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Scalable collective Lamb shift of a 
1D superconducting qubit array in 
front of a mirror
Kuan-Ting Lin1, Ting Hsu1, Chen-Yu Lee1, Io-Chun Hoi2 & Guin-Dar Lin   1*

We theoretically investigate resonant dipole-dipole interaction (RDDI) between artificial atoms in a 
1D geometry, implemented by N transmon qubits coupled through a transmission line. Similar to the 
atomic cases, RDDI comes from exchange of virtual photons of the continuous modes, and causes the 
so-called collective Lamb shift (CLS). To probe the shift, we effectively set one end of the transmission 
line as a mirror, and examine the reflection spectrum of the probe field from the other end. Our 
calculation shows that when a qubit is placed at the node of the standing wave formed by the incident 
and reflected waves, even though it is considered to be decoupled from the field, it results in large 
energy splitting in the spectral profile of a resonant qubit located at an antinode. This directly implies 
the interplay of virtual photon processes and explicitly signals the CLS. We further derive a master 
equation to describe the system, which can take into account mismatch of participating qubits and 
dephasing effects. Our calculation also demonstrates the superradiant and subradiant nature of the 
atomic states, and how the CLS scales when more qubits are involved.

One of the intriguing phenomena of quantum electrodynamics is the emergence of the Lamb shift, which was first 
discovered by Lamb in 19471, corresponding to the energy difference between 2S1/2 and 2P1/2 levels of a hydrogen 
atom. The understanding of such a shift opened up a new chapter of physics now known as quantum field theory, 
bringing in a concept that quantum vacuum must be treated as a zero-point state of numerous harmonic oscilla-
tors (photon modes), and quantum fluctuations allow both real and virtual processes to have physical effects. This 
perspective of quantum vacuum also plays an essential role in various scenarios such as spontaneous decay emis-
sion, squeezed vacuum states2,3, and the Casimir effect4–6. Recently, resonant dipole-dipole interaction (RDDI) 
mediated via exchange of virtual photons between multiple atoms has become one of the most interesting topics 
in, for instance, light scattering7–9 and coherent excitation transfer10,11 in atomic ensembles or structured arrays, 
atomic clocks12, topological quantum optics13, and quantum information processing14. Such RDDI results in the 
collective version of Lamb shift, sometimes also termed the cooperative Lamb shift (CLS) due to its close con-
nection to cooperative phenomena such as super- and subradiance15–17. For past few years, CLS regarding atomic 
systems have been experimentally demonstrated and studied in atomic clouds18–20, nano-layer gases21,22, ensem-
bles of nuclei23, and trapped ions24. Main challenges of observing CLS in atomic systems originate from vacuum 
mediated coupling weakened very fast as separation increases in 3D space. In order to probe the shift, ideally 
atoms must be placed at a distance comparable to the transition wavelength, or inside cavities or waveguides 
where field can be confined or directed, thus enhancing the interaction strength. Such consideration suggests 
that the circuit quantum electrodynamical (circuit QED, or cQED) systems are a perfect test bed for observing 
cooperative phenomena.

