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Abstract

Growing evidence indicates that microRNAs (miRNAs) have a key role in processes Key Words
involved in type 1 diabetes mellitus (T1IDM) pathogenesis, including immune system
functions and beta-cell metabolism and death. Although dysregulated miRNA profiles
have been identified in TIDM patients, results are inconclusive; with only few miRNAs
being consistently dysregulated among studies. Thus, we performed a systematic review
of the literature on the subject, followed by bioinformatic analysis, to point out which
miRNAs are dysregulated in TIDM-related tissues and in which pathways they act. PubMed
and EMBASE were searched to identify all studies that compared miRNA expressions
between T1DM patients and non-diabetic controls. Search was completed in August,

2017. Those miRNAs consistently dysregulated in TIDM-related tissues were submitted to
bioinformatic analysis, using six databases of miRNA-target gene interactions to retrieve
their putative targets and identify potentially affected pathways under their regulation.
Thirty-three studies were included in the systematic review: 19 of them reported miRNA
expressions in human samples, 13 in murine models and one in both human and murine
samples. Among 278 dysregulated miRNAs reported in these studies, 25.9% were reported
in at least 2 studies; however, only 48 of them were analyzed in tissues directly related

to T1DM pathogenesis (serum/plasma, pancreas and peripheral blood mononuclear cells
(PBMCs)). Regarding circulating miRNAs, 11 were consistently dysregulated in T1IDM
patients compared to controls: miR-21-5p, miR-24-3p, miR-100-5p, miR-146a-5p,
miR-148a-3p, miR-150-5p, miR-181a-5p, miR-210-5p, miR-342-3p, miR-375 and miR-1275.
The bioinformatic analysis retrieved a total of 5867 validated and 2979 predicted
miRNA-target interactions for human miRNAs. In functional enrichment analysis of miRNA
target genes, 77 KEGG terms were enriched for more than one miRNA. These miRNAs are
involved in pathways related to immune system function, cell survival, cell proliferation
and insulin biosynthesis and secretion. In conclusion, eleven circulating miRNAs seem to be
dysregulated in TIDM patients in different studies, being potential circulating biomarkers
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Introduction

Type 1 diabetes mellitus (T1DM) is characterized by
autoimmune destruction of pancreatic beta-cells by T
lymphocytes and macrophages (1). The disease is usually
diagnosed when over 80-90% of beta-cells have been
destructed by the infiltrating immune system. T1DM
development is slow, providing a potentially long window
of time in which it is possible to identify and theoretically
treat individuals at risk (2, 3).

The first sign of autoimmunity against beta-cells,
frequently detectable a few months/years before the
appearance of clinical symptoms, is the occurrence
of antibodies against beta-cell antigens (4). These
autoantibodies are wused as biomarkers of T1DM
risk and are directed against insulin, glutamic acid
decarboxylase, zinc cation efflux transporter and tyrosine
phosphatases-2 and -2p (4). The presence of more than
two of these autoantibodies indicates high risk for
T1DM development (5, 6). However, the use of islet
autoantibodies as biomarkers of TIDM progression has
some limitations, especially because a subset of children
with new-onset T1IDM is negative for islet autoantibodies
(6), and many autoantibody-positive subjects will never
develop T1DM (2, 7). Moreover, autoantibodies cannot
be used as markers to initiate a potential treatment at
earlier stages of the disease when many beta-cells are
still present (2, 7). Thus, new biomarkers of TIDM are
necessary to complement the information obtained from
the presence of autoantibodies together with genetic and
environmental risk factors (8).

In this context, microRNAs (miRNAs)
are released in the circulation and might be used
as biomarkers to evaluate health status and disease
progression (2). miRNAs are a class of small noncoding
RNAs that negatively regulate gene expression by
partially pairing to the 3’, 5’ untranslated regions of their
target mRNAs, leading to translation repression and/or
transcript degradation (9, 10, 11). They have recognized
roles in the regulation of various processes, such as
cellular differentiation, proliferation, metabolism, aging
and apoptosis (10, 12). miRNAs are estimated to regulate
the expression of more than 60% of protein-coding genes
(9); consequently, changes in their expressions have been
linked to many diseases, including cancer, endocrine
disorders and autoimmune diseases (13, 14, 15).

Growing evidence suggests that miRNAs also play
a key role in immune system functions as well as in
beta-cell metabolism, proliferation and death, which
are processes involved in T1DM pathogenesis (2, 10,
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16, 17). Indeed, IL-1p and TNF inflammatory cytokines
were reported to induce miR-21-5p, miR-30b-3p, miR-34,
miR-101a and miR-146a-5p expressions in MING6 cells and
human pancreatic islets (18, 19), suggesting that these
miRNAs may have a role in cytokine-mediated beta-cell
destruction. miRNA-specific profiles were observed in
PBMC:s or serum from T1DM patients (20, 21, 22, 23, 24),
and some miRNAs seem to modulate mRNA expressions
of the major T1DM autoantigens (24, 25).

