5 1
and the vacuum parameters E0~1 and m0 5 1 in the whole study. As
we treat all quantities as dimensionless, the results can be applied to
different length scales after some rescaling.

The Helmholtz equation for TE waves have already been written as
in [6],

d2E
dx2

{
1
m

dm

dx
dE
dx

z a2m2{b2
� �

E~0: ð1Þ

where a 5 v/r, b 5 v sinh/r with v and h being the frequency and
angle of the incident wave. This equation can be transformed into
hypergeometric equation after changes of variables, y 5 m2 and E 5

(1 2 y)lF(y) where l~{
i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2{b2
p

. The transformed equation is

d2F
dy2

{
2lz1
1{y

dF
dy

{
b2

4y 1{yð Þ F~0, ð2Þ

which is a hypergeometric equation with indexes a 5 l 1 ia/2, b 5 l
2 ia/2 and c 5 0.

Analytical solutions for this material. In the following Methods
section, we show all required steps to obtain the final analytical
results. These steps generally involve the properties of hypergeo-
metric equations and series. Here we only refer to the final results
which are summarized in Eq.24.

Basic properties of this material. In this part, we study some basic
properties of the gradient-index material by investigating the
analytical solutions. It includes the discussions about maximum
total absorption rate and asymptotic behaviors for some limiting
cases. These properties are helpful for us to understand the effects
on imaging.

Maximum total absorption. As discovered in Ref. 6, the total absorp-
tion of this positive-to-negative transition material is nonzero even
when the absorption coefficient is near zero. In this section, we
confirm and develop this result for our specific model.

Before we investigate the total absorption in the lossless limit d R
0, we first prove the identity Rj jz Tj j~1, or equivalently
C 1ð Þ

{

�� ��~1z C 2ð Þ
{

�� ��. We can easily see that C 1ð Þ
{

�� ��~C 1ð Þ
{ w1, since a

and b are purely imaginary. Then we calculate C 2ð Þ
{

�� ��.
C 2ð Þ

{

�� ��2~C 2ð Þ
{ C 2ð Þ�

{ ~C 2ð Þ
{ a,bð ÞC 2ð Þ

{ {a,{bð Þ~{
4 sin2pb sin2pa

sin2p azbð Þ :
ð3Þ

Then follows the identity C 1ð Þ
{

�� ��~1z C 2ð Þ
{

�� ��.
Given the above identity, the total absorptionA~1{ Rj j2{ Tj j2

reaches its maximum 1/2 under the condition Rj j~ Tj j~T~1=2.
Then we finally arrive at the incident angle for maximum absorption,
which is given by

cos h~
ln coshpv=r

pv=r
: ð4Þ

That is to say, even in the lossless limit d R 0, for any given fre-
quency, this material can present maximum total absorption 1/2 at a
specified angle given by the above equation.

R and T in several limiting cases. We only consider the limit d R 0 in
this section and do not introduce frequency dispersion to our model.

For oblique incidence h ? 0 and high frequency v R 1‘, it can be
easily proved that C 2ð Þ

{

�� ��?z?. Therefore limv?z? Tj j~0, and
limv?z? Rj j~1. That is, for high frequencies, the light is totally
reflected. However, this is the case when no dispersion is taken into
consideration.

For oblique h ? 0 but low frequency v R 0, we have a R 0 and b

R 0, followed by C 2ð Þ
{

�� ��~0, C 1ð Þ
{

�� ��~1 and limv?0 Tj j~1,
limv?0 Rj j~0. For low frequencies, the material behaves like a com-
plementary material with total transmission.

For normal h 5 0 and a finite v, we can easily get limh?0 Tj j~1,
limh?0 Rj j~0. That means for normal incidence, we have total
transmission which is the characteristic property of complementary
materials suggested by Pendry and co-workers.

For large incidence angle near p/2 and a nonzero v, we can prove
that C 2ð Þ

{

�� ��?z?. Then follows limh?p=2 Tj j~0, and limh?p=2 Rj j
~1. For glancing incidence, the light is totally reflected.

