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Abstract
Heroin addiction is a complex psychiatric disorder with a chronic course and a high relapse rate, which results from the interaction
between genetic and environmental factors. Heroin addiction has a substantial heritability in its etiology; hence, identification of
individuals with a high genetic propensity to heroin addiction may help prevent the occurrence and relapse of heroin addiction and its
complications. The study aimed to identify a small set of genetic signatures that may reliably predict the individuals with a high genetic
propensity to heroin addiction. We first measured the transcript level of 13 genes (RASA1, PRKCB, PDK1, JUN, CEBPG, CD74,
CEBPB, AUTS2, ENO2, IMPDH2, HAT1, MBD1, and RGS3) in lymphoblastoid cell lines in a sample of 124 male heroin addicts and
124 male control subjects using real-time quantitative PCR. Seven genes (PRKCB, PDK1, JUN, CEBPG, CEBPB, ENO2, and HAT1)
showed significant differential expression between the 2 groups. Further analysis using 3 statistical methods including logistic
regression analysis, support vector machine learning analysis, and a computer software BIASLESS revealed that a set of 4 genes
(JUN, CEBPB, PRKCB, ENO2, or CEBPG) could predict the diagnosis of heroin addiction with the accuracy rate around 85% in our
dataset. Our findings support the idea that it is possible to identify genetic signatures of heroin addiction using a small set of
expressed genes. However, the study can only be considered as a proof-of-concept study. As the establishment of lymphoblastoid
cell line is a laborious and lengthy process, it would be more practical in clinical settings to identify genetic signatures for heroin
addiction directly from peripheral blood cells in the future study.

Abbreviations: AUTS2 = autism susceptibility candidate 2, BIASLESS = Biomarkers Identification and Samples Subdivision,
CD74 = CD74 molecule, CEBPB = CCAAT/enhancer binding protein beta, CEBPG = CCAAT/enhancer binding protein gamma,
ENO2 = enolase 2 (gamma, neuronal), HAT1 = histone acetyltransferase 1, IMPDH2 = IMP (inosine 50-monophosphate)
dehydrogenase 2, JAK-Stat = Janus kinase-signal transducer, and activator of transcription, JUN = jun proto-oncogene, LCL =
lymphoblastoid cell line, MBD1 =methyl-CpG binding domain protein 1, lncRNAs = long noncoding RNA, LR = logistic regression,
PDK1= pyruvate dehydrogenase kinase 1, PRKCB= protein kinase C, beta, RASA1=RAS p21 protein activator (GTPase activating
protein) 1, RGS3 = regulator of G-protein signaling 3, RT-qPCR = real-time quantitative PCR, SVM = support vector machine.
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1. Introduction

Heroin was synthesized as a legal drug in 1895. It was found to be
a highly addictive drug in the early twentieth century, and became
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popularly abused after the mid-twentieth century. Heroin
users develop tolerance to heroin quickly and suffer from severe
withdrawal symptoms when they stop using heroin. Hence,
heroin addicts have a very high relapse rate.[3,4] Heroin addiction
became a serious problem in southeastern and southwestern Asia
recently.[5] Like that in other countries, heroin users not only had
a high recidivism rate but also had the highest mortality rate
among the addictive substance users in Taiwan.[6,7]

Heroin addiction is a complex disorder resulting from the
interactions between genetic susceptibility and environmental
factors.[8] Previous studies have demonstrated that the estimated
heritability of drug addiction ranges from 0.39 to 0.72 in
different drugs.[9,10] In a twin resemblance study for illicit
psychoactive substance use, heavy use, abuse, and dependence in
a US population, the heritability of illicit psychoactive substance
use ranges from 60% to 80%. These findings suggest that genetic
factor plays an important role in the pathogenesis of heroin
addiction.
Many genes associated with heroin addiction have been

reported using different approaches, supporting the high genetic
heterogeneity of heroin addiction.[2,9] However, there is still a gap
of applying the genetic knowledge of heroin addiction to help
manage the patients with heroin addiction in clinical settings. The
study aimed to find a small set of genes that can reliably predict
the individuals with a high propensity to heroin addiction. The
tests of these genes shall be conveniently implemented in the
clinical laboratory, and hopefully, the assay of these genes can be
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used in combination with other social, familial programs to help
prevent the occurrence and the relapse of heroin addiction in
clinical settings.
2. Materials and methods

