
INTRODUCTION

The adult brain has some ability to adapt to changes in its 
environment. This ability is, in part, related to neurogenesis and 
gliogenesis. Neurogenesis modifies neuronal connectivity in 
specific brain areas, whereas gliogenesis ensures that myelination 

occurs and produces new supporting cells by generating 
oligodendrocytes and astrocytes [1]. Altered neurogenesis and 
gliogenesis have been revealed in a number of pathological 
conditions affecting the central nervous system (CNS); for 
instance, neuropsychiatric diseases [2], neurodegenerative 
diseases [3-6], and demyelinating diseases [7]. Understanding 
the extent to which adult neurogenesis and gliogenesis can be 
modulated to compensate for functional loss has been gaining 
attention [6, 8]. Most of the information in this field was obtained 
from rodent studies. Although these findings are instrumental in 
our understanding, they are not directly applicable to the human 
brain, mainly due to differences in the neurorestoration capacities 
of different species [9-12]. The purpose of this review is to bring 
together available evidence on adult neurogenesis and gliogenesis, 
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and to explore the potential application of new findings to human 
CNS diseases. 

Recent studies detecting the concentration of 14C in the genomic 
DNA of the human brain demonstrated that the olfactory 
bulb, cerebellum, and cortex preserve only negligible levels of 
neurogenesis in adulthood, although substantial neurogenesis was 
reported in the hippocampus and striatum [13-17]. These results 
may dispute the hope that human adult neurogenesis can be 
modulated as a potential approach for neurorestoration. Here, we 
advise to carefully interrelate these data with the real importance 
of neurogenic processes for several reasons. Firstly, because the 
concentration of 14C reflects the average age of cells in a neuronal 
pool, existing methods may not be sensitive enough to detect 
subtle changes caused by the introduction of a small proportion 
of new neurons. Secondly, the selection of brain areas and sample 
sizes may not have been most appropriate due to the current 
lack of information about regional variations of the neurogenic 
capacity in human brains. Thirdly, the biological importance of 
low levels of neurogenic activity may have been underestimated 
because even a small number of new neurons in the adult human 
brain can evoke meaningful functional changes by integrating 
into existing neuronal circuits [18-20]. Finally, gliogenic activity 
and the presence of quiescent progenitor cells have been detected 
in numerous brain areas by other studies [1, 21-24]. In particular, 
glial cells can transform into neuronal lineage under certain 
circumstances. This review introduces main concepts and 
important questions in the field, aiming to direct attention to 
understand the interaction between neurogenesis and gliogenesis, 
from which factors may be found to improve neurorestoration in 
the human brain.

NEUROGENESIS AND GLIOGENESIS IN THE ADULT BRAIN

Generation of new neurons in adult neurogenic regions is 
not necessarily de novo  neurogenesis but may instead be the 
consequence of protracted development [21]. Neurogenesis and 
gliogenesis produce neurons and glia that can integrate within 
some regions of the mature brain. The newly generated cells can 
mediate certain types of plasticity, but the biological significance 
of neurogenesis and gliogenesis is regional/source dependent 
[10, 12]. Malfunction of such processes is found to be associated 
with some neurological and psychiatric diseases [1]. Such brain 
potential may provide alternative approaches to neurorestoration 
in CNS diseases, however it is important to point out that the 
number of neural stem cells (NSCs) decreases upon maturation, 
suggesting that the regenerative capacity of the CNS deteriorates 
with age. In line with this, altered neurogenesis has been found 

in neurodegenerative diseases that mostly affect the elderly 
population [3-6]. Nevertheless, studies in rodents pointed out that 
both neurogenic and gliogenic processes can stem from persisting 
NSCs, and quiescence has been proposed to be important for the 
long-term maintenance of adult NSCs [25]. Therefore, modulation 
between neurogenesis and gliogenesis may be an ideal way to take 
advantage of residual NSCs. It is encouraging that, using certain 
interventions, neurogenic rejuvenation can be induced in old mice 
[26, 27].