Several studies identified a large number of miRNAs
as being differentially expressed in T1DM samples (2, 10).
These studies were performed in cultured cells, body
fluids or solid tissue samples from T1DM patients or
murine models of the disease, using different techniques
to quantify gene expression. Consequently, findings
are inconsistent among studies; with only few miRNAs
actually being important signatures of TIDM. Therefore,
to further investigate which miRNAs may be used as
new potential biomarkers of T1DM, we performed
a systematic review of the literature on the subject.
Additionally, bioinformatic analyses were performed to
investigate the regulatory and functional roles of miRNAs
in T1DM. For this, six databases of miRNA-target gene
interactions were queried, including experimentally
validated and computationally predicted miRNA-target
gene interactions. The functional enrichment analysis
of miRNAs target genes was performed using pathways
annotation from the KEGG Pathway Database.

Methods
Search strategies and eligibility of relevant studies

This systematic literature search was designed and
described in accordance with current guidelines (26, 27).
PubMed and EMBASE repositories were searched to
identify all studies that evaluated miRNA expressions in
T1DM samples. The following medical subject headings
(MeSH) were used: (‘diabetes mellitus’ OR ‘type 1, diabetes
mellitus’) AND (‘microRNA’ OR ‘RNA, small untranslated’).
The search was restricted to English, Portuguese or Spanish
language papers and was completed on August, 2017. We
also manually checked the reference lists of all articles
retrieved to identify other important citations. To ensure
that relevant studies were not overlooked, searches in
Gene Expression Omnibus (www.ncbi.nlm.nih.gov/geo)
and Array Express (www.ebi.ac.uk/arrayexpress) databases
were also performed.
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We included original reports that analyzed miRNA
expressions in T1DM patients (cases) and non-diabetic
subjects (controls) or in murine model of this disease.
Studies that did not have a control group or studies
performed in cell lines were excluded. Two investigators
(TS A and B M S) independently reviewed titles and
abstracts of articles retrieved in order to evaluate whether
the studies were eligible for inclusion in this review.

Data extraction and quality assessment of each
individual study

Data were independently extracted by two investigators
(BM S and T S A) using a standardized abstraction form
(26), and consensus was sought in all extracted items.
Information extracted from each study in humans were
as follows: (1) characteristics of studies and samples; (2)
information regarding miRNA expression (method used
for quantification, tissue analyzed, number of miRNAs
analyzed) and (3) miRNA expression in groups. For those
studies performed in mice/rats, we also collected information
about the murine model analyzed. All miRNA names were
standardized based on miRBase v21 prior to analysis.

Two investigators (T S A and B M S) assessed the quality
of each eligible study using The Quality Assessment of
Diagnostic Accuracy Studies-2 (QUADAS-2) (28). This
tool comprises 4 key domains (patient selection, index
test, reference standard and flow/timing) supported by 7
questions to aid judgment on risk of bias, rating risk of bias
and concerns about applicability of studies. Each question
can be answered with ‘yes’, ‘no’ or ‘unclear’. Then, a score
of 1 is given for each ‘yes’ (low risk/high concern), a score
of 0.5 for each ‘unclear’ and a score of O for each ‘no’ (high
risk/low concern). Quality scores range from O to 7, with
studies being classified as having ‘good quality’ (scores
6-7), ‘fair’ (scores 4-5) and ‘poor quality’ (scores <3).

Additionally, we checked if the articles were
performed in accordance to Minimum Information about
a Microarray Experiment (MIAME) guideline, version
2.0 (29) or Minimum Information for Publication of
Quantitative Real-time PCR Experiments (MIQE) guideline
(30). Only articles in accordance with these guidelines
were included in the systematic review.

Bioinformatic prediction and analysis of miRNA’s
target genes

To investigate in greater depth the functional involvement
of miRNAs in T1DM, we selected those miRNAs that
were consistently dysregulated in T1DM-related tissues
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(PBMCs, serum/plasma and pancreas) and performed
bioinformatic analysis to retrieve their putative targets
and identify potentially affected biological pathways
under their regulation (Supplementary Fig. 1, see section
on supplementary data given at the end of this article).
For this, we queried the databases miRTarbase release 6.1
(31) and starBase, v2.0 (32) of experimentally validated
data concerning miRNA-target interactions, restricting
the search for interactions classified as functional in
miRTarBase (33), and interactions predicted by two or
more software with at least one supporting experiment in
starBase. Moreover, we obtained the complete collection
of validated targets provided by miRecords. The union of
all interactions retrieved from the 3 queried sources was
considered as the set of validated miRNA-target gene
interactions in our study.

