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Abstract
Systemic inflammation is associated with poor outcome after stroke. Glucocorticoids (GCs) play a fundamental role in lim-
iting inflammation. The aim of this study was to explore the associations between GC sensitivity, systemic inflammation, 
and outcome after ischemic stroke. The study population compised 246 ischemic stroke patients (median age: 69.0 years; 
41.1% female). To assess GC sensitivity, we incubated venous blood samples that were obtained at day 3 after stroke with 
lipopolysaccharide (10 ng/mL) and dexamethasone (10–6 mol/L). We defined the GC sensitivity index as the ratio of tumor 
necrosis factor α (TNFα) released after blood stimulation with lipopolysaccharide and dexamethasone to the amount of TNFα 
released after blood stimulation with lipopolysaccharide alone. A higher index indicates higher GC resistance. The patients 
with poor functional outcome had a higher GC sensitivity index than those with good outcome (median: 16.1% vs. 13.5%, 
P < 0.01). In a logistic regression analysis adjusted for age, stroke severity, pneumonia, leukocyte count, plasma interleukin-6, 
and TNFα release ex vivo, a higher GC sensitivity index was associated with a higher risk of poor outcome after stroke (OR 
2.32, 95% CI 1.21–4.45, P = 0.01). In conclusion, GC resistance is associated with poor functional outcome after stroke.
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Background

Acute stroke is accompanied by both systemic inflammation 
and immunodepression (Chamorro et al. 2012; Murray et al. 
2013). Systemic inflammation is reflected by an elevated 
level of circulating interleukin-6 (IL-6) and C-reactive pro-
tein (CRP) (Dziedzic 2015). Immunodepression manifests 
as a functional deactivation of monocytes, lymphopenia, and 
spleen atrophy (Chamorro et al. 2012). The laboratory hall-
mark of immunodepression is a reduction in tumor necrosis 
factor α (TNFα) release after blood stimulation ex vivo with 
endotoxin. Elevated levels of circulating IL-6 and CRP as 
well as reduced TNFα production ex vivo are associated 
with poor outcome after stroke (Chamorro et  al. 2012; 
Dziedzic 2015; Klimiec et al. 2018).

Glucocorticoids (GCs) are an important element of the 
feedback mechanism in the immune system and restrain the 

immune response. A failure of GCs to inhibit the inflamma-
tory reaction may contribute to disease development. The 
ultimate biological response to GCs is determined by the 
concentration of GCs and individual differences in GC sen-
sitivity (Silverman and Sternberg 2012; Quax et al. 2013).

Multiple factors that act at the level of GC receptors and 
their signaling pathway can influence the response to GCs. 
Among them, inflammation may contribute to GC resist-
ance (Pace et al. 2007; Pace and Miller 2009). Cytokines 
such as TNFα, IL-1, and IL-6 can decrease the expression of 
GC receptors, inhibit translocation of the GC receptors from 
the cytoplasm to the nucleus, and disrupt the protein–pro-
tein interactions of GC receptors and their binding to DNA. 
Moreover, cytokines can induce relatively inert receptor iso-
forms that exhibit reduced binding affinity.

Another way in which cytokines might contribute to 
GC resistance is the regulation of GC bioavailability. Pro-
inflammatory cytokines tend to favor increased GC bio-
availability by reducing levels of corticosteroid binding 
globulin (CBG) and multidrug-resistant P-glycoprotein 
(MDR). CBG binds to a majority of circulating cortisol 
and limits its activity because only unbound cortisol is 
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able to diffuse across cell membranes and interact with 
GC receptors. MDR is an efflux pump that decreases the 
intracellular concentrations of GCs. In addition, cytokines 
can influence the expression of 11-β-hydroxysteroid dehy-
drogenase isoenzymes, which play an important role in the 
regulation of local concentrations of cortisol.

In animal studies, increased activity of GC-inducible 
kinase 1 exacerbated ischemic brain damage (Inoue et al. 
2016). Moreover, the proteasome-dependent degradation 
of GC receptors contributes to GC insensitivity at the 
hypoxic blood–brain barrier (Kleinschnitz et al. 2011).

