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Abstract

Time delay is known to induce sustained oscillations in many biological systems such as electroencephalogram (EEG)
activities and gene regulations. Furthermore, interactions among delay-induced oscillations can generate complex collective
rhythms, which play important functional roles. However, due to their intrinsic infinite dimensionality, theoretical analysis of
interacting delay-induced oscillations has been limited. Here, we show that the two primary methods for finite-dimensional
limit cycles, namely, the center manifold reduction in the vicinity of the Hopf bifurcation and the phase reduction for weak
interactions, can successfully be applied to interacting infinite-dimensional delay-induced oscillations. We systematically
derive the complex Ginzburg-Landau equation and the phase equation without delay for general interaction networks.
Based on the reduced low-dimensional equations, we demonstrate that diffusive (linearly attractive) coupling between a
pair of delay-induced oscillations can exhibit nontrivial amplitude death and multimodal phase locking. Our analysis
provides unique insights into experimentally observed EEG activities such as sudden transitions among different phase-
locked states and occurrence of epileptic seizures.
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Introduction

In many natural systems, time delay can induce spontaneous

breaking of continuous time translational symmetry and lead to self-

sustained oscillations [1–4]. Such delay-induced oscillations play

important functional roles in biological systems, e.g., human

electroencephalogram (EEG) activities, Cheyne-Stokes respiration,

ten-second oscillations of blood pressure known as the Mayer wave,

mammalian circadian clocks, stem cell differentiation, and somite

(body segments containing the same internal structures) segmenta-

tion in vertebrate embryos [3,5–13]. In many cases, multiple

biological oscillations interact with each other (e.g., in EEG activities

and somite segmentation processes) and lead to complex spatio-

temporal dynamics such as traveling waves and chaotic oscillations

[5–7,10,14–19]. To understand these complex dynamics of

biological systems, various mathematical models have been proposed

[3,6,11–13], but much remains unknown about how complex

dynamics arise from interactions of delay-induced oscillations.

In this study, we develop systematic reduction methods for

coupled delay-induced oscillations. In analyzing dynamical models

of biological systems, reduction methods are known to be

considerably useful in facilitating mathematical treatments

[16,20–22]. The origins of biological complexity such as nonline-

arity, noise effects, and complex network topology are elaborately

incorporated and analyzed using the reduction methods [3,21,22].

So far, reduction methods for dynamical systems with delay have

been mainly restricted to the situation that the time delay exists only

in the interaction terms [23] and not fully utilized in the case that

dominant time delay exists in each oscillator of the network because

of its infinite-dimensional nature. In many biological systems,

however, delayed feedback is the essential cause for the onset of

oscillations, which should be properly taken into account.

Therefore, a reduction theory for delay-induced oscillations, if

successfully developed, would help elucidate how complex biolog-

ical dynamics arise.

In the present paper, we give a systematic derivation of the

reduced dynamical equations for coupled delay-induced oscilla-

tions. In particular, we analyze a cortico-thalamic model [24,25]

of EEG rhythms, described by coupled delay differential

equations, by means of the center manifold reduction as well as

the phase reduction methods. Using the reduced equations, we

investigate the dynamics of the collective rhythms. In earlier

studies, Campbell et al. [26–29] have performed detailed analyses

of symmetrically coupled identical delay-induced oscillators by the

center-manifold theory near the bifurcation point. However,

biological rhythms are generally considered to arise from

interactions of many oscillators, which can be heterogeneous

and far from bifurcation points. Collective dynamics of such

coupled delay-induced oscillators is still an open question. Our

analysis would shed further light on their complex dynamics.
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It has been argued that slow EEG rhythms are generated by

mutual influence between the cortex and the thalamus with delays

in transmission of electrical activities [24,25,30–34]. Because of the

time delay, each local cortical area exhibits self-sustained oscilla-

tions. These local EEG oscillations interact with other areas of the

cortex and constitute a spatially extended dynamical system, which

can exhibit complex spatio-temporal patterns. To account for such

EEG dynamics, Kim and Robinson proposed a cortico-thalamic

model of EEG oscillations described by a second order differential

equation with a linear time-delayed feedback [24,25]. In the present

study, we analyze a generalized system of Kim and Robinson’s

cortico-thalamic model, which describes a network of mutually

interacting delay-induced oscillations, by two reduction methods.