We should remind ourselves that for a sharp interface between the
vacuum and negative-index material without smooth transition, the
light will always be totally transmitted. We can see that for the gra-
dient index, not only can we have a transmittance less than unity, but
also have a nonzero reflectivity. Besides, the total absorption is non-
zero even in the lossless limit d R 0 as discussed in the previous
section.

Comparison with numerical calculations. In order to verify the
analytical formula, we numerically compute the total absorption

Figure 1 | The permittivity E of the material. r 5 1, d 5 0.01.

Figure 2 | The comparison of the analytical and numerical results for the
total absorption under v 5 2p, r 5 1, and d 5 0.01. The numerical results

are obtained by use of transformation matrix technique. The material is

confined within [25, 15], and is discretized into 3000 uniform layers.
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(1{ Rj j2{ Tj j2) of this material by use of the transfer matrix
technique. The analytical and numerical results are compared in
Figure 2 under the condition that v 5 2p, r 5 1, and d 5 0.01.
We can see that the two different methods give the same results. The
total absorption can exceed the 1/2 bound because in this case we
consider a finite absorption parameter d 5 0.01.

For evanescent waves, the numerical method based on the stand-
ard transfer matrix is inaccurate, because the nonzero transmission,
which is necessary for perfect imaging, relies on the accurate cancel-
lation of very large matrix elements. Therefore, if we want to accur-
ately study the whole spectrum, analytical is the best tool.

Effects on perfect imaging. In Ref. 1, Pendry proposed that a slab
(perfect lens) with E~m~{1 can overcome the diffraction limit.
This is made possible by the fact that the perfect lens can ideally
restore the information contained in the evanescent waves.
However, for gradient-index material, the reflection and
transmission can be very different from the sharp-interface case as
we showed in previous sections. In the following, we analyze the
effects of a graded transition from positive to negative index.

In the sharp-interface limit, r R 1‘, the transition materials
approaches a half-infinite perfect-lens slab. A perfect image of an
object in another side of the interface is therefore possible since the
transmission for all transverse wave vectors are unity.

However, as can be seen from previous sections, if the transition is
smooth (as in Fig. 3), i.e., r is finite, the transmission is not unity even
for the propagating wave. If we set a monochromatic line object (not
a point) in the plane x 5 2a, with an arbitrary transverse amplitude
profile E(x 5 2a; z) and Fourier components E x~{a; kð Þ~Ðz?
{? E x~{a; zð Þeikzdz, we will obtain the field amplitudes in the

image plane x 5 a,

E x~a; zð Þ~ 1
2p

ðz?

{?
E x~{a; kð ÞT kð Þe{ikzdk, ð5Þ

where, according to the results in Methods section,

T kð Þ~ sin 2pl

e{2ipl{cosh pv=r
, ð6Þ

with l~{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2{v2
p .

2r being the principal value of the square

root. We have also assumed that d R 0.
Because T is a periodic function of l, we can obtain the discrete

Fourier expansion of T,

T~
Xz?

{?

an exp2ipnl, ð7Þ

with an~
i
2 x{2{1ð Þx{n for n~1,2, � � �; a0~

i
2 x{2; a{1~

i
2 x{1; an

5 0 for n~{2,{3, � � �. Here x 5 cosh(pv/r).

A remarkable feature of each Fourier term exp ipn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2{v2ð Þ

p ��
rÞ is that for large k, it approaches a periodic function and thus
contributes a resonance when inversely Fourier-transformed. Let
us approximate exp ipn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2{v2ð Þ

p �
r*expipn kj j=r for large k.

Then the images in the real z axis can easily be obtained after inverse
Fourier transformation.

E x~a; zð Þ*
Xn~z?

n~{?

an

ðz?

{?
E x~{a; kð Þe{ikzzi kj jnp=rdk: ð8Þ

If we consider a simple Lorentzian object E x~{a; zð Þ~D

p

1

z2zD2,

the image should be

E x~a; zð Þ*
Xn~z?

n~{?

an

p

np=r{iD

z2{ np=r{iDð Þ2
: ð9Þ

The above result indicates that the image plane contains multiple
peaks. The widths of the all peaks remain the same as that of
the object which is a Lorentz spot. The distance tween subimages
is p/r which means that the emergence of multiple images can be
attributed to a finite r or the gradient index. The amplitude an of
high order images exponentially decays with a characteristic order

nc~
1

ln cosh pv=rð Þ.