The aim of this study was to explore the associations 
between GC sensitivity, circulating IL-6 as a marker of 
systemic inflammation, and outcome after ischemic stroke. 
We hypothesized that GC resistance is associated with 
poor functional outcome after stroke.

Methods

Patient Selection and Clinical Assessment

The participants in this study were prospectively recruited 
from consecutive stroke patients who were hospitalized in 
the Department of Neurology, University Hospital, Kra-
kow, Poland, between October 2016 and October 2018. 
The inclusion criteria were: (1) ischemic stroke; (2) time 
from the onset of stroke symptoms to admission < 24 h; 
(3) pre-stroke-modified Rankin Scale (mRS) score of 0–2 
(independent of daily activities); (4) National Institute of 
Health Stroke Scale (NIHSS) score on admission > 3; and 
(5) informed patient consent. The exclusion criteria were: 
(1) chronic inflammatory, autoimmune, or cancerous dis-
eases; and (2) the use of steroids or immunomodulatory 
drugs before stroke or in the acute phase of stroke. Written 
informed consent was obtained from each patient included 
in the study. The study protocol was approved by the Bio-
ethics Committee of Jagiellonian University.

The neurological deficit on admission was assessed 
using the NIHSS, which quantifies stroke-related neuro-
logical deficit. Higher scores indicate greater impairment 
and more severe stroke (Lyden et al. 1994).

Functional outcome was assessed at 3 months after 
stroke using mRS which is a 7-grade scale used to measure 
the degree of disability. Scores of 0 to 2 indicate functional 
independence, scores of 3 to 5 indicate dependence of the 
patient in daily activities, and 6 indicates death (van Swi-
eten et al. 1998). Unfavorable outcomes were defined as 
a mRS of 3 to 6.

Stroke etiology was determined using the TOAST cri-
teria (Adams et al. 1993).

Laboratory Assays

Venous blood was collected in heparinized tubes (Sarstedt, 
Germany) at day 3 after stroke. To avoid diurnal varia-
tion, the blood was obtained between 7:00 and 7:30 AM. 
The whole blood was diluted by 1:5 in sterile RPMI 1640 
medium supplemented with l-glutamine (Sigma-Aldrich, 
St. Louis, MO). The samples were then stimulated in ster-
ile tubes (Lonza, Walkersville, MD) for 4 h at 37 °C in 
5% CO2 with LPS (10 ng/mL, Escherichia coli 0111:B4, 
Sigma-Aldrich, St. Louis, MO) or LPS and dexameth-
asone-21-phosphate (10–6  mol/L, Sigma-Aldrich, St. 
Louis, MO). The supernatants were removed and stored 
at − 80 °C until further analysis.

Similarly to previous studies, TNFα was chosen as an 
indicator of GC sensitivity because this cytokine has the 
greatest sensitivity to GCs in comparison to IL-1β and 
IL-6 (DeRijk et al. 1997).

The GC sensitivity index was defined as the ratio of 
TNFα released after blood stimulation with LPS and dexa-
methasone to the amount of TNFα released after blood 
stimulation with LPS alone. A higher index indicates 
lower GC sensitivity (and higher GC resistance).

TNFα and IL-6 concentrations were measured using a 
commercially available ELISA kit (R&D Systems, Minne-
apolis, MN) according to the manufacturer’s instructions. 
The cytokine detection limits were 0.19 pg/mL for TNFα 
and 0.11 pg/mL for IL-6. For both cytokines, the intra-
assay CVs were < 5%, and the inter-assay CVs were < 10%.