2.1. Subjects

Male adult patients (≥20 years old) met the diagnostic criteria of
heroin use disorder according to the Diagnostic and Statistical
Manual of Mental Disorders, 5th edition (DSM-5) was recruited
into this study. The diagnosis was made based onmedical records
and interview by senior psychiatrists with consensus. Patients co-
morbid with other major psychiatric diagnoses of DSM-5 such as
neurodevelopmental disorders, schizophrenia spectrum and
other psychotic disorders, bipolar related disorders, depressive
disorders, and neurocognitive disorders were excluded. Male
adult subjects (≥20 years old) who received regular medical
checkups at a local medical center were recruited into this study
as controls. A senior psychiatrist evaluated their mental statuses
and histories of mental illness. Those who had a history or
currently had a diagnosis of major psychiatric disorders
according to DSM-5 such as substance-related and addictive
disorders, neurodevelopmental disorders, schizophrenia spec-
trum and other psychotic disorders, bipolar-related disorders,
depressive disorders, and neurocognitive disorders were exclud-
ed. A total of 8 mL venous blood was collected from each subject
for the establishment of lymphoblastoid cell lines (LCLs). Total
RNA was extracted from the LCL for the measurement of cDNA
of selected genes. The study protocol was approved by the Ethical
Committee of Bali Psychiatric Center (approval number:
IRB970609-03), and written informed consent was obtained
after full explanation of the protocol.
2.2. LCL, total RNA, and cDNA preparation

LCL from each subject was established by transforming the
lymphocytes with Epstein–Barr virus following the procedures
described in our previous paper.[11] After the establishment of
LCL, total RNA from the LCL was extracted using TRIZOL
Total RNA Isolation Reagent according to manufacturer’s
instruction (Invitrogen Life Technologies, Carlsbad, CA). The
cDNA was prepared using Superscript II RNase H� Reverse
Transcriptase following the instructions provided by the
Table 1

Sequences of primer sets sequences for the real-time quantitative P

Gene symbol Gene ID F-primer (50–30)
JUN 3725 CGAAAAAGGAAGCTGG
CEBPB 1051 TGCAGAAGAAGGTGGA
CEBPG 1054 GGGCTAGAGGAGCAGG
PRKCB 5579 TTACTGAGCCAGGAGG
ENO2 2026 AGCTGAGGGATGGAGA
HAT1 8520 TCTAAAGTTGATGAGAACTT
PDK1 5163 TATGGAACACCATGCC
RASA1 5921 ATGACACAGTGGATGG
CD74 972 AAATGAGCAGGCACTC
AUTS2 26053 GATTTGCCATGACCAG
IMPDH2 3615 GAAGACTTGGTGGTAG
MBD1 4152 GGTGCTGTGAGAACTG
RGS3 5998 CCAGCACCCTCAAGAA

Ta=optimal annealing temperature.
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manufacturer (Invitrogen Life Technologies). The details were
also described in our previous report.[12]
2.3. Measurement of genetic transcript level in LCL

A total of 13 genes (RASA1, PRKCB, PDK1, JUN, CEBPG,
CD74, CEBPB, AUTS2, ENO2, IMPDH2, HAT1, MBD1, and
RGS3) were measured in this study. The genetic transcript level
was measured using real-time quantitative PCR (RT-qPCR) that
was performed by SYBR Green method and implemented in
StepOnePlus Real-Time PCR System according to the manu-
facturer’s protocol (Applied Biosystems, Forster City, CA). The
detailed procedures were described in our previous report.[12]

The relative standard curve method was used for the measure-
ment of the gene transcript level according to the procedure
described in User Bulletin #2 ABI PRISM 7700 sequence
detection system (Applied Biosystems). In this method, serial
dilutions of known amount of RNA from a reference sample
(pooled from 40 LCLs of male controls) were used to generate the
external standard curve. For each unknown sample, the relative
amount was calculated using linear regression analysis from their
respective standard curves. The transcript level of measured gene
in each subject was normalized by his/her 18S rRNA level. The
reference 18S rRNA level was measured using predeveloped
TaqMan assay reagents 18S rRNA MGB according to the
manufacturer’s protocol (Applied Biosystems). All experiments
were performed in duplicate. The sequences of all the primer sets
and optimal annealing temperature used for RT-qPCR are listed
in Table 1.