Circuit QED systems deal with artificial atoms coupled on-chip through waveguides. They are more easily 
fabricated to achieve the strong coupling or the superradiant regime compared to the atomic counterpart25, and 
have been used extensively to study the Tavis-Cummings model26, dipole-dipole coupling27, photon-ensemble 
interaction, super- and subradiance28–32, and quantum information oriented applications33,34. Up to present, the 
observation of CLS in cQED systems is still scarce except for a 2013 experiment29, where two superconducting 
qubits are both pumped in a 1D open waveguide, resulting in collective decay linewidth larger than the shift, 
seriously degrading the visibility of CLS. In order to resolve the tip shift from two very broad peaks, enormous 
times of data acquisition are required for a sufficient confidence level. Another way to look at the RDDI has 
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been demonstrated in recent experiments with a few Rydberg atoms parted by a sub-wavelength distance with 
exchange interaction also in the microwave domain11,35. But instead of probing the CLS, they have measured 
Rabi-like excitation transfer between atoms, which demands both spatial and time-domain resolutions. In this 
work, we theoretically study the emergence of CLS by simply arranging a series of transmon qubits in front of a 
mirror, and probing for their reflection spectrum. Such arrangement has been realised with trapped atomic ions36 
and superconducting qubits37,38, where the incident field is interfered with the reflected one, forming a standing 
wave. In the recent experiment38, we place one qubit at the antinode mirror while others at nodes with respect to 
their transition wavelength as shown in Fig. 1. This configuration is also closely connected to the nested structure 
of the giant atom proposal39. Interestingly, when a resonant field is fed from the open end, those node qubits seem 
to be decoupled from the probe and supposedly have no effect on the antinode qubit’s spectral profile through real 
photon exchange. This is however not the entire story because one neglects contributions from the whole range of 
vacuum modes that mediate RDDI without exchanging real photons. The advantage of insertion of a mirror is to 
introduce destructive interference that suppresses the collective decay linewidth, hence improving the visibility of 
the CLS. This distinguishes our scheme from open transmission line experiments whose measurement resolution 
is usually poor.

This work is devoted to thorough theoretical investigation from the fundamental theory to realistic experi-
mental consideration38 such as dephasing and power broadening, as well as providing future guidance for scaling 
up the system and shift. In the following, we will presents an RDDI model based on a master-equation approach 
for our cQED system of a half-infinite waveguide. We will discuss the reflection spectral profiles and emergence 
of CLS associated with a two-qubit system, where the dephasing and power broadening effects will be studied to 
reflect the situations with real transmon artificial atoms. Finally, we will examine the scaling law of the CLS when 
more qubits are involved, for which we present an effective reduced scheme for both qualitative and quantitative 
explanations.

Results
Dipole-dipole interaction and the master equation.  We consider a linear chain of N transmon qubits cou-
pled to a common 1D waveguide whose one end is terminated by a very large capacitor. This amounts to setting the 
end as an antinode mirror regarding standing waves of this architecture. Different from a discrete spectrum in a cavity 
case with two mirrors, our system has a continuum of photon modes. The Hamiltonian describing this system can be 
written as = + +H H H HS B int

37,40–42 with the atomic part HS i i i iω σ σ= ∑ + −, the field part †∫ ω ω= ω ω
∞H a a d ,B 0
  

and the interaction under the rotating wave approximation ∫ ω ω σ= ∑ + . .ω ω
∞ +H i d g k x a H c( )cos( )int i i i i0

  Here, 
iω  denotes the transition frequency between the excited state | 〉e i and the ground one | 〉g i of the ith qubit located at xi, 

and σ = | 〉 〈 |+ e gi i  and g ei iσ = | 〉 〈 |−  represent its raising and lowering operators, respectively, and H.c. denotes the 
Hermitian conjugate. The operator †

ωa  ( ωa ) creates (annihilates) a photon of frequency ω, whose mode function is of the 
form ~ k xcos ω  due to the presence of the antinode mirror at x 0= . The wavenumber ω=ωk v/  with v the speed of 
light in the waveguide. Note that a†

ω and ωa  satisfy the commutation relation † δ ω ω= − ′ω ω′a a[ , ] ( ). Following the 
standard procedure to trace out the photonic degrees of freedom43 and applying the Born-Markov approximation, we 
arrive at the master equation