Statistical Analysis

The χ2 test was used to compare proportions, while the 
Mann–Whitney U test and Kruskal–Wallis test were used 
to compare continuous variables between groups. Logistic 
regression was used to determine the predictors of func-
tional outcome. Patients within the upper tertile of the 
GC sensitivity index were compared to the patients in 
other tertiles. The receiver operating characteristic curves 
were used to find an optimal cutoff level of GC sensitivity 
index that differentiates patients with good outcome from 
patients with poor outcome. The variables with P ≤ 0.05 
in the univariate analysis were included in the multivariate 
analysis. The calculations were performed using the pro-
gram STATISTICA for Windows (version 12.5, Statsoft, 
Poland).
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Results

We initially included 255 patients (median age: 69.0 years; 
41.4% female; median NIHSS: 10). However, information 
about outcome was not available for 9 patients. Thus, the 
final cohort included 246 patients (median age: 69.0 years; 
41.1% female; median NIHSS: 9).

The baseline characteristics of the included patients cat-
egorized by tertiles of the GC sensitivity index are shown 
in Table 1.

The NIHSS score, white blood cell (WBC) count, rate 
of pneumonia, and plasma level of IL-6 increased across 
the tertiles of the GC sensitivity index whereas the TNFα 
release ex vivo decreased. The frequency of poor outcome 
was the lowest in patients in the lower tertile and the high-
est in patients in the upper tertile of the GC sensitivity 
index.

The baseline characteristic of patients with good 
outcome and patients with poor outcome are shown in 
Table 2.

The patients with poor outcome were older, had more 
severe neurological deficit on admission, and more fre-
quently suffered from in-hospital pneumonia. Compared 

to the patients with good outcome, the patients with poor 
outcome had higher plasma IL-6 levels and lower TNFα 
release after blood stimulation with LPS.

The GC index was higher in patients with poor outcome. 
The GC index correlated with plasma IL-6 levels (R = 0.21, 
P < 0.05) and TNFα release ex vivo (R = − 0.16, P < 0.05).

The odds ratio (OR) for the highest tertile versus the 
other tertiles of the GC index was 3.56 (95% CI 2.04–6.21, 
P < 0.01) for poor functional outcome. Other predictors 
of poor outcome were: age (OR 1.04, 95% CI 1.02–1.06, 
P < 0.01), NIHSS score (OR 1.11, 95% CI 1.07–1.16, 
P < 0.01), pneumonia (OR 10.59, 95% CI 1.29–86.92, 
P = 0.03), WBC count (OR 1.31, 95% CI 1.17–1.46, 
P < 0.01), plasma IL-6 (OR 1.04, 95% CI 1.02–1.06, 
P < 0.01) and TNFα release ex vivo (OR 0.73, 95% CI 
0.59–0.89, P < 0.01). After adjusting for age, NIHSS score, 
pneumonia, WBC count, plasma IL-6, and TNFα release, 
the OR for poor functional outcome was 2.32 (95% CI 
1.21–4.45, P = 0.01).

In the whole group of patients, a GC index above 13.7% 
was associated with poor outcome both the univariate analy-
sis (OR 3.53, 95% CI 2.02–6.16, P < 0.01) and the multi-
variate analysis adjusted for age, NIHSS score, pneumonia, 

Table 1   The baseline characteristics of patients categorized by tertiles of the GC index

Statistically significant P values are highlighted in bold
GC glucocorticoid, IQ interquartile, NIHSS National Institute of Health Stroke Scale

Lower tertile (N = 81) Middle tertile
(N = 82)

Upper tertile
(N = 83)