To complement the information derived from
experimental validation and search for additional
miRNA targets, we also applied in silico target prediction
algorithms for selected miRNA sequences using web-
based tools TargetScan, v7.1 (34), Diana MicroT-CDS (35)
and miRanda-mirSVR (August 2010 Release) (36, 37). To
control for false-positive rates, we adopted the following
filtering criteria: (1) for TargetScan, v7.1, we considered
interactions involving conserved miRNA sites and with
context++ scores <—0.1; (2) for Diana MicroT-CDS, we kept
interactions with prediction scores >0.7; (3) for miRanda-
mirSVR, we selected interactions involving conserved
miRNAs and with scores <—0.1; (4) the compilation
of miRNA-target interactions gathered from in silico
analysis was built based on target genes predicted by at
least 2 adopted computational tools. The combination of
validated and predicted miRNA-target interactions was
used for further analyses. miRNAs and gene identifiers
were mapped to miRBase, v21 and Human Gene
Nomenclature Committee (38, 39) or Mouse Genome
Information nomenclature (40, 41).

Next, weimplemented functional enrichment analysis
of miRNAs target genes using pathways annotation
from the KEGG Pathway Database (42, 43) and the
clusterProfiler package in R/Bioconductor environment
(44). This investigation was performed for targets of each
individual miRNA as well as for targets of miRNAs grouped
by tissue (PBMCs, serum/plasma or pancreas). Significance
for KEGG pathways enrichment was estimated with a
hypergeometric test and adjusted to account for multiple
hypotheses using the false discovery rate (FDR) procedure
implemented in the g-value R package (45). Pathways
with a g-value <0.05 were considered strongly enriched
for the genes targeted by selected miRNAs.
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Results

Literature search, characteristics of the eligible
studies and quality assessment

The flow diagram showing the strategy used to identify
and select studies for inclusion in this systematic review
is depicted in Fig. 1. According to the search criteria, a
total of 1738 publications were retrieved from databases;
however, after full text analysis, only 33 articles (20, 22,
23, 24, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,
74) fulfilled the eligibility criteria and were included in
the review. The main characteristics of these 33 articles
are shown in Table 1. Among these studies, 19 reported
miRNA expression profiles in human, 13 focused on
miRNA profiles in murine models, and only one analyzed
both human and murine samples (46). Sample sizes
ranged from 10 to 162 in studies that analyzed human
samples and from 6 to 60 in studies with murine models.
The number of miRNAs analyzed ranged from 1 to 847,
with the number of miRNAs differentially expressed
between groups varying from 1 to 136 (Table 1).
Regarding tissues analyzed, 24.1% of the studies
evaluated miRNA expression in serum/plasma samples,
20.7% in PBMCs/T cells, and 6.9% in pancreas tissue. The
remaining studies evaluated other tissues related to TIDM
chronic complications, such as urine, kidney, heart and
retina (Table 1). Two articles analyzed different tissues
(46, 52) and were considered separately, totalizing 36 studies.
Quality of each study included in this review was
assessed using QUADAS-2, as reported in the Methods
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section. Overall, most studies were considered as having
a good quality since 62.5% of studies received QUADAS-2
scores between 6 and 7 (Table 1). No study scored less
than 5.0.

Dysregulated miRNAs in T1IDM-related tissues

Out of 278 dysregulated miRNAs reported in 36
studies that compared T1DM patients and controls, 72
miRNAs (25.9%) were reported in at least two studies
(Supplementary Table 1). However, only 48 of them were
analyzed in tissues directly related to TIDM pathogenesis
(PBMCs, serum/plasma and pancreas). Hence, these 48
miRNAs were chosen for further evaluation (Table 2).
Eight miRNAs were consistently downregulated in
T1DM-related tissues from patients compared to controls
(miR-100-5p, miR-1275, miR-150-5p, miR-151-3p,
miR-146a-5p, miR-151-3p, miR-574-3p and miR-720),
while 10 miRNAs were upregulated in cases (miR-21-5p,
miR-24-3p, miR-25-3p, miR-27b-3p, miR-148a-3p,
miR-181a-5p, miR-210-5p, miR-375, miR-450a-2-3p and
miR-454-3p) (Fig. 2A and Table 2). Thirty miRNAs were
reported as being downregulated in cases from one study
and upregulated in cases from another study, possibly due to
the different tissues or species that were analyzed (Table 2).

miRNA expression profiles according to species

In subgroup analysis of species, 19 studies reported
expressions of 139 miRNAs in different tissues from T1DM
patients and controls, with 36 of these miRNAs being

Figure 1

Flowchart illustrating the search strategy used to
identify association studies of miRNAs expression
with type 1 diabetes for inclusion in the
systematic review.
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Table 2 miRNAs differently expressed in tissues related to TIDM analyzed in at least two studies.