Figure 1.  Architecture of the 1D array of transmon qubits coupled through a microwave waveguide, whose one 
end is terminated by a large capacitor at =x 0, effectively serving as an antinode mirror. The probe field is fed 
from the other end of the waveguide, coherently superposes with the reflected field, forming a standing wave. 
When other qubits are placed at the nodes, they do not directly interact with probe photons. However, the 
qubits can still couple to other vacuum modes of continuous spectrum, mediating the RDDI only through 
virtual processes.
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In this master equation, we have explicitly included a continuous-wave probe field incident from the other end 
of the waveguide with a detuning i p iδ ω ω= − , with pω  the probe light frequency, the associated Rabi frequency 
Ω p
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i  is added by hand to account for individual pure dephasing characterised by iγ φ. The dipole-dipole 
interaction, obtained by summing all contributions from the photon mode continuum, is now contained in 
γ γ γ= ±± ( )/2ij ij ji  and Δ = Δ ± Δ± ( )/2ij ij ji  with
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where γ γ ω γ ω≡ ( ) ( )ij i j j j
0  with the bare decay rate g ( )i i j

2γ π ω=  evaluated at the jth qubit’s transition frequency jω , 
and k v/j jω= .

Here are a few remarks regarding the forms of Eqs. (2) and (3). First, for an open waveguide without a mirror, 
it can be proven that the dipole-dipole interaction between the ith and jth qubits depends only on the relative 
distance −x xi j

25. The mirror effectively places image qubits on the other side of the mirror. Therefore qubit i 
does not only see the real qubit j at a distance −x xi j  but also the image one at distance +x x( )i j . Note that, in 
general, γ ±

ij  and Δ±
ij  can be finite with non-identical qubits, leading to non-Lindblad behaviour44. For identical 

qubits where the sub-indices are interchangeable, γ−
ij  and ijΔ− vanish and hence the master equation retains the 

Lindblad form. We will see that Δij then directly contributes to the CLS splitting.

Reflection spectrum for two atoms.  In order to probe the CLS configuration, we feed the probe signal 
from and acquire its reflection spectrum on the open end. Following the derivation summarised in the Methods 
section, we have the reflection amplitude
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respectively, of the ith qubit; β = C C/i C
i

T
i  is the ratio between the capacitor CC

i  of the transmission line and the 
total capacitor CT

i . The atomic variables iσ〈 〉−  needs to be solved by evaluating the master Eq. (1).
We start with discussion for the simplest case of two identical qubits, who share the same frequency and bare 

decay rate, 1 2 0ω ω ω= ≡  and 12
0

21
0

0γ γ γ= ≡ , respectively. In this case, 121η = , 012 12γΔ = =− − , x x( , )12 12 1 2∆Δ =+  
and x x( , )12 12 1 2γ γ=+  as functions of x1 and x2. Here, we set x 01 = , i.e., the 1st qubit is placed at the antinode 
mirror, and vary the position x2 of the 2nd one. Since γ12 and 12Δ  are periodic functions of x2, we will not lose 
generality if we only discuss the steady-state reflection spectrum from λ =x / 12  (antinode) to λ = .x / 1 52  (next 
antinode) with λ π ω= v2 / 0, as shown in Fig. 2(a,b).

To understand the spectrum, it is instructional to perform analysis by recasting the master Eq. (1) into a 
non-Hermitian effective Hamiltonian:

 ∑ ∑

∑

δ γ σ σ γ σ σ

σ σ

= − + + Δ −

− Ω + .

φ + − + −

+ −

( )H i i

k x

/ ( )

cos( )( )
(5)

eff
i

i i i i
ij

ij ij i j

i
p
i

p i i i

For N 2= , we consider a quantum state c ee c eg c ge c ggee eg ge ggψ = + + + , whose dynamics follows 
the Schrodinger equation ψ ψ| 〉 = | 〉i Hd

dt eff . Under the weak-field approximation, where we take c 1gg ∼ , c 0ee ∼ , 
the steady-state solution can be directly computed, and then from Eq. (4) the reflection amplitude. In the 
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following, we will pay our special attention to the two exemplary cases with (i) λ =x / 12  (antinode) and (ii) 
x / 1 252 λ = .  (node) while keeping =x 01 .