P value

Age, median (IQs) 66 (57–77) 69 (63–77) 71 (63–81) 0.07
Female, n (%) 33 (40.7) 31 (37.8) 37 (44.6) 0.67
Hypertension, n (%) 59 (72.8) 68 (82.9) 66 (79.5) 0.28
Diabetes mellitus, n (%) 26 (32.1) 19 (23.2) 23 (27.7) 0.44
Atrial fibrillation, n (%) 22 (27.2) 26 (31.7) 23 (27.7) 0.78
Myocardial infarction, n (%) 8 (9.9) 10 (12.2) 15 (18.1) 0.29
Previous stroke or transient ischemic attack, n (%) 8 (9.9) 8 (9.8) 13 (15.7) 0.41
NIHSS score on admission, n (%) 7 (4–16) 8.5 (5–16) 13 (6–18)  < 0.01
Stroke etiology 0.17
Large vessel disease, n (%) 21 (25.9) 20 (24.4) 24 (28.9)
Small vessel disease, n (%) 5 (6.2) 7 (8.5) 1 (1.2)
Cardio-embolic, n (%) 21 (25.9) 30 (36.6) 22 (26.5)
Other, n (%) 29 (35.8) 24 (29.3) 34 (41.0)
Undermined, n (%) 5 (6.2) 1 (1.2) 2 (2.4)
In-hospital pneumonia, n (%) 0 (0) 1 (1.2) 8 (9.6)  < 0.01
Intravenous thrombolysis, n (%) 47 (58.0) 46 (56.1) 45 (54.2) 0.89
Mechanical thrombectomy, n (%) 24 (29.6) 22 (26.8) 19 (22.9) 0.62
White blood cells count, × 103/µL, median (IQs) 7.7 (6.5–9.3) 8.1 (6.5–9.9) 9.3 (7.7–11.4)  < 0.01
Serum IL-6 (pg/mL), median (IQs) 3.5 (1.8–8.0) 4.9 (2.3–10.9) 6.9 (3.1–21.1)  < 0.01
Ex vivo TNFα release after LPS stimulation (pg/mL), 

median (IQs)
2689 (1903–3826) 2268 (1725–3451) 2060 (1517–2792) 0.04

Poor outcome, n (%), 24 (29.6) 32 (39.0) 54 (65.1)  < 0.01
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WBC count, plasma IL-6, and TNFα release (OR 2.16, 95% 
CI 1.15–4.05, P = 0.02).

The results of one study suggested that diabetic patients 
might have blunted GC sensitivity to stress (Carvalho et al. 
2015). After the exclusion of diabetic patients, the GC sen-
sitivity index remained an independent predictor of poor 
outcome in the multivariate analysis (OR 2.55, 95% CI 
1.19–5.46, P = 0.01).

Discussion

We found that GC resistance was associated with poor functional 
outcome after stroke. This association was independent of not 
only age and stroke severity, which are the most important stroke 
prognosticators, but also from circulating IL-6, a marker of sys-
temic inflammation, and ex vivo release of TNFα, a marker of 
immunodepression (Chamorro et al. 2012). To the best of our 
knowledge, this is the first study to investigate the relationship 
between GC resistance and outcome in stroke patients.

Our study revealed an association between GC sensitiv-
ity, circulating IL-6 and, to a lesser degree, TNFα synthe-
sized ex vivo. The plasma level of IL-6 increased with the 
tertiles of the GC sensitivity index, whereas TNFα release 

ex vivo decreased. There are several hypothetical possibili-
ties regarding the relationship between GC resistance, sys-
temic inflammation, and post-stroke immunodepression. 
First, circulating cytokines including IL-6 could trigger 
GC resistance (Pace et al. 2007; Pace and Miller 2009). 
Second, GC resistance could lead to systemic inflamma-
tion by inadequate control of the immune reaction by GCs. 
Third, excessive GC release after cerebral ischemia might 
contribute to immunodepression (Mracsko et al. 2014). 
Fourth, since plasma IL-6 levels, TNF release ex vivo, 
and GC resistance depend on stroke severity, one com-
mon biological mechanism induced by brain injury could 
be responsible for all these phenomena.

The exact biological pathways leading to GC resistance 
in patients with poor outcome remain unknown. GC sen-
sitivity is modulated by numerous genetic and acquired 
factor, including inflammatory mediators. Further studies 
are needed to explore the potential mechanisms of GC 
resistance in acute stroke. Better insight into the pathogen-
esis of GC resistance in stroke patients might be obtained 
through measurements of diurnal cortisol release, cortisol 
bioavailability, the expression of GC receptors in different 
populations of blood cells, GC receptor affinity, and GC 
receptor post-translational modification.