2.4. Statistical analysis

To cross-validate the findings of genetic signatures for heroin
addiction, we used 3 statistical methods to search for the genes
that can reliably predict the diagnosis of heroin addiction in this
dataset, including multiple logistic regression (LR) analysis,
support vector machine (SVM) method, and the online computer
program BIASLESS (Biomarkers Identification and Samples
Subdivision). LR analysis was implemented using the Statistical
Package for the Social Science V18.0 (SPSS Inc., Chicago, IL). The
SVM model analysis was implemented using the LIBSVM
package by Chang and Lin.[13] The BIASLESS is a software
developed for integrative analysis of single nucleotide polymor-
phisms (SNP) and gene expression, which is an efficient tool for
CR experiments.

R-primer (50–30) Ta, °C

AGAG TGTTTAAGCTGTGCCACCTG 60
GCAG TAGCAGTGGCCGGAGGAGG 63
TACA ACTCTCCCTTGCCAACACAG 60
AAGG TGGAGACAGTGTTGGTCGTC 60
CAAA GCTCCACCACAGAGAGACCT 60
TGACTGT TTGTCTAATTTTGCCCTCAACA 60
AACA CACCTCCTCGGTCACTCATC 60
CAAG AGCTCGTTTTTCGCTTTCAA 60
CTTG AGATCCTGCTTGGTCACACC 60
CTTT TGAAAGGACAAGCCATTGGT 60
CCCC TGGAGGCTAGTGGGTAGTCC 60
TGGA ACATTCTCTGTTCCCGGTTG 60
AGAG TGAAGATCCCCAGCTTGTTC 60
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selecting key SNP and gene expression markers and then building
models for sample subdivision.[14]
3. Results

3.1. Subjects

All the subjects were Han Chinese from Taiwan. A total of 124
male adults (37.5 ± 9.4 years) fulfilling the diagnostic criteria for
heroin use disorders as defined by the DSM-5 were recruited into
this study. Also, a total of 124 male adults (42.9 ± 14.6 years)
without history or current diagnosis of substance use disorders
and other major psychiatric diagnoses were recruited as the
control groups. Their LCLs were established, cDNAs were
prepared for the genetic assessment.
3.2. Genetic assessment

A total of 13 genetic transcript levels were measured for each
subject and normalized by the total amount of their 18S rRNA.
The mean transcript levels of each of the 13 genes in the patient
and control groups are listed in Table 2. Among these 13 genes, 7
genes had a differential expression that reached statistical
significance between the 2 groups, including JUN, CEBP, and
CEBPG genes that were upregulated and ENO2, PRKCB, HAT1,
and PDK1 genes that downregulated in heroin addicts compared
with the control group. The mean transcript levels of RASA1,
CD47, and IMPDH2 were nominally downregulated in heroin
addicts compared with control subjects; however, they did not
reach statistic significance after correction for multiple tests. No
differences of in the mean transcript levels of AUTS2,MBD1, and
RGS3 genes were observed between the 2 groups.
3.3. LR analysis

In LR analysis, subjects with and without the diagnosis of heroin
addiction were regressed with a linear combination of the gene
expression levels. The accuracy rates of different models
containing 13, 7, 5, and 4 genes are listed in Table 3. The odds
ratios of the 7 genes that showed significant differential
expressions between the 2 groups are listed in Table 4. In this
analysis, we found that the 4-gene model that contained JUN,
CEBPB, ENO2, and PRKCB genes had an accuracy rate of
85.5% in the prediction of heroin addiction in this dataset.
Table 2

Summary of expression levels of 13 genes in this study.