In the case when x2 λ= , and setting the dephasing rate γ γ γ= =φ φ φ
1 2 , the reflection spectrum is given by

r i
i

1 4 ( )
2 2 ( ) (6)

0

0
2 2
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+ − − +
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, forming a central dip of width γΓ = 2 0. This corre-

sponds to the Dicke superradiant condition, where the linewidth is broaden by a factor of 2 for two qubits. By 
projecting the system to the symmetric state | 〉 = | 〉 + | 〉s eg ge( )/ 2  and the antisymmetric one 
| 〉 = | 〉 − | 〉a eg ge( )/ 2 , one can see significant population in | 〉s  with a| 〉 almost depleted, as shown in Fig. 2(c). 
Note that when x2/λ = 1.5x2/λ = 1.5, the roles of the symmetric and antisymmetric states are switched because 
the distant qubit flips its phase due to the factor k xcos p 2, making 2 2σ σ↔ −± ± and hence | 〉 ↔ −| 〉ge ge .

For λ= .x 1 252 , 12 0γΔ = , similar analysis leads to
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where γ+ = (γ0 + γφ
1 + γφ

2 )/2γ+ = (γ0 + γφ
1 + γφ

2 )/2. For small /2 1γ γφ φ, two dips correspond to δ δ→ ± with

Figure 2.  (a) Reflection spectrum for various x2 in units of λ with x 01 = . (b) The profiles corresponding to 
three white dashed line cuts in (a). For x / 12 λ =  (antinode), the spectral profile presents a single wide dip, 
signalling the superradiant nature. For λ = .x / 1 252  (node), the symmetric and antisymmetric states are split 
due to the CLS so that two dips merge corresponding to two resonant conditions. For x2 away from the 
antinode, two dips move to the side of red detuning with the left one rising and finally fading out, and the right 
one moving toward the middle, and finally becoming superradiant as x2 reaches the next antinode. (c) 
Population as a function of detuning in the symmetric (ρss) and antisymmetric (ρaa) states for λ =x / 12 . (d) 
Similar to (c) but for x / 1 252 λ = . . Note that for x1 5 / 22 λ. ≤ ≤ , these curves are similar but with the roles of 
the symmetric and antisymmetric states are switched. (Other parameters: 0 2 0γ γ= .φ  and 0 01p 0γΩ = . ).
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as γ →φ 02 . This suggests that Δ12 contributes to a coupling between | 〉s  and a| 〉 and splits the two states. Therefore, 
the exchange interaction results in the spectral splitting 2 2split 12δ δ≡ | | ≈ Δ±  emerging in the the reflection pro-
file. Such splitting has been clearly measured in the experiments38 with very good agreement to the theory. Finally, 
note that at 12δ = −Δ , 0ss 2

p
2

2
2

12
2

0
2ρ ≈ →

γ

γ

|Ω |

Δ

φ

 as γ →φ 02 , implying that all the excitation is in state a| 〉. Conversely, at 

,12δ = +Δ  only state s| 〉 is populated. See Fig. 2(d). In the case of λ = .x / 1 752 , the roles of the symmetric and 
antisymmetric states are switched due to the same argument in the case of x / 1 52 λ = .  discussed previously.

A remarkable feature from examining Eq. (7) is that the linewidth of the dips is about ( )1
2 0 1γ γ γ≈ + φ+ , 

which is smaller than 2split 0δ γ≈ , as long as 2 0γ γφ . This feature makes our mirror scheme distinguishable from 
the open transmission line experiment29 and other experiments with atomic ensembles11,35. The insertion of a 
mirror introduces image qubits that bring in phase relations leading to suppression of the collective linewidth 
without scaling up with the number of qubits.