Primary neurogenic sites in the brain

The adult subgranular zone (SGZ) and subventricular zone (SVZ) 
are developmental remnants of the germinal regions originating 
in the hippocampal sulcus and lateral ganglionic eminence, 
respectively [28]. In fact, the unique ontogenesis of the SGZ and 
SVZ allows these two areas to preserve their capacity to generate 
proliferating cells in the brain during the entire mammalian 
lifespan. Adult SVZ and SGZ are capable of both neurogenesis and 
gliogenesis, especially after injury or certain stimulation. In adults, 
the primary neurogenic sites produce mainly neurons along with 
some astrocytes and oligodendroglia.

The subgranular zone

The main function of the SGZ is to provide new granule cells 
for the dentate gyrus [29]. In the human brain, approximately 
700 new neurons are generated in the hippocampus per day [13]. 
These newly generated neurons may have functional significance 
as demonstrated in rodent studies in which hippocampus-
dependent behaviors activated newly generated granule cells 
several times more often than older granule cells [19, 30, 31]. 
Spalding and co-workers (2013) identified three features of human 
hippocampal neurogenesis that are different from that of rodents 
— (1) in humans, a much larger proportion of hippocampal 
neurons are replaced in adulthood; (2) the age-dependent decline 
in the rate of hippocampal neurogenesis is less pronounced 
in humans; and (3) hippocampal neurogenesis results in a net 
increase in the neuronal number of the rodent dentate gyrus, 
whereas the continuous generation of new neurons in the human 
hippocampus provides a pool of neurons with specific functional 
properties [13]. These findings indicate that human hippocampal 
neurogenesis is important in maintaining hippocampal functions 
[29, 32]. 

Altered hippocampal neurogenesis may contribute to the severe 
pathology that occurs in this region in Alzheimer’s disease (AD) 
[3, 33, 34]. Based on evidence for a link between hippocampal 
adult neurogenesis and AD, animal studies have revealed that 
interventions beneficial for hippocampal neurogenesis (e.g. 
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anti-stress medications, physical activity, or administration of 
allopregnanolone) can improve cognition [35-39]. However, to be 
effective, these interventions must be introduced at an appropriate 
time and to an appropriate extent. This requires a better 
understanding of the variations in hippocampal neurogenesis that 
occur along with the progression of memory impairment in AD 
and other cognitive disorders.

The subventricular zone

In the adult rodent brain, neuronal progenitor cells generated 
in the SVZ travel through the rostral migration stream and settle 
down in the olfactory bulb, where they differentiate into local 
interneurons, granule cells, and periglomerular cells [40-44]. Adult 
neurogenesis in the rodent olfactory bulb is required for specific 
forms of olfactory behavior, and certain genetic manipulations 
result in conditional and selective enhancement of olfactory 
neurogenesis [45, 46]. In addition, gliogenesis has been found 
in the rodent olfactory bulb and the SVZ of multiple sclerosis 
patients [7, 47]. Olfactory neurogenesis is not the same in humans 
as in rodents. The difference may be partly due to the consequence 
of the varying importance of olfactory stimuli in ensuring the 
survival of the species or related to the different glomerular 
organization in the human and rodent olfactory systems [48].

Under specific circumstances, human olfactory neurogenesis 
can become noticeable, for example in depression and Parkinson’s 
disease (PD) [49, 50]. Regardless, compared to the substantial 
amount of new neurons produced in the rodent olfactory bulb, the 
level of neurogenesis in the healthy adult human olfactory bulb 
is low [14]. Nevertheless, the adult human SVZ preserves active 
neurogenesis [11, 51, 52]. If the SVZ-generated neural progenitor 
cells do not migrate to the olfactory bulb, the alternative 
destination of these cells may be the neighboring striatum as 
suggested by the pronounced striatal neurogenesis that has been 
detected in the human brain [15]. Interestingly, when olfactory 
bulb/striatum volume ratios were compared in non-primates, 
non-human primates, and human, the greater the phylogenetic 
distance between animals and human the higher this ratio became 
[11]. This shift in the relative volumes is consistent with the 
markedly different reliance on these two brain structures. The 
pronounced neurogenesis in the human striatum may serve the 
structural refinement that is driven by cognition- and movement-
related functional requirements [15].