Gene symbol Gene ID Heroin addicts (

JUN 3725 6.11±4.6
CEBPB 1051 2.38±3.1
CEBPG 1054 6.72±4.7
PRKCB 5579 3.45±3.4
ENO2 2026 6.26±3.8
HAT1 8520 5.26±4.7
PDK1 5163 8.67±6.5
RASA1 5921 7.02±8.5
CD47 972 3.96±4.6
AUTS2 26053 4.04±4.9
IMPDH2 3615 5.20±3.4
MBD1 4152 15.48±12
RGS3 5998 1.20±1.2
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3.4. SVM analysis

In SVM analysis, we conducted the kernel function as radial basis
function as it is the most accepted in a similar analysis. We used
leave-one-out cross-validation on the patient gene expression
dataset, and all subjects were built-in for both training and testing
using the same formula. Individuals in the patient and control
groups were randomly partitioned into 10 subsets for a cross-
validation. Nine subsets formed a training set and the remaining 1
subset function a testing set. The training set was used to classify
individuals in a testing dataset and calculated a testing accuracy.
The accuracy rates of different gene combinations are summa-
rized in Table 5. We found that the combination of 4 genes (JUN,
ENO2, CEBPG, and PRKCB) had the highest accuracy rate
around 84%.
3.5. BIASLESS analysis

In the analysis using BIALESS software, the data were run with
the default parameter values. For each gene, gene expression level
was normalized by subtracting the sample mean and dividing by
the sample standard deviation of all 248 individuals (from 6
batches). Individuals in the patient and control groups were
randomly partitioned into 10 subsets for a cross-validation. Nine
subsets formed a training set, and the remaining 1 subset was a
testing set. A flexible discrimination analysis was applied to the
training set first. The genes with the highest increment of training
accuracy were included into the classification model sequentially
until the training accuracy reached 1.0 or its increment was less
than a threshold of 0.001. Next, the classification model in the
training set was used to classify individuals in a testing dataset
and calculated a testing accuracy. The previous procedures were
repeated until each of the 10 subsets had been analyzed as a
testing dataset. Finally, among the 10 candidate classification
models, the 1 with the highest cross-validation consistency was
selected as the best classification model in this study. A leave-one-
out testing accuracy of the best model was calculated.
Our classification analysis identified JUN, CEBPG, ENO2, and

PRKCB as the key gene expression signatures for a subdivision of
heroin dependence and controls. The suggested classification
model with 4 gene signatures had a cross-validation consistency
of 4/10 in our 10-fold cross-validation analysis. The average
training accuracy rate was 86.7%, and the leave-one-out testing
accuracy was 85.5%. Distributions of gene expression levels in
n=124) Controls (n=124) P

4 3.26±3.00 <0.001
9 0.69±0.57 <0.001
6 4.24±2.72 <0.001
8 5.85±4.18 <0.001
1 11.26±9.06 <0.001
5 8.38±10.56 0.003
7 12.00±10.93 0.004
5 9.24±5.70 0.02
0 5.88±9.61 0.05
1 5.2±7.25 0.13
8 6.74±6.07 0.015
.00 19.03±24.00 0.14
1 2.49±2.98 1.13
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Table 3

Logistic regression of genetic signature of heroin dependence.

Gene number Gene list Accuracy, %

13 genes RASA1, PRKCB, PDK1, JUN, CEBPG, CD74, CEBPB, AUTS2, ENO2, IMPDH2, HAT1, MBD1, RGS3 87.9
7 genes PRKCB, JUN, CEBPG, CEBPB, ENO2, HAT1, PDK1 88.3
5 genes PRKCB, JUN, CEBPG, CEBPB, ENO2 85.9
4 genes JUN, CEBPB, ENO2, PRKCB 85.5
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the heroin dependence and control groups are displayed in box-
whisker plots (Fig. 1).

4. Discussion

Heroin addiction, like the other substance use disorders, is a
complex disorder resulting from the interplays between envi-
ronment and genetic predisposition.[8] Hence, identification of
the predisposing genes of heroin addiction is crucial to
understand the neurobiology and the pathogenesis of heroin
addiction. Microarray-based gene expression profiling analysis
allows simultaneous measurement of multiple genes expression in
cells or tissues,[15] which had been used in discovering genetic
pathways related to drug addiction. For example, a set of
differentially expressed genes involved in the regulation of
transcription, chromatin, and dopamine cell phenotype were
detected in the postmortem human brains in chronic cocaine
abusers compared with control subjects by microarray and
quantitative PCR.[16] Also, altered gene expression in pathways
related to T-cell receptor, Janus kinase-signal transducer, and
activator of transcription (JAK-Stat) signaling were found among
in these 3 groups of alcohol drinkers (alcohol dependence, heavy
drinkers, and moderate drinkers) using expression array
technology.[17] Our group also conducted a comparative gene
expression profiling analysis of LCLs in a small sample of male
heroin addicts and male control subjects previously. We detected
924 differentially expressed gene transcripts between these 2
groups, including 279 upregulated and 645 downregulated gene
transcripts in individuals with heroin dependence compared with
control subjects.[11] These findings support the complex
polygenic nature of heroin addiction.
Results from microarray-based gene expression studies usually