miRNA ID First author (ref.) Species Sample type Change of expression
let-7a-5p Tian et al. (60) Mice Pancreas Down
Yang et al. (24) Human Pancreas Down
let-7¢-5p Tian et al. (60) Mice Pancreas Down
Yang et al. (24) Human Pancreas Down
let-7f-5p Takahashi et al. (23) Human PBMCs Up
Yang et al. (24) Human PBMCs Down
Tian et al. (60) Mice Pancreas Down
let-7g-5p Takahashi et al. (23) Human PBMCs Up
Erener et al. (71) Human Serum Up
Yang et al. (24) Human PBMCs Down
Tian et al. (60) Mice Pancreas Down
miR-10a-5p Nielsen et al. (22) Human Serum Up
Takahashi et al. (23) Human PBMCs Up
Tian et al. (60) Mice Pancreas Down
miR-100-5p Hezova et al. (49) Human T cells Down
Erener etal. (71) Human Serum Down
miR-126-3p Takahashi et al. (23) Human PBMCs Up
Tian et al. (60) Mice Pancreas Down
miR-1275 Takahashi et al. (23) Human PBMCs Down
Yang et al. (24) Human PBMCs Down
miR-146a-5p Yang et al. (24) Human PBMCs Down
Hezova et al. (49) Human T cells Up
Sebastiani et al. (68) Human Serum Down
Perez-Bravo et al. (69) Human PBMCs Down
Wang et al. 2017 (73) Human PBMCs Down
miR-148a-3p Nielsen et al. (22) Human Serum Up
Takahashi et al. (23) Human PBMCs Up
Seyhan et al. (70) Human Plasma Up
miR-148b-3p Takahashi et al. (23) Human PBMCs Up
Tian et al. (60) Mice Pancreas Down
miR-150-5p Estrella et al. (65) Human PBMCs Down
Wang et al. 2017 (73) Human PBMCs Down
miR-151-3p Hezova et al. (49) Human T cells Down
Tian et al. (60) Mice Pancreas Down
miR-154-3p Tian et al. (60) Mice Pancreas Up
Erener et al. (71) Human Serum Down
miR-15b Takahashi et al. (23) Human PBMCs Up
Yang et al. (24) Human PBMCs Down
miR-16-5p Takahashi et al. (23) Human PBMCs Up
Garcia-Contreras et al. (72) Human Plasma-derived exosome Down
Tian et al. (60) Mice Pancreas Down
miR-181a-5p Nielsen et al. (22) Human Serum Up
Nabih et al. (62) Human Serum Up
miR-199a-3p Takahashi et al. (23) Human PBMCs Up
Sebastiani et al. (68) Human Serum Down
miR-19a-3p Takahashi et al. (23) Human PBMCs Up
Tian et al. (60) Mice Pancreas Down
miR-200c-3p Nielsen et al. (22) Human Serum Up
Yang et al. (24) Human PBMCs Down
miR-20b-5p Hezova et al. (49) Human T cells Down
Takahashi et al. (23) Human PBMCs Up
miR-210-5p Nielsen et al. (22) Human Serum Up
Osipova a et al. (52) Human Serum Up
miR-21-5p Seyhan et al. (70) Human Plasma Up
Nielsen et al. (22) Human Serum Up
Osipova et al. (52) Human Serum Up
Takahashi et al. (23) Human PBMCs Up
miR-221-3p Erener et al. 2017 (71) Human Serum Up
Yang et al. (24) Human PBMCs Down
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Table 2 Continued.

miRNA ID First author (ref.) Species Sample type Change of expression
miR-22-3p Yang et al. (24) Human PBMCs Down
Estrella et al. (65) Human PBMCs Up
miR-24-3p Seyhan et al. (70) Human Plasma Up
Erener et al. 2017 (71) Human Serum Up
Nielsen et al. (22) Human Serum Up
miR-25-3p Nielsen et al. (22) Human Serum Up
Garcia-Contreras et al. (72) Human Plasma-derived exosome Up
Erener et al. 2017 (71) Human Serum Up
Yang et al. (24) Human PBMCs Down
miR-26a-5p Nielsen et al. (22) Human Serum Up
Ma et al. (61) Mice Pancreas Down
Tian et al. (60) Mice Pancreas Down
miR-26b-5p Nielsen et al. (22) Human Serum Up
Takahashi et al. (23) Human PBMCs Up
Tian et al. (60) Mice Pancreas Down
miR-27a-3p Nielsen et al. (22) Human Serum Up
Tian et al. (60) Mice Pancreas Down
miR-27b-3p Nielsen et al. (22) Human Serum Up
Takahashi et al. (23) Human PBMCs Up
miR-30b-3p Tian et al. (60) Mice Pancreas Up
Yang et al. (24) Human PBMCs Down
miR-324-3p Tian et al. (60) Mice Pancreas Down
Erener et al. 2017 (71) Human Serum Up
miR-324-5p Takahashi et al. (23) Human PBMCs Down
Erener et al. 2017 (71) Human Serum Up
Tian et al. (60) Mice Pancreas Down
miR-32-5p Takahashi et al. (23) Human PBMCs Up
Tian et al. (60) Mice Pancreas Down
miR-335-5p Hezova et al. (49) Human T cells Down
Takahashi et al. (23) Human PBMCs Up
miR-342-3p Takahashi et al. (23) Human PBMCs Down
Sebastiani et al. (68) Human Serum Up
Yang et al. (24) Human PBMCs Down
miR-375 Erener et al. (63) Mice Plasma Up
Marchand et al. (66) Human Serum Up
Sebastiani et al. (68) Human Serum Down
Seyhan et al. (70) Human Plasma Up
miR-377-3p Sebastiani et al. (68) Human Serum Down
Erener et al. 2017 (71) Human Serum Up
miR-378 Erener et al. (63) Mice Plasma Up
Garcia-Contreras et al. (72) Human Plasma-derived exosome Down
miR-424-5p Wang et al. 2017 (73) Human PBMCs Down
Takahashi et al. (23) Human PBMCs Up
miR-450a-2-3p Takahashi et al. (23) Human PBMCs Up
Tian et al. (60) Mice Pancreas Up
miR-454-3p Takahashi et al. (23) Human PBMCs Up
Erener et al. 2017 (71) Human Serum Up
miR-490-5p Tian et al. (60) Mice Pancreas Up
Erener et al. 2017 (71) Human Serum Down
miR-574-3p Garcia-Contreras et al. (72) Human Plasma-derived exosome Down
Tian et al. (60) Mice Pancreas Down
miR-720 Takahashi et al. (23) Human PBMCs Down
Erener et al. 2017 (71) Human Serum Down
miR-9-3p Tian et al. (60) Mice Pancreas Up
Sebastiani et al. (68) Human Serum Down
miR-98-5p Takahashi et al. (23) Human PBMCs Up
Tian et al. (60) Mice Pancreas Down
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Moreover, 3 miRNAs (miR-151-3p, let-7a-Sp and
let-7c-5p) were downregulated in pancreas from diabetic
mice as well as PBMCs/T cells from T1DM patients
compared to the respective control groups. Inversely,
several miRNAs were downregulated in pancreas from
diabetic mice but upregulated in PBMCs or serum/plasma