In order to obtain more accurate results for the image profile, we
numerically integrate Eq.5 for the parameters d 5 0,D5 0.02, r 5 5,
v 5 1. These parameters means that the characteristic width of the
transition layer is about 1/30 of the wavelength. The width of the line
object is about 1/300 of the wavelength. The numerical results are
displayed in Figure 4. That is to say, the width of the line object is
much less than that transition width of the layer which itself is still
much less than the wavelength. We can see that image profile appears
in such a way that many peak emerges just as sub images of the line
object. We can also verify that the distances, about p/5, between these
peaks can be predicted by the Eq. 9 quite well. The widths of these sub
images are comparable to that of the line object, which is also in
accordance to the Eq. 9.

Let us study a more complex object, E x~{a; zð Þ~
D

p

1

zzd=2ð Þ2zD2 z
D

p

1

z{d=2ð Þ2zD2 , which contains double

Lorentzian objects. Following the same procedure, we obtain the
corresponding image

Figure 3 | The setting of the material.

Figure 4 | Single line. The field amplitude distribution in the object plane

(red) and image plane (blue). The relative strength between the red and

blue curve does not have meaning.
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E x~a; zð Þ*
Xn~z?

n~{?

an

p

np=r{iD

z{d=2ð Þ2{ np=r{iDð Þ2

z
an

p

np=r{iD

zzd=2ð Þ2{ np=r{iDð Þ2

ð10Þ

We can see that two sets of multiple images overlap with each other.
We can confirm the approximation in Eq.(10) by direct numerical
calculation, as shown in Fig. 5.

Discussion
We have not included the finite-length effect (finite-length slab) in
this study, and thus can not address the frequency cut off proposed in
Ref. 3. If finite length, gradient index and absorption are all consid-
ered, we can expect that we still see multiple images but the detail
profile of each subimage needs to be investigated. Since the material
we discuss in this study is free of dispersion, we cannot address the
formation of the image in the time domain. To analyze the more
realistic material with dispersion we may consult to numerical meth-
ods and full analytical results are not possible. However, we can
expect that it may take a relatively long time to form the image
because of the field enhancement near the zero-index. These are to
be studied in the future.

In summary, the transmission and reflection properties of a
graded positive-to-negative materials can be very different from
the ones with idealized sharp interface. These differences are mostly
attributed to the large field enhancement near the zero-index point.
To study the effects of graded index on perfect imaging, analytical
solutions are obtained for smooth transition material with a ‘‘tanh’’
profile. The analytical expressions provide us insights into this prob-
lem. Expressing the fields in terms of hypergeometric functions, we
obtain the closed-form analytical expressions for the reflection and
transmission coefficients. The results are confirmed by direct numer-
ical method. Our analytical results uncover the smooth transition
effects on imaging: emerging of multiple images. The distance of
these subimages is shown to be directly related to the gradient of
the transition. These effects can be important for understanding the
subtle properties of the perfect lens.

Methods
Solutions of the Helmholtz equation for x R 1‘, x R 2‘ and 2‘ , x , 1‘.
According to the material model we have adopted, for x R 6‘, we have m R 61 and
y R 1. As shown in the following section about Kummer solutions, the field can be
expressed as linear superposition of two basic solutions,

E+ xð Þ~C 1ð Þ
+ 1{m2
� �l

w3zC 2ð Þ
+ 1{m2
� �l

w4, ð11Þ

where w3,4, as well as w1,2 below, are Kummer solutions for hypergeometric equations
(shown below).

For 2‘ , x , 1‘, y is near the zero pole. The two basic solutions are,

1{m2
� �l

f and 1{m2
� �l

w2: ð12Þ
where w2, defined in Eq. 26, is one of the Kummer solutions near the zero pole and f is
the solution with logarithm since we are working with a degenerate hypergeometric
equation with index c 5 0.