The fate of NSCs is controlled by complex regulatory machinery, 
as witnessed by the findings that neurogenic activity of the SVZ 
can be influenced by GABAergic, dopaminergic, serotoninergic, 
cholinergic, and nitric oxide-releasing neurons [53-56]. For 
this reason, pharmacons affecting neurotransmitter levels 

(e.g. selective serotonin re-uptake inhibitors and reversible 
acetylcholinesterase inhibitors) may have therapeutic benefits in 
diseases where neurogenesis is impaired. On a similar note, there 
is hope that a better understanding of the anatomical features 
of striatal neurogenesis may identify factors that can facilitate 
rehabilitation in diseases that typically affect the striatum (e.g. 
stroke, Huntington’s disease (HD), and PD).

Parenchymal and periventricular cell genesis in adult brain 

Most of the cell progenitors that are outside the primary 
neurogenic sites express a proteoglycan called nerve/glial antigen 
(NG2). NG2-positive cells have primary importance in adult 
gliogenesis with several key features [21]. Namely, they (1) are 
almost uniformly distributed in both grey and white matter, (2) 
have stellate morphology, (3) retain proliferative capacity in the 
adult brain, and (4) have an intimate association with neurons [57-
60]. Like neurogenesis, altered gliogenesis is known to be involved 
in some neurological conditions, e.g. AD and demyelinating 
diseases [4, 7]. Despite recent advances in the field, the processes of 
gliogenesis in human brain still require elucidation; namely, how 
gliogenesis and neurogenesis are interrelated, whether gliogenesis 
can be exploited for the production of new neurons, what roles 
gliogenesis have in the progression of certain neurological 
diseases, and what regional differences in gliogenesis exist.

Parenchymal cell genesis

In addition to the primary neurogenic sites, the parenchyma 
is also capable of producing new cells [9, 59, 61-63]. In most 
CNS regions, parenchymal progenitors maintain a slow rate of 
constitutional gliogenesis, which is important for the renewal 
of oligodendrocytes and, to a smaller extent, astrocytes [61, 64, 
65]. Substantial numbers of oligodendrocyte precursor cells 
are distributed widely in the adult CNS [66]. They are relatively 
quiescent but retain regenerative capacity to maintain white matter 
homeostasis [67]. In a mouse model with damaged white matter, 
residual oligodendrocyte precursor cells were found to respond to 
signals released by astrocytes, suggesting that they serve as a ‘back-
up population’ for generating mature oligodendrocytes [68].

Adult astrogenesis has been reported in the mouse cortex and is 
mainly due to the local division of mature astrocytes [69]. Unlike 
neurons and oligodendrocytes, astrocytes remain capable of 
undergoing mitosis even in adulthood — at least in the mouse 
cortex and spinal cord [70, 71]. In fact, astrocytes have the 
hallmarks of stem cells because they are capable of perpetuating 
themselves throughout the entire lifespan of the brain and exhibit 
multipotency [72, 73]. Astrocytes do not proliferate in the healthy 
brain parenchyma, but some of them resume proliferation 
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after brain injury [70, 74, 75]. Some astrocytes that re-enter the 
proliferative cycle acquire the potential to form self-renewing, 
multipotent neurospheres, which can subsequently produce 
functional neurons in the mouse cortex [70]. Factors that may 
trigger astrocyte destabilization/activation include sonic hedgehog 
(Shh), epidermal growth factor (EGF), and fibroblast growth 
factor (FGF) [77-80]. Notably, these growth factors are present in 
the parenchyma, and their production increases upon brain injury. 
Most reactive astrocytes, however, remain within their lineage and 
generate only astrocytes in vivo. 