Dephasing and power broadening.  We now examine the effect of dephasing on the splitting feature. 
Intuitively speaking, dephasing usually introduces broadening that degrades the quantum effects from being 
observed. In our case, it is however the individual dephasing, especially that of the mirror qubit, that makes the 
splitting visible. If we take 01 2γ γ= =φ φ , Eq. (7) gives r 1=  constant reflection amplitude for any finite detuning 
δ. Therefore the splitting information is hidden. In fact, we need 01γ >φ  in order to view splitting as a trace of CLS 
from the reflection spectrum. We have shown in Eq. (8) that δ → ±Δ± 12 as γ →φ 02  for any 01γ >φ . When 
γ >φ 02 , we find that the mismatch between δsplit and Δ2 12 has a leading-order term proportional to /2 1γ γφ φ, which 
suggests that δ → ±Δ± 12 as long as γ γφ φ/2 1  is small. The unit reflection amplitude in the case of no dephasing 
suggests that Vout only differs from Vin only by a pure phase factor as suggested by Eq. (10). But in the presence of 
dephasing, the phase relation between the input Vin and the scattered component −V Vout in has been impaired, 
revealing the spectral landscape of the scattered signal.

Figure 3 shows our numerical calculation when 0 21 0γ γ= .φ  is fixed, corresponding to a typical experimental 
realisation. When 2γ φ increases from zero, we find δsplit decreases monotonically from 2 12Δ . Another interesting 
feature regarding visibility of CLS is the central maximum δ≡ =r r( 0)mid , which is also lowered with increasing 
γ φ

2  according to

γ γ
γ γ γ

= −
+ + Δ

.
φ

φ φr 1 2
( ) (9)

mid
0 2

0 1 2 12
2

In real experiments38, this maximum is always smaller than unity, reflecting the presence of dephasing mech-
anisms on the 2nd qubit. We find that rmid is dominantly determined by γ φ

2  and insensitive to 1γ φ according to Eq. 
(9). Thus rmid provides a very good indication to be used to extract 2γ φ without knowing the exact value of γ φ

1 . The 

Figure 3.  (a) Reflection spectrum for various dephasing rates of the 2nd qubit at λ = .x / 1 252 . Here we set 
γ γ= .φ 0 21 0 and 0 01p 0γΩ = . . (b) Spectral splitting splitδ  in units of γ0 and the height of the central maximum rmid 
as monotonically descending functions of the 2nd qubit’s dephasing rate γ φ

2 .
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ratio of γ φ
2  thus obtained to the actual value is γ γΔ Δ + φ φ/( )12

2
12
2

1 2 . Therefore, for γ φ
1 , 0 52 0γ γ∼ .φ , the estimated 

value of 2γ φ is 20% less than the actual one; for 1γ φ, γ γ∼ .φ 0 22 0 as in a typical experiment, it becomes only 4% less.
Next, we discuss the cases when the probe power increases, where the effective-Hamiltonian approach breaks 

down at some point due to significant population in upper levels. By full density matrix calculation and inclusion 
of anharmonicity of the third level of the transmons, a power dependent reflection spectrum is shown in Fig. 4(a). 
Here we have plugged in typical parameters as in the experiment38 with 2 4 755 GHz1 2ω ω π= = × . , =x 01 , 
x 1 252 λ= . , and the wave speed = . ×v 0 8948 108 m/s. The bare decay rate 2 17 20γ π= × .  MHz, and then we 
have 11 12 0γ γ= Δ = , 012 22 11 22γ γ= = Δ = Δ = , and 2 34splitδ π≈ ×  MHz. The pure dephasing rates are taken 
the same for both the qubits γ γ γ= = .φ φ 0 21 2 0. The anharmonicity defined as ⁎

i iω ω−  is − γ20 0, where ⁎ωi  is the 
frequency spacing between the next higher level to | 〉e i of the ith atom. For weak probing 0 1p 0γΩ . , the spec-
trum profiles remain independent of the probe power, reflecting the fact that the CLS originates from vacuum 
nature instead of the external field. As Ωp increases, the green curves in Fig. 4(c,d) display clear power broadening 
of the two dips due to significant population in the second and third levels. In fact, the role of the third level is 
almost negligible as long as the anharmonicity is greater than γ5 0 given  0 5p 0γΩ . . But with stronger probing 
field 0 5 2p0 0γ γ. < Ω < , the spectral profile starts to show slight asymmetry because the third level is differently 
populated at different detuning. For  2p 0γΩ , the system becomes saturated and attains unit reflection 
amplitude.