Similar to the expression of Neumann functions in terms of Bessel function, the
logarithm solution f can be expressed as limit of linear superposition of w1 and w2 of
nonzero c index,

f ~ lim
c?0

w1

C cð Þ{abw2

1
C cð Þ

, ð13Þ

which will be proved in the Methods section. Specifically, according to the L’Hospital
rule,

f ~ lim
c?0

w’1C cð Þ{w1C’ cð Þ
C cð Þ2

{abw’2

{
C’ cð Þ
C cð Þ2

, ð14Þ

where w’1~
dw1

dc
, w’2~

dw2

dc
~{w2 ln yzy1{c d

dc
2F1 a{cz1,b{cz1; 2{c; yð Þ

with 2F1 being the hypergeometric function.
However, if we use the principal values of f(y), the field is discontinuous14 along the

real x axis at zero point x 5 0, corresponding to m 5 tanh(id) 5 i tanh d. Therefore, for
0 , x , 1‘ and 2‘ , x , 0, we should use different superpositions of w2 and f to
make sure that the field is continuous.

The discontinuity of the principal value of f is f (x 5 01) 2 f (x 5 02) 5 2abpiw2(x
5 0) according to Eq.(14). Then, if the field for 0 , x , 1‘ is

Ez xð Þ~A 1{m2
� �l

f zB 1{m2
� �l

w2, ð15Þ
the field in 2‘ , x , 0 should be

E{ xð Þ~A 1{m2
� �l

f z Bz2abpiAð Þ 1{m2
� �l

w2, ð16Þ

to ensure the continuity across x 5 0.

Relations among C 1,2ð Þ
+ and A, B. The different field expressions (11, 15,16) should be

equal in equivalent regions, which imposes connection relations among the coeffi-

cients C 1,2ð Þ
+ and A, B.

If we set C 1ð Þ
z ~1, C 2ð Þ

z ~0 in x R 1‘ region, according to the Kummer connection
formula between w3 and w1,2 in Appendix A, as well as Eq. (13,15), we have

w3~
C 1{cð ÞC azb{cz1ð Þ
C a{cz1ð ÞC b{cz1ð Þw1z

C c{1ð ÞC azb{cz1ð Þ
C að ÞC bð Þ w2

~ B cð Þ{A cð ÞabC cð Þ½ �w2zA cð Þw1:

ð17Þ

with B 5 limcR0B(c),A 5 limcR0A(c). After straightforward calculation, we have

A~
C azbz1ð Þ
abC að ÞC bð Þ

B~
1

C að ÞC bð Þ
1
a

z
1
b

zcEzy að Þzy bð Þ{1

� �
:

ð18Þ

where cE 5 2y(1) 5 0.577215664…. and y is the derivative of the logarithm of C
function.

Then according to Eq.(15,16,17), in x R 2‘

E{ xð Þ~ 1{m2
� �l

w3z2abpiA 1{m2
� �l

w2: ð19Þ

By use of Kummer connection formula between w2 and w3,4 in Appendix A, we have

E{ xð Þ~ 1z
Aab 2pið ÞC {a{bð Þ
C 1{að ÞC 1{bð Þ

	 

1{m2
� �l

w3z
Aab 2pið ÞC azbð Þ
C az1ð ÞC bz1ð Þ 1{m2

� �l
w4,

ð20Þ

which, compared with Eq.(16), gives

C 1ð Þ
{ ~1z

2pið ÞC {a{bð Þ
C 1{að ÞC 1{bð Þ

C azbz1ð Þ
C að ÞC bð Þ ~1{i

2 sin pa sin pb

sin p azbð Þ

C 2ð Þ
{ ~

2pið ÞC azbð Þ
C az1ð ÞC bz1ð Þ

C azbz1ð Þ
C að ÞC bð Þ

ð21Þ

Reflection and transmission coefficients. Now we have obtained continuous
solutions along the real x axis. For x R 1‘, E1 5 (1 2 m2)lw3; for x R 2‘,

Figure 5 | Image profile for a source of double line. The field amplitude

distribution in the object plane (red) and image plane (blue). The relative

strength between the red and blue curve does not have meaning. We use d

5 10D, and other parameters are the same as in Fig. 4.
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E{~C 1ð Þ
{ 1{m2ð Þlw3zC 2ð Þ

{ 1{m2ð Þlw4. According to Appendix A, the asymptotic
behaviors for x R 6‘ or y < 1 are that w3 < 1 and w4 < (1 2 y)22l.