New neurons are also produced in the parenchyma, albeit not 
many [21]. In fact, in non-human mammals, parenchymal cell 
genesis has been identified as a potential mechanism for producing 
neuronal progenitors. The beneficial features of parenchymal 
progenitors are their abundance and widespread distribution [10, 
81, 82]. Although newly produced cells demonstrate a propensity 
to differentiate, their functional integration may be restricted by 
the inherent features of the mature parenchyma [10, 81, 82]. The 
fate of the parenchymal progenitors depends on the environment 
of the specific brain regions in which they are generated [21] and 
consequently can be influenced by extrinsic factors. This creates 
an opportunity for intervention into the process of parenchymal 
neurogenesis and/or gliogenesis, e.g. by modifying the extrinsic 

environment in which the cells are located. Potentially, this could 
be used to counteract the specific pathological process in some 
CNS diseases. 

Human fetal brain parenchymal cells initially express both glial 
and neuronal markers and are capable of differentiating into either 
neuronal or glial lineage [24]. However, more work is required 
to determine if new parenchymal cells can be generated in areas 
of the human CNS other than the primary neurogenic sites. 
Research so far suggests that new cortical neurons are not created, 
because cortical cells in stroke patients were found to be as old as 
the individual [17]. This suggests that parenchymal neurogenesis 
may not respond strongly to neuron loss in the human brain, but 
no further studies on cortical neurogenesis have been undertaken 
to confirm this.

Periventricular cell genesis

In the forebrain, uncommitted neural precursor cells initially 
reside in the luminal cell layer (ventricular zone) and later in the 
SVZ [83]. In addition to the uncommitted precursor cells, some 
ependymal cells are also able to act as NSCs in the adult brain 
[83, 84]. For instance, forebrain ventricular CD133-positive 
ependymal cells show NSCs characteristics in response to brain 
injury [85, 86]. Further, tanycytes in the adult hypothalamus and 

Fig. 1. Neurogenesis and gliogenesis in the adult brain. Potential neurogenic regions described in adult rodent (A1) and human (A2) brains. Solid pink 
lines indicate the rodent rostral migration stream and the known primary neurogenic regions in rodent and human brains. Pink dots in the rodent 
olfactory bulb and human striatum indicate the possible final destinations of SVZ-generated new neurons. Pink arrowheads mark some of the putative 
migration routes of the precursor cells before reaching their final destination (e.g. substantia nigra). Abbreviations: 3V, third ventricle; 4V, fourth 
ventricle; Aq, aqueduct; DG, dentate gyrus; Hip, hippocampus; LV, lateral ventricle; LVIH, inferior horn of the lateral ventricle; OB, olfactory bulb; RMS, 
rostral migration stream; SN, substantia nigra. (B) Potential factors reported to modulate the balance between neurogenesis and gliogenesis in rodents 
and cell cultures. Negative signs mark inhibitory effects. Production of different cell types is region-dependent (as indicated in the lower part of panel B), 
and this preference may be altered in response to certain diseases or other conditions. For details see the main text.
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ependymal lining of the third ventricle function as multipotential 
progenitor cells [87, 88]. Finally, there is a consensus that the spinal 
cord central canal possesses ependymal cells with neural stem cell 
properties [89, 90]. 