As a comparison, we also plot the cases with zero dephasing 0γ =φ  in Fig. 4(b). We find that in this case the 
reflection amplitude under weak probing retains unity as shown by the red curve in Fig. 4(c). Interestingly, strong 
probing leads to power broadened linewidths for both qubits, recovering the profile of two-dip structure (repre-
sented by the red curve in Fig. 4(d)).

Multi-atom cases.  We now consider multi-atom cases with N 3≥ . We here focus on configurations with 
identical qubits either at antinodes or nodes as shown in Fig. 5(a). For analysis, we first take those qubits at 
antinodes/nodes in a row as a group. By doing so, the system now consists of antinode groups (Aj) and node ones 
(Bj) placed in alternative order, i.e., A B A B1 2 3 4 . For each antinode group Aj, we define the collective operator as 
S ( 1)j n i A

x
i

1 2 /
j j

i σ≡ ∑ − λ±
∈

±, and for each node one Bj, σ= ∑ − λ±
∈

− ±S ( 1)j n i B
x

i
1 2 / 1/2

j j
i . Under the weak field 

approximation with only single excitation allowed, we show that these ±S ’s become effective two-level spin oper-
ators by defining ≡ | 〉 〈 |+ ⊗S a gj A

n
j

j for group Aj, and ≡ | 〉 〈 |+ ⊗S b gj B
n

j
j for group Bj (

−SA B,j j
 are their Hermitian con-

jugates), where | 〉a Aj
 and | 〉b Bj

 are collective excited states of Aj and Bj, respectively, with nj the number of qubits in 
the group. For instance, for an antinode group A x x x{ , , } {0, , 3 /2}1 1 2 3 λ λ= = , S ( )1

1
3 1 2 3σ σ σ= + −+ + + +  and 

Figure 4.  Power broadening of the reflection spectrum for Qubit 1 at =x 01  and Qubit 2 at x 1 252 λ= .  for (a) 
γ γ= .φ 0 2 0 and (b) γ =φ 0. See text for other parameters. (c and d) Show the profiles for weak 0 01p 0γΩ = .  and 
strong probing γΩ = .0 5p 0, respectively, corresponding to the dashed and solid linecuts, respectively, in (a and b).
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| 〉 = | 〉 + | 〉 − | 〉a e g g g e g g g e( , , , , , , )A
1
31

. Each group can then be seen as an effective two-level “joint atom” 
represented by the inset of Fig. 5(a).

To illustrate the “joint atom” picture, we go back to the effective Hamiltonian (5). We take identical qubits with 
the same dephasing rate γφ and probe detuning δ for simplicity. To avoid confusion hereafter, we denote the qubit 
index by i or i′, and the joint atom index by j or j′. Then the atom-probe interaction is given by 

k x n S Scos ( ) ( )p i p i i i p A j j jj
σ σΩ ∑ + → Ω ∑ ++ − + −  with k kp 0≈ , which can be seen as the joint atoms interacting 

with the probe field effectively. The dipole-dipole interaction characterised by the decay terms correspond to 
n S S n n S Sii ii i i A j j j A A j j j j0 , 0j j j