from T1DM patients (Table 2), which might reflect
differential expression in tissues and/or species.

Serum/
Plasma

Perturbed pathways in type 1 diabetes mellitus

Bioinformatic analyses were performed to retrieve putative
targets and pathways potentially modulated by 12 miRNAs
(hsa-miR-21-5p, hsa-miR-24-3p, = mmu-miR-26a-5p,
hsa-miR-100-5p, hsa-miR-146a-5p, hsa-miR-148a-3p,
has-miR-150-5p, hsa-miR-181a-5p, hsa-miR-210-5p, hsa-
miR-342-3p, hsa-miR-375 and hsa-miR-12735) consistently
dysregulated in T1DM-related tissues. Species prefixes were
used in miRNA identifiers to clearly designate the species
under consideration while reporting these results. First,
we searched for targets of these miRNAs using 6 distinct
resources, including experimentally validated databases
and prediction programs (Supplementary Fig. 1). A total
of 5867 validated and 2979 predicted miRNA-target
interactions were retrieved for human miRNAs, while 573

e Down: miR-26a-5p

Pancreas

Figure 2

miRNA expression analyzed in at least two studies
considering their expression profile in all tissues
analyzed independently of the species (A). miRNA
expression profile between the species (B). miRNA
expression profile in tissues related to TIDM
pathogenesis (C).

validated and 453 predicted interactions were retrieved for
the mmu-miR-26a-5p (Table 3; Supplementary Table 2).

After target prediction, we performed functional
enrichment analysis of miRNA target genes using
pathway maps from the KEGG Pathway Database,
aiming to better understand the biological pathways
affected by the selected miRNAs. Out of 518 pathways
annotated in KEGG Database (accessed in August
2017), a total of 127 pathways were significantly
overrepresented (g-value <0.05) in the putative target
lists analyzed, and 77 KEGG terms were enriched for
more than one miRNA. Targets of hsa-miR-21-5p,
hsa-miR-24-3p, mmu-miR-26a-5p, hsa-miR-100-5p,
hsa-miR-146a-5p, hsa-miR-148a-3p, hsa-miR-150-5p
hsa-miR-181a-5p, hsa-miR-342-5p and hsa-miR-375 are
involved in several pathways (Supplementary Table 3),
many of them having a recognized role in T1DM
pathogenesis, such as TNF, MAPK, Jak-STAT, PI3K-AKkt,
apoptosis, insulin, toll-like receptors (TLRs) and T cell
receptor (TCR) signaling pathways (Supplementary
Table 3). No significantly enriched KEGG terms were
found for hsa-miR-210-5p and hsa-miR-1275, probably
due to the small number of retrieved targets (40 and
121, respectively), as well as for hsa-miR-150-5p despite
its broad regulatory action.
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Table 3 Number of miRNA-target interactions for each
analyzed miRNA considered individually and grouped by
tissue related to TIDM.

Validated Predicted

miRNA/tissue interactions interactions
Analysis by hsa-miR-1275 121 -
miRNA
has-miR-100-5p 279 14
hsa-miR-146a-5p 300 409
hsa-miR-148a-3p 621 375
has-miR-150-5p 637 433
hsa-miR-181a-5p 1159 361
hsa-miR-21-5p 725 198
has-miR-24-3p 1052 450
hsa-miR-210-5p 40 -
hsa-miR-342-3p 433 436
hsa-miR-375 500 303
mmu-miR-26a-5p 573 453
Analysis by PBMCs 1491 1278
tissue related
to T1IDM
Serum/Plasma 4376 1701
Pancreas 573 453

PBMCs, peripheral blood mononuclear cells.