Table 2   The baseline characteristics of patients with good outcome and patients with poor outcome 3 months after stroke

Statistically significant P values are highlighted in bold
GC glucocorticoid, IQ interquartile, NIHSS National Institute of Health Stroke Scale

Good outcome (N = 136) Poor outcome (N = 110) P value

Age, median (IQs) 66 (58–75.5) 72 (63–81)  < 0.01
Female, n (%) 52 (38.2) 49 (48.5) 0.32
Hypertension, n (%) 103 (75.7) 90 (81.8) 0.25
Diabetes mellitus, n (%) 34 (25.0) 34 (30.9) 0.30
Atrial fibrillation, n (%) 40 (29.4) 31 (28.2) 0.83
Myocardial infarction, n (%) 17 (12.5) 16 (14.5) 0.64
Previous stroke or transient ischemic attack, n (%) 13 (9.6) 16 (14.5) 0.23
NIHSS score on admission, n (%) 6.5 (4–13) 14.5 (7–19)  < 0.01
Stroke etiology 0.14
Large vessel disease, n (%) 28 (20.6) 37 (33.6)
Small vessel disease, n (%) 9 (6.6) 4 (3.6)
Cardio-embolic, n (%) 44 (32.3) 29 (26.4)
Other, n (%) 6 (4.4) 2 (1.8)
Undermined, n (%) 49 (36.0) 38 (34.5)
In-hospital pneumonia, n (%) 1 (0.7) 8 (7.3)  < 0.01
Intravenous thrombolysis, n (%) 77 (56.6) 61 (55.4) 0.85
Mechanical thrombectomy, n (%) 39 (28.7) 26 (40.0) 0.37
White blood cells count, × 103/µL, median (IQs) 7.7 (6.5–9.0) 9.5 (7.7–11.9)  < 0.01
Serum IL-6 (pg/mL), median (IQs) 3.2 (1.8–6.4) 8.7 (4.6–24.3)  < 0.01
Ex vivo TNFα release after LPS stimulation (pg/mL), 

median (IQs)
2607 (1774–3809) 2089 (1517–2835)  < 0.01

GC sensitivity index (%), median (IQs) 13.5 (11.4–16.0) 16.1 (13.7–19.7)  < 0.01
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GCs regulate many physiological processes beyond 
the immune system. They can exert a modulatory effect 
on a variety of brain functions, including neurotransmis-
sion and neuronal plasticity (Gray et al. 2017). Thus, GC 
resistance might have a negative impact on stroke outcome 
independently from impaired counter-regulatory control of 
the immune response. An example of GC action beyond 
the immune system is the stabilization of the blood–brain 
barrier and the mitigation of cerebral edema. Kleinschnitz 
et al. (2011) showed GC insensitivity at the level of the 
blood–brain barrier in mice subjected to cerebral ischemia. 
This GC resistance may facilitate brain edema and conse-
quently lead to worse outcome.

Pharmacological modulation of GC sensitivity could be 
considered as a potential strategy to improve stroke out-
come. GC resistance is largely caused by the de-activation 
of histone deacetylase 2 (HDAC2), which is critical for the 
activity of GC receptors that mediate the anti-inflammatory 
effect (Barnes 2011). Selective activation of HDAC2 can be 
achieved with theophylline, which restores HDAC2 activ-
ity in macrophages and reverses GC resistance (Cosio et al. 
2004). Further studies are needed to determine whether the 
pharmacological modulation of GC sensitivity in addition 
to reperfusion therapy is beneficial in stroke.

Our work has several limitations. We measured the GC 
index only once and used only one dose of dexamethasone 
to assess GC sensitivity. We took blood samples at day 3 
after stroke rather than upon admission. However, this mini-
mized the diurnal variation in cytokine production related to 
the time of blood collection. Furthermore, it allowed us to 
grasp the effect of systemic inflammation because the blood 
IL-6 level rises between 6 and 72 h after the onset of stroke 
symptoms (Pusch et al. 2015). Finally, our observational 
study is unable to demonstrate a causal relationship between 
GC resistance and stroke outcome.

Conclusions

GC resistance is associated with poor functional outcome 
after stroke. These novel clinical observations might be 
important for future experimental studies exploring the rela-
tionship between GCs, inflammation, and stroke prognosis.
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