γ σ σ γ γ∑ → ∑ + ∑′ ′
+

′
− + −

′
+

′
−

′
 since there is no such contribution from pairs ( ∈i Aj, 

i Bj′ ∈ ′) and (i Bj∈ , i Bj′ ∈ ′). The first terms correspond to superradiant decay of Aj, and the second terms corre-
spond to the mutual decay between different joint atoms Aj and ′A j . Note that this analysis also suggests that a Aj

| 〉  
is superradiant with the enhanced decay rate γnj 0. Similarly, the dipole-dipole interaction characterised by 
exchange is given by σ σ γ∑ Δ → ∑′ ′

+
′
−

′
+

′
−

′
n n S Sii ii i i A B j j j j, 0j j

 for < ′j j . Note that the contributions are all zero from 
pairs (i Aj∈ , ′ ∈ ′i Aj ), ( ∈i Bj, ′ ∈ ′i Bj ), and (i Bj∈ , ′ ∈ ′i Aj ) for ′ >j j. This is equivalent to re-scale the coupling 
strength by a factor n nj j′ , the square root of the product of the qubit numbers of two joint atoms Aj and Bj′. We 
can then take an effective reduced scheme with Aj located at j( 1)λ−  and Bj′ at λ′ −j( 3/4)  as represented by 
Fig. 5(a), which will yield almost the same spectral landscape as the inset in Fig. 5(a).

Note that, for the joint atom Bj′, the effective spontaneous emission rate ( b gB
n

j
j| 〉 → | 〉⊗

′
′) remains zero since 

every qubit in this group sits at the node. This implies that no spontaneous linewidth of ′Bj  contributes to the 
linewidth of the CLS splitting signal. Consider the case of an array consisting of two groups A1 and B2 only, with 
n1 antinode and n2 node qubits, respectively. It can be viewed as a joint atom A1 placed at the mirror is of sponta-
neous linewidth γn1 0, and another joint atom B2 at 1/4λ with no such linewidth. There exists an exchange coupling 

n nj j1, 2 1 2 0γΔ == ′=  between them. The CLS splitting is thus given by n n2split 1 2 0δ γ≈ . Figure 5(b) presents the 
scaling law of δsplit, which indeed agrees with the above analysis. Small deviation is visible but negligible when 
dephasing is included, and diminishes as N  becomes large. In Fig. 5(c), we compare the reflection spectral profiles 

Figure 5.  (a) Array of qubits located at either nodes and antinodes. The inset is the equivalent reduced scheme 
of “joint atoms” arranged at antinodes and nodes alternatively. (b) CLS splitting N2 1split 0δ γ≈ −  for an qubit 
array of one at the mirror ( =x 01 ) and N 1−  ones at nodes. Small deviations can be observed with finite 
dephasing rate γφ for all the qubits. (c) Spectral profiles for three antinode qubits plus one node qubit (3a1n) 
and one antinode qubit plus three node ones (1a3n).
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of two situations: x x x x{ , , , } {0, , 2 , 9 /4}1 2 3 4 λ λ λ=  and {0, /4, 3 /4, 5 /4}λ λ λ . In the former case, =n n( , ) (3, 1)1 2  
and the latter =n n( , ) (1, 3)1 2 , the CLS splittings are the same γ2 3 0. The former has a broadened linewidth γ3 0 
due to superradiant enhancement in A1 while the linewidth of each dip in the latter case is still comparable to 0γ . 
The latter case shows exactly the beauty of the scheme with a mirror: Adding more node qubits n( )2  in a row 
enhances the splitting without significantly broadening the signal dips (due to =n 11 ), making the CLS signal to 
be spotted easily by simple reflection measurement.

Conclusion
In summary, we have studied the dipole-dipole interaction between artificial atoms mediated by 1D vacuum 
modes in a waveguide. Setting one end of the waveguide to be a mirror, we can probe the collective Lamb shift by 
studying the reflection spectrum. When a qubit is placed at the node, we isolate it from coupling to other qubits 
through the resonant field. Instead, the exchange interaction remains effective via virtual photons, causing the 
collective Lamb splitting between symmetric and antisymmetric levels that can now be clearly visible by means 
of a very simple reflection measurement.