Considering different T1DM-related tissues, results
indicated 2539 targets in PBMCs, 4665 targets in serum/
plasma and 1026 targets in pancreas for the selected

miRNAs (Table 3), where numbers reflect the size of the
non-redundant set of target genes found for the group
of miRNAs differentially expressed in each T1DM-related
tissue. Forty-five significant KEGG pathways were found
for targets of miRNAs dysregulated in PBMCs, which
included NF-KB, apoptosis and neurotrophin signaling
pathways. Similarly, 17 KEGG terms were found in
pancreas, including Wnt and phosphatidylinositol
signaling pathways. For serum and plasma, 94 significant
KEGG terms were found, comprising signaling pathways
by TNE Jak-STAT, MAPK, TCR and insulin as well as
pathways associated to protein processing in endoplasmic
reticulum and apoptosis, which have key roles in T1DM
pathogenesis (Supplementary Table 4; Fig. 3).

Next, we searched for KEGG terms linked to T1IDM
pathogenesis regardless of the functional enrichment
analysis of miRNA targets and found 5 significant
signaling pathways associated with this disease: type
1 diabetes (KEGG hsa04949), TCR (KEGG hsa04660),
cytokine-cytokine  receptor  interaction (KEGG
hsa04060), Jak-STAT (KEGG hsa04630) and neurotrophin
(KEGG hsa04722). Then, TCR and Jak-STAT pathways
were selected for further detailed analysis since they are
targeted by most of the miRNAs in the list of interest
(11 miRNAs each).
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Figure 3

KEGG pathway functional annotation of the differentially miRNAs expressed in PBMCs (A), serum/plasma (B) and pancreas (C). Enrichment scores

corresponding to each pathway are displayed as number of targets.
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Schematic diagram of the selected miRNA-mRNA interaction networks involved in T cell receptor signaling pathway. The network was built based on
KEGG pathway map (KEGG: hsa04660). The miRNAs are indicated by rhombus. The predicted miRNA-mRNA interactions are indicated by dotted lines

and the thick lines indicate validated miRNA-mRNA interactions.

In the TCR signaling pathway (Fig. 4), miR-181a-5p
directly targets mRNAs for CD4* and CD8* cell receptors.
Moreover, this miRNA post-transcriptionally regulates
genes associated with PI3K-Akt (PI3K, Akt, COT), actin
cytoskeleton (PAK4) and ubiquitin mediated proteolysis
(CBL) pathways, which are triggered after activation
of T cell and co-stimulatory receptors. miR-21-5p
targets mRNAs from MAPK (Ras, ErkSOS and RasGRPI)
and ubiquitin-mediated proteolysis (FYN) pathways.
Furthermore, miR-146a-5p targets mRNAs from MAPK
(Ras) and NF-xB signaling pathways. miR-148a-5p,
miR-100-5p, miR-24-3p and miR-150-5p target mRNAs
from ubiquitin-mediated proteolysis (CBL), PI3K-Akt,
NF-xB and MAPK pathways (Fig. 4).

In the Jak-STAT signaling pathway (Fig. 9),
miR-21-5p, miR-24-3p, miR-181a-5p and miR-210-5p
target mRNAs for different cytokine and hormone
receptors, such as IL6R, LIFR, IL2RB and IFNLR1. miR-375

targets JAK2 mRNA while miR-181a-5p and miR-21-5p
bind to STAT3 mRNA. In addition, miR-375, miR-181a-5p,
miR-146a-5p, miR-148a-3p, miR-100-5p, miR-150-5p and
miR-21-5p target different mRNAs codifying proteins
related to apoptosis (BCL2, SOCS, PIAS and MCL1), cell
cycle progression (cMyc), cell cycle inhibition (p21),
proliferation and differentiation (SHP2, SOS and Ras) and
cell survival (PI3K and Akt) (Fig. 5).

Discussion

Since the exact origin of TIDM remains uncertain, the
discovery of novel biomarkers and their implications
in T1IDM pathogenesis may contribute to a better
understanding of the mechanisms involved in this disease.
Clinically, new biomarkers might enable an earlier T1DM
diagnosis as well as a more adequate treatment of TIDM
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patients, improving their quality of life (23). Circulating
miRNAs are ideal biomarkers because they are stable and
resistant to degradation by ribonucleases or repeated
freezing/thawing cycles and can be easily detected in
body fluids by highly sensitive and specific quantitative
RT-PCR (2). Thus, as part of the ongoing effort to identify
a profile of circulating miRNAs as biomarkers of T1DM, we
performed a systematic review of studies that evaluated
miRNA expressions in tissues from T1DM patients and non-
diabetic controls. Eleven circulating miRNAs (miR-21-5p,
miR-24-3p, miR-100-5p, miR-146a-5p, miR-148a-3p,
miR-150-5p, miR-181a-5p, miR-210-5p, miR-342-3p,
miR-375 and miR-1275) were consistently dysregulated
in T1DM patients, suggesting that they may be potential
minimally invasive biomarkers of this disease.
miR-21-5p, miR-24-3p, miR-148a-3p, miR-181a-5p,
miR-210-5p and miR-375 seem to be upregulated in
serum/plasma or PBMCs from T1DM compared to controls