contain dozens of genes, which are difficult to be applied in
clinical settings. Hence, several groups have attempted to use a
small set of genes as signatures to represent the findings from
microarray-based studies. For example, a 21-gene assay was
found helpful to assist in adjuvant treatment decision in hormone
receptor-positive breast cancer patients.[18] An 8-gene expression
signature could help to predict the survival and time to the
treatment of chronic lymphocytic leukemia,[19] and a 6-gene
Table 4

Odds ratio of 7 genes in logistic regression analysis.

Crude odds ratio Adjusted odds ratio

PRKCB 0.83 (0.76–0.90) 0.82 (0.69–0.98)
JUN 1.28 (1.16–1.14) 1.65 (1.33–2.06)
CEBPB 2.68 (1.79–4.01) 2.08 (1.11–3.92)
CEBPG 1.21 (1.11–1.31) 1.26 (1.04–1.52)
ENO2 0.86 (0.81–0.91) 0.84 (0.76–0.94)
PDK1 0.96 (0.93–0.99) 0.95 (0.87–1.04)
HAT1 0.93 (0.88–0.98) 0.89 (0.78–1.01)
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signature was found to be able to distinguish 4 subgroups of
neuroblastoma.[20] In drug abuse, no such study was reported yet
in the literature to our knowledge. Hence, the study aimed to test
the hypothesis whether a small set of signature genes can reliably
differentiate heroin addicts from control subjects.
The study is an extension of our previous study of comparative

gene expression profiling analysis of LCLs in a small sample of 20
male heroin addicts and 20 male control subjects.[11] We
originally intended to validate the differentially expressed genes
found in expression microarray using RT-qPCR. Then, we came
up with the idea that if we could find a small set of genes that
could reliably predict the individuals with a high genetic
propensity to heroin addiction, which would be useful in
preventing the occurrence and relapse of heroin addiction. To test
this hypothesis, we randomly selected 13 genes based on our
preliminary study and measured the transcript levels of 13 genes
in 124 male heroin addicts and 124 male control subjects using
RT-qPCR. Among these 13 genes, we found 7 genes were
differentially expressed that reached statistical significance after
correcting for multiple testing. These 7 genes were further
analyzed for building genetic signatures using 3 different
statistical methods. We finally obtained 4-gene signatures that
can predict the diagnosis of heroin addiction with the accuracy
rate of around 85% in our dataset.
These 4 genes include JUN, CEBPB, ENO2, and PRKCB in LR

modeling and SVM analysis while in the analysis using BIALESS
computer program, the CEBPB gene was replaced by the CEBPG.
The discrepancy between these methods can be attributed to the
different algorithms of these methods. Nevertheless, the
identification of these genes supports the idea that a small set
of gene transcripts can function as genetic signatures of heroin
addiction.
The interpretation of the biological significance of these

signature genes of heroin addiction can be intriguing. JUN is
proto-oncogene and a transcription factor that regulates the
expression of its target genes. A recent paper reported that
increased c-Jun expression in the cerebellum of rats under long-
term heroin administration, which was attributed to be one of the
mechanisms underlying the heroin-induced cerebellum neuronal
damage.[21] However, no other studies reported elevated intrinsic
JUN in heroin addicts to our knowledge. Both CEPBP and
CEPBG aremembers of CEPB family that contain a leucine zipper
domain to form homodimer and heterodimer with each other.
These 2 transcription factors are involved in many physiological
and pathological conditions in humans.[22–25] PRKCB is a
member of the protein kinase C (PRKC) family that are
threonine-specific protein kinases that play an important role
in signal transduction, regulation of gene expression, and control
of cell division and differentiation. Studies reported that PRCKB
played an essential role in dendritic cell differentiation[26] and
was involved in the pathogenesis of autism.[27,28] However, the
relation between PRKCB and substance use disorders remains to



Figure 1. Box-whisker plots of transcript levels of the 4 selected gene expression signatures in the case and control groups.