Our calculation highly agrees with the recent experimental results38. We have derived the master equation 
to describe general cases and given analytical expressions for certain circumstances. We have also investigated 
the effects of dephasing, power of probing, and the scaling law when more qubits are added. For special cases 
with many qubits placed only at antinodes and nodes, we have developed a reduced scheme under the weak field 
approximation, and explained the scaling behaviour.

For future outlook, we find close connection of our findings to recent work39,45, where atoms are considered 
large compared to the transition wavelength, and thought to have multiple chances of interaction before the field 
leaves. We expect similar analysis for some interesting interference effects, and our results can be very useful for 
quantum optical study and quantum simulation.

Methods
As measured in many experiments37,41,46,47, the reflection amplitude is defined as

r x t V x t V x t( , ) ( , )/ ( , ) , (10)out in≡

where the output signal V x t V x t V x t( , ) ( , ) ( , )out in sc= +  with the input voltage Vin and scattered one Vsc. The input 
signal is assumed to be of the form

=V x t V e( , ) (11)in
ik r

0
p

viewed from the rotating frame of the probe frequency, where V0 is the amplitude of the input voltage with its 
corresponding wave number kp. The scattered voltage can be calculated from the flux41,48

†
∫π

ω
ω

Φ = + ≡ Φ + Φω ω ωx t Z d k x a a( , ) cos ( )
(12)

out in0

with the characteristic impedance Z0. Then the scattered signal is obtained by differentiating the outgoing-wave 
part V t/sc

out= ∂Φ ∂ . In the probe-frequency frame,

∫π
ω ω= − .ω

ω ω∞ − −ωV x t i Z a t e d( , )
4

( )
(13)sc

ik x i t0
0

( )p




Here we have used the fact that the field operator can be expressed in terms of the slowly-varying amplitude 
a t a t e( ) ( ) i t=ω ω

ω−
  and �� ≈ωa 0. Through the standard procedures, the photonic operator is related to the atomic 

one49,50

∫∑ ω σ= − ′ ′ +ω
ω ω

=

− − ′a t g t e dt( ) ( ) ( ) noise,
(14)i

N

i

t
i

i t

1 0

( )i




where the atomic operator is also assumed of the form t t e( ) ( )i i
i ti


σ σ= ω− − − . Note that the noise term will be omit-

ted hereafter since it is averaged out in the vacuum state. Substituting Eq. (14) into Eq. (13), and using Eqs. (10) 
and (11), we then have the scattered signal and the reflection amplitude, respectively,

∑ π ω ω σ=
=

−V i Z g ( ) ,
(15)sc

i

N

i i i i
1

0


r i Z g k x V1 ( )cos /
(16)i

N

i i i p i i
1

0 0∑ π ω ω σ= + .
=

−

The photon-atom coupling strength for transmon qubits is given by


ω β

ω
π

=











g e

E

E
Z( )

8
2 ,

(17)
i i

J
i

C
i

( )

( )

1/4

0
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where e is the electron charge; Z0 is the characteristic impedance of the transmission line; β = C C/i C
i

T
i  is the ratio 

between the capacitor CC
i  of the transmission line and the total capacitor CT

i ; EJ
i( ) and EC

i( ) are the Josephson energy 
and the charging energy, respectively, of the ith qubit40,51,52. Note that the input voltage V0 is viewed right outside 
the outmost qubit (the N th one), and is connected to the Rabi frequency via

V
g

Z
2 ( ) (18)

p
N

N N

N
0

0
ω

ω
π

=
Ω

.

By expressing V0 in terms of pΩ , we finally obtain the reflection amplitude

r i k x1
2

cos ,
(19)i

N
Ni i

p
N p i i

1
∑

η γ
σ= +

Ω=

−

with E E E E( / ) /Ni J
N

c
i

J
i

c
N

N i
( ) ( ) ( ) ( ) 1/4η β β= .
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