(Table 2). Emerging studies have indicated diverse roles
of miR-21-5p in immunity (75). Particularly, this miRNA
acts in TCR signaling transduction, augmenting T cell
proliferation (76); regulates Th1 vs Th2 responses (77) and
Treg development (78) and is a key mediator of the anti-
inflammatory response in macrophages (79). miR-21-5p
also appears to have anti-inflammatory and anti-apoptotic
effects since it inhibits the proinflammatory tumor
suppressor programed cell death protein 4 (PDCD4),
which promotes the activation of NF-KB and suppresses
IL-10 (80). Several studies have reported increased
miR-21-5p expression in diseases characterized by
impaired immune responses, including asthma, cancer,
rheumatoid arthritis (RA), systemic lupus erythematosus
(SLE), chronic bacterial and viral infections (14, 79, 81, 82)
and T1DM (reviewed here).

The role of miR-21-5p in beta-cells has not yet been
clearly elucidated, but its function also seems to rely on the
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effect of cytokines via NF-KB (83). IL-1p and TNF strongly
induce miR-21-Sp expression in both insulin-secreting
MING cells and human islets (18). Moreover, miR-21-5p
expression was increased during the development of pre-
diabetic insulitis in islets from NOD mice, possibly as a
protective response since miR-21-5p knockdown in MIN-6
cells promoted apoptosis (18). Accordingly, Ruan and
coworkers (84) reported that NF-KB activated miR-21-5p
in beta-cells, decreasing PDCD4 levels, inhibiting NF-KB
activity in a negative regulatory loop, thus rendering
beta-cells resistant to death. In contrast, Backe and
coworkers (85) showed that miR-21-5p overexpression
potentiated cell death after exposure to proinflammatory
cytokines, leading to a reduced beta-cell number. Also,
overexpression of miR-21-5p led to impaired glucose-
stimulated insulin secretion through decreased VAMP2
expression, a secretory granule protein that is essential for
insulin exocytosis (18).

miR-148a-3p is a potent regulator of B cell tolerance
and autoimmunity through suppression of GADD45a,
PTEN and BCL2I11 expressions (86). In agreement with
this study, Pan and coworkers (81) showed elevated
miR-148a-3p and miR-21-5p expression in CD4* T cells of
SLE patients, which contributed to DNA hypomethylation
by targeting the DNA methyltransferase 1 (DNMT1).
Melkman-Zehavi and coworkers (87) reported that
knockdown of miR-148a-3p in primary islets from mice
or cultured beta-cells decreased insulin promoter activity
and insulin mRNA levels.

miR-181a-5p also has a recognized role in the
immune system (17, 88). This miRNA increases CD19*
B populations and regulates T cell function (17, 89, 90,
91). miR-181a-5p seems to ‘tune’ TCR signal strength
by targeting tyrosine phosphatases SHP-2, PTPN22 and
DUSP5/6, which enhances the basal activation of the
TCR signaling molecules LcK and Erk, thus having an
important role in thymic positive and negative selection
(17, 88, 90). Xie and coworkers (92) reported that LPS and
STZ strongly induced miR-181a-5p in macrophages from
mice. Moreover, this miRNA was upregulated in patients
with RA, which correlated with levels of proinflammatory
cytokines (92). In this context, miR-181a-5p seems to
have an anti-inflammatory function since it inhibited the
increase of IL-1p, IL-6 and TNF in macrophages treated
with LPS (93).

miR-210-5p is currently considered as a ‘master
miRNA’ of hypoxic response as it was found upregulated
by hypoxia in several cell types analyzed (94, 95).
Consequently, miR-210-5p has been linked to various
cancers and cardiovascular diseases (95, 96, 97, 98).
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Targets of this miRNA are involved in mitochondrial
metabolism, angiogenesis, DNA repair and cell survival
(95). Given that miR-210-5p targets many mitochondrial
components, it is not surprising that manipulation of this
miRNA leads to mitochondrial dysfunction and oxidative
stress (94).

miR-375 is the most abundant miRNA detected in islets
and is important for the development and maintenance
of normal alpha- and beta-cell mass and insulin synthesis
and secretion (16, 99, 100). Consequently, this miRNA
has been proposed as a biomarker to detect beta-cell
death and to predict the development of T1IDM (2, 63,
66). Accordingly, massive beta-cell loss elicited by
administration of STZ in C57BL/6 mice caused a dramatic
increase in circulating levels of miR-375 (63). Moreover,
plasma levels of this miRNA were increased in NOD mice
2 weeks before the onset of TIDM (63).

miR-24-3p seems to mark better preserved beta-
cell function and/or insulin sensitivity 12 months after
diagnosis (101). Moreover, this miRNA was elevated in
serum of T1DM children (22), and its overexpression has
been shown to inhibit beta-cell proliferation and insulin
secretion (102).