Table 5

Support vector machines’ analysis of genetic signature of heroin addiction.

Gene number Gene list Accuracy, %

13 genes RASA1, PRKCB, PDK1, JUN, CEBPG, CD74, CEBPB, AUTS2, ENO2, IMPDH2, HAT1, MBD1, RGS3 73.4
7 genes PRKCB, JUN, CEBPG, CEBPB, ENO2, HAT1, PDK1 74.2
5 genes PRKCB, JUN, CEBPG, CEBPB, ENO2 80.7
4 genes JUN, CEBPB, ENO2, PRKCB 83.9
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be studied. Enolase is involved in the glycolysis and gluconeo-
genesis pathways. Human enolase is a homodimeric protein
complex consisted of 2 subunits from 3 isoforms of enolase that
are encoded by ENO1, ENO3, and ENO2, respectively. Tannu
et al reported increased gamma enolase that was encoded by the
ENO2 in the nucleus accumbens of cocaine overdose victims
compared with control subjects,[29] suggesting the involvement of
the ENO2 in the pathophysiology of cocaine dependence. Our
previous study also indicated that ENO2 was associated with
heroin dependence.[11] These signature genes may not directly
link to heroin addiction at first look; they may represent the
complex genetic pathways underlying the genetic disposition of
heroin addiction. Hence, a combination of the expression of these
signature genes can reliably distinct heroin addiction from
control subjects with high accuracy rate as shown in this study.
LR is a powerful modeling tool for predicting the outcome; it

assumes a linear relationship between predicting variables and
outcome.[30] SVM is a supervised machine learning algorithm
that is used for both linear and nonlinear classification.[13]

Interestingly, both LR and SVM analyses obtain the same 4 genes
that had the accuracy rate of approximately 85.5% and 83.9%,
respectively, supporting the robustness of the 4-gene signatures of
heroin addiction. In the analysis using BIASLESS, the CEBPBwas
replaced by the CEBPG. Still, the 4-gene model had the accuracy
rate of 85.5% in predicting the diagnosis of heroin addiction.
The study has several limitations. Due to limited resources, we

were not able to measure more gene transcripts to find better
genetic signatures with higher accuracy rate than the current
findings in the prediction of heroin addiction. Also, the relatively
small sample size can also affect the predicting power of ourmodel
in this study. Furthermore, the gene signatures found in this study
may not be specific for heroin addiction, as substance use disorders
share some common genetic susceptibility.[31] Hence, the specifici-
ty of our findings in this study should be tested in another kind of
substance use disorders. Also, the present study only measured the
gene expression at mRNA level, which may not represent the gene
5

expression at the protein level. It would be interesting to examine
the changes of these signature genes at protein level in the
postmortembrains of heroin addicts or the brains of rodents under
long-term heroin administration in the future study.
Heroin addiction is a complicated result from interactions

between genetic susceptibility and environmental factors. To
reduce the confounding environment factors, we used LCLs as
our experimental materials instead of peripheral blood cells,
because the LCL was cultured in the medium for a long period,
the influence of environmental factors was controlled to the
minimum. Hence, the genes identified in this study can be
considered as trait markers than as state markers. Also, the
establishment of LCLs is a laborious and lengthy process, which
also limits its clinical use. Hence, this study can only be
considered as a proof-of-concept study. We suggest that it would
be more useful in clinical settings if the future study can identify a
small set of signature genes of heroin addiction from peripheral
blood cells rather than from LCL.
In conclusion, the present study suggests the feasibility of

detecting a small set of genetic signatures from peripheral tissues
that can classify the diagnosis of heroin addiction with reasonable
accuracy rate. The approach in this study shall facilitate the
search for trait genetic markers and biomarkers of heroin
addiction, and promote the translational research of heroin
addiction in clinical settings.
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