Therefore, for x R 1‘,

Ez< 1{m2
� �l<eixr

ffiffiffiffiffiffiffiffiffiffi
a2{b2
p

e{d
ffiffiffiffiffiffiffiffiffiffi
a2{b2
p

2{i
ffiffiffiffiffiffiffiffiffiffi
a2{b2
p

, ð22Þ

which is an outgoing wave; for x R 2‘,

E{<C 1ð Þ
{ e{ixr

ffiffiffiffiffiffiffiffiffiffi
a2{b2
p

ezd
ffiffiffiffiffiffiffiffiffiffi
a2{b2
p

2{i
ffiffiffiffiffiffiffiffiffiffi
a2{b2
p

zC 2ð Þ
{ eixr

ffiffiffiffiffiffiffiffiffiffi
a2{b2
p

e{d
ffiffiffiffiffiffiffiffiffiffi
a2{b2
p

2i
ffiffiffiffiffiffiffiffiffiffi
a2{b2
p

, ð23Þ

where C 1,2ð Þ
{ term represents incident and reflected wave, respectively, since the

energy flux and wave vector point in opposite directions in this double negative
region.

From Eq.(22,23) above, we can directly read out the reflectionR and transmission
T coefficients,

R~
C 2ð Þ

{

C 1ð Þ
{

e{2d
ffiffiffiffiffiffiffiffiffiffi
a2{b2
p

zi2 ln 2
ffiffiffiffiffiffiffiffiffiffi
a2{b2
p

T~
1

C 1ð Þ
{

e{2d
ffiffiffiffiffiffiffiffiffiffi
a2{b2
p

ð24Þ

Kummer solutions for hypergeometric equations. For completeness, we include
some information about hypergeometric equations used in this study. One can also
refer to mathematics handbooks. The hypergeometric equation is

z 1{zð Þ d2w
dz2

z c{ 1zazbð Þz½ � dw
dz

{abw~0: ð25Þ

When none of c, c 2 a 2 b, a 2 b is an integer, the two basic solutions near 0 , jzj, 1
are,

w1 zð Þ~2F1 a,b; c; zð Þ,

w2 zð Þ~z1{c
2F1 a{cz1,b{cz1; 2{c; zð Þ;

ð26Þ

the two basic solutions for 0 , jz 2 1j , 1 are,

w3 zð Þ~2F1 a,b; azb{cz1; 1{zð Þ,

w4 zð Þ~ 1{zð Þc{a{b
2F1 c{a,c{b; c{a{bz1; 1{zð Þ,

ð27Þ

where

2F1 a,b; c; zð Þ~
Xz?

n~0

1
n!

C aznð Þ
C að Þ

C bznð Þ
C bð Þ

C cð Þ
C cznð Þ zn, ð28Þ

and definitions of these solutions on the whole complex plane are not shown here.
They are connected by Kummer connection formulas in common converging

regions, which include

w3~
C 1{cð ÞC azb{cz1ð Þ
C a{cz1ð ÞC b{cz1ð Þw1z

C c{1ð ÞC azb{cz1ð Þ
C að ÞC bð Þ w2; ð29Þ

w2~
C 2{cð ÞC c{a{bð Þ
C 1{að ÞC 1{bð Þ w3z

C 2{cð ÞC azb{cð Þ
C a{cz1ð ÞC b{cz1ð Þw4 ð30Þ

Logarithmic solution near z 5 0 for c R 0. To prove Eq.(13), we only need to

guarantee that its numerator
w1

C cð Þ{abw2 approaches zero when c R 0.

According to Eq.(26), when c R 0,

w1<1zC cð Þabz
Xz?

n~0

1
n!

C aznz1ð Þ
C az1ð Þ

C bznz1ð Þ
C bz1ð Þ

C cz2ð Þ
C cznz2ð Þ zn

<1zC cð Þabz2 F1 az1,bz1; 2; zð Þ;
ð31Þ

and

w2<z2 F1 az1,bz1; 2; zð Þ; ð32Þ

Then the Eq.(13) can be understood.
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