miR-146a-5p, miR-150-5p, miR-342-3p, miR-1275
and miR-100-5p seem to be downregulated in serum/
plasma or PBMCs from T1DM patients (Table 2).
miR-146a-5p regulates Treg-mediated suppression of [FNy-
dependent Th1l responses and associated autoimmunity
by directly targeting STAT-1 (103), which was confirmed
in our bioinformatic analysis (Supplementary Table 3).
This miRNA has also a recognized role in innate immunity
by negatively regulating the inflammatory response
after recognition of bacterial components by TLRs on
monocytes and macrophages (104). Upon activation by
TNF and IL-1p (18), this miRNA downregulates TRAF-
6 and IRAK-1 expressions, decreasing NF-KB activity,
which seems to be a fine-tuning mechanism that prevents
the overstimulation of the TLR pathway (104, 105). In
disagreement with the downregulation of miR-146-5p in
serum/PBMCs from T1DM patients, Roggli and coworkers
(18) reported that this miRNA was increased in islets from
NOD mice during development of insulitis. Blocking
miR-146a-5p protected MIN6 cells from cytokine-
induced apoptosis and also prevented the reduction in
glucose-stimulated insulin secretion observed after IL-1p
exposure (18).

Although literature on miR-100 is sparse, it has
been implicated in some types of cancer (106, 107, 108)
and tissue differentiation (109, 110, 111). Expression
of circulating miR-100-Sp was significantly decreased
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in obese normoglycemic subjects and subjects with
type 2 diabetes mellitus (T2DM) compared to healthy,
lean individuals. Moreover, in visceral adipose tissue,
expression of miR-100 was lower in obese subjects with
T2DM compared to obese subjects without T2DM (112).

miR-342-3p has been found to be dysregulated in
different cancers (113, 114, 115), SLE (14), obesity (116,
117), diabetic kidney disease (118), T2DM and gestational
diabetes (119). It is involved in beta-cell differentiation
and maturation by targeting FOXAZ2 and MAFB (120).
Furthermore, miR-342-3p was downregulated in human
leukocytes in response to LPS (121) and in Tregs from
T1DM patients (49), suggesting that this miRNA may
be involved in the development of autoimmunity and
inflammation in T1DM patients.

Only a few studies have analyzed miR-1275
expression in different diseases. Due to its downregulation
in certain cancers, miR-1275 has been referred to as
a tumor suppressor (122, 123, 124, 125). In a HuH-7
hepatocarcinome cell line, miR-1275 overexpression
suppressed IGF2BP expression, effectively impairing
tumor cell proliferation, migration, viability and colony
formation (124). The role of this miRNA in autoimmunity
and beta-cell function is unknown.

Bezman and coworkers (126) showed that miR-150
plays a critical role in the innate immune system, and
decreased expression level of miR-150-5p was negatively
associated with GADA autoantibody titers, independently
of hyperglycemia and disease duration (73).

Our bioinformatic analysis suggest that miR-21-5p,
miR-24-3p, miR-100-5p, miR-146a-5p, miR-148a-3p,
miR-150-5p, miR-181a-5p, miR-210-5p, miR-342-3p,
miR-375 and miR-1275 significantly regulate several
mRNAs from pathways related to immune system and
T1DM pathogenesis, such as MAPK, Jak-STAT, NF-KB,
PI3K-AKkt, apoptosis, TNF, TLRs, insulin and TCR signaling
pathways (Figs 3, and ). This might help to raise
hypothesis about genes and pathways under influence of
these circulating miRNAs.

Regarding the pathway analysis methods, there
are many tools in literature that provide support for
this type of investigation. Nonetheless, they are very
similar as they all calculate the enrichment P values
of pathways for a user pre-selected list of genes
using a statistical test and a database with functional
annotation that links genes to biological pathways. In
addition, the hypergeometric test, which we adopted
in our paper, has been widely applied in literature
and previous studies discuss that when identifying
significant pathways, the differences among the
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statistical methods will not be dramatic (127). The
functional annotation has been traditionally performed
in literature using annotations derived either from
Gene Ontology (GO) or KEGG Pathway. KEGG Pathway
Database has less annotated terms compared to GO, but
it covers a wide range of molecular mechanisms and
diseases, providing a graphical description of pathways,
which is an important resource in the interpretation
of results. Thus, bioinformatic tools used in this study
provide robust data, which might be very similar to
those generated using different tools.

In conclusion, thissystematicreview and bioinformatic
analysis suggest that 11 circulating miRNAs (miR-21-5p,
miR-24-3p, miR-100-5p, miR-146a-5p, miR-148a-3p,
miR-150-5p, miR-181a-5p, miR-210-5p, miR-342-3p,
miR-375 and miR-1275) are consistently dysregulated in
T1DM patients. Further studies aiming at clarifying the
specific role of these 11 miRNAs in pancreatic islets and
islet-infiltrating immune cells are needed to shed light if
they are biomarkers of T1DM and which are their specific
roles in beta-cell function.
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