Whether human adult ventricular ependymal cells have 
neurogenic potential or not is still unknown. More research is 
needed to assess the self-regenerative potential of brain regions 
that are not close to the SGZ and SVZ neurogenic regions but 
instead close to other parts of the ventricular system. One such 
region is the substantia nigra, which accommodates dopaminergic 
neurons and undergoes characteristic pathological changes in 
PD. Anatomically, the adult substantia nigra is situated in the 
proximity of the inferior horn of the lateral ventricle, the third 
ventricle, and the aqueduct; but it is distant from the SVZ (Fig. 
1A). There is some evidence for neurogenesis in this region, 
such as a large number of polysialic acid-positive cells (indicative 
of immature neurons) are found in the substantia nigra pars 
reticulata of PD patients [91]. Further, neural progenitor cells 
could be isolated from the substantia nigra of PD patients [92]. 
However the source of these NSCs is still unknown. Furthermore, 
allopregnanolone and platelet-derived growth factor (PDGF)-BB 
were reported to increase the number of dopaminergic neurons 
and convey a trophic effect on the surviving dopaminergic 
neurons [8, 93, 94]. It is unknown if the substantia nigra recruits 
newly produced neuronal and/or glial progenitor cells from the 
nearby periventricular zone rather than from the remote forebrain 
SVZ. If this could be determined, it would open up possibilities as 
to the methods that could be used to facilitate the survival of new 
neurons.

INTERRELATION BETWEEN ADULT NEUROGENESIS AND 
GLIOGENESIS

Studies using rodent models and cell cultures suggest that the 
interrelation between adult neurogenesis and gliogenesis can 
be exploited. Such observations, as described below, suggest 
that various modulatory processes may be utilized for disease 
prevention/treatment.

Proliferation and differentiation of  NSCs are effectively 
stimulated by brain lesions [95]. Rodent experiments provide 
evidence that the stimulatory effect of hypoxia is mediated via 
the hypoxia-inducible factor (HIF)-1α pathway [96-99]. The 
balance between neurogenesis and gliogenesis is affected by 
numerous factors (Fig. 1B). Bone morphogenetic protein (BMP)-
signaling, for example, has been found to oppose the function 
of oligodendrocyte transcription factor 2 (Olig2) by affecting 
its expression level [100]. In contrast, FGF and Shh are positive 

regulators of Olig2 [101]. Finally, infusion of EGF promotes 
oligodendrogenesis and reduces neurogenesis in the mouse SVZ 
[102].

In fact, astroglia from the mouse cerebral cortex may be directed 
toward neurogenesis by ‘direct reprogramming’; i.e., by forced 
expression of paired box 6 (Pax6) [103-106]. Astrocytes can also 
directly differentiate into neurons without reactivating progenitor 
hallmarks, such as cell division [103]. Further, single transcription 
factor SRY (sex determining region Y)-box 2 (Sox2) is able to 
convert astrocytes into proliferative neuroblasts in the adult mouse 
brain [60]. When supplied with brain-derived neurotrophic 
factor (BDNF) and noggin, or treated with valproic acid (VPA; a 
histone deacetylase inhibitor), these astrocyte-derived neuroblasts 
develop into neurons [60]. Finally, platelet-derived growth 
factor-α receptor (PDGFαR)-expressing and glial fibrillary acidic 
protein (GFAP)-positive neural stem cells isolated from the 
mouse SVZ can give rise to both neurons and oligodendrocytes 
[107] suggesting that PDGFαR signaling may regulate the balance 
between neurogenesis and oligodendrogenesis. Importantly, 
astrocytes have been generated from human pluripotent stem cells 
by exposing them to BMP, ciliary neutrotrophic factor (CNTF), 
and neuregulin [76]. 

SUMMARY

Altered adult neurogenesis and gliogenesis appear to be 
associated with some of the neurological and neuropsychiatric 
diseases, indicating that modulation of the processes involved 
in adult neurogenesis and gliogenesis may provide a plausible 
strategy for treatment. However, still much of the specific 
information is missing, especially in the case of the human brain. 
It would be important to have more detailed information about 
(i) cell genesis in non-primary neurogenic sites, (ii) the migration 
routes of neural precursor cells, (iii) modulatory mechanisms that 
control the interplay between adult neurogenesis and gliogenesis, 
(iv) the pathogenic significance of altered neurogenesis and 
gliogenesis in brain diseases, and (v) effective ways to activate 
quiescent NSC without compromising the long-term potential 
of  neurogenesis. Research into the relationship between 
neurogenesis and gliogenesis that is focused on these unknowns is 
likely to reveal valuable targets for interventions that may improve 
neurorestoration.
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