After deriving reduced equations for general networks, we focus on

the simplest two-oscillator situation to elucidate unique properties of

coupled delay-induced oscillations and reveal their nontrivial

dynamics. In particular, we demonstrate amplitude death of

delay-induced oscillations due to mutual coupling and multimodal

phase-locking between delay-induced oscillations. We also show

briefly that the reduction method can be successfully used to analyze

nontrivial collective dynamics of a population of delay-induced

oscillations. On the basis of our analysis, we argue the usefulness of

reduction approaches in understanding biological rhythms.

Results

Model
Kim and Robinson’s cortico-thalamic model of EEG oscilla-

tions was originally defined in spatially extended media [24,25]. It

was shown that the model reproduces several representative EEG

behaviors such as slow waves, h waves, and a waves including

epileptic seizures [25]. In the present study, we consider an

extension of their model to general networks described by

€xxj(t)~c _xxj(t)zajxj(t)zbjxj(t{t0)

zdxj(t)
2zExj(t)

3z
XN

k~1

Cjk½xj(t),xk(t), _xxj(t), _xxk(t)�,
ð1Þ

where xj(t) is a mean firing rate of neurons within each local area

(denoted by j~1, � � � ,N) of the cortex [33,34]; t0 is the time delay;

aj parameterizes the strength of cortico-cortical activities; bj

characterizes cortico-thalamic feedback; c gives the damping rate;

d and E control the nonlinear terms that are originated from the

characteristics of neuronal firing [24]; and the function Cjk

represents interaction between local areas j and k. In this study, we

take aj and bj as variable parameters, while the other parameters

are fixed at c~{2, d~0, E~{10, and t0~8. With these

parameter settings, we can reproduce oscillations with various

amplitudes and frequencies. In addition, setting d~0 makes our

analysis much simpler without loss of generality, as is reported by

Kim and Robinson [24,25].

In the absence of mutual interaction, each local area can exhibit

stable delay-induced limit-cycle oscillations, i.e., it behaves as a

self-sustained oscillator. We focus on the case that such oscillators

are symmetrically and diffusively coupled with each other through

the x and _xx components; namely, the coupling function Cjk is

given in the form

Cjk½xj ,xk, _xxj , _xxk�~Kjk(xk{xj)zLjk( _xxk{ _xxj), ð2Þ

where Kjk and Ljk are coupling intensities of respective compo-

nents between local areas j and k and specify the interaction

network of this model. By this extension of Kim and Robinson’s

original model, we can take anisotropic and complex interactions

of neural networks into account. The model described by Eqs. (1)

and (2) goes back to the original model by Kim and Robinson [24]

by considering regular spatial configurations of the oscillators,

retaining only the coupling term Kjk, and taking a spatial

continuum limit (with appropriate rescaling of time).

Though each individual oscillator has only a single variable, xj ,

it has an infinite-dimensional phase space because of the time

delay, which hampers detailed mathematical analysis. In the

following, we will reduce each oscillator to a low-dimensional

dynamical system and incorporate the interaction term as weak

perturbations. Using the reduced coupled oscillator model with

finite-dimensional phase space, we analyze the dynamics of

mutually interacting delay-induced oscillations.

Linear stability and reduced equations
The cortico-thalamic model Eq. (1) is described by coupled

infinite-dimensional functional differential equations [35]. How-

ever, it is still possible, though technically more involved, to

analyze the linear stability of the stationary state and apply

reduction methods, similar to the case with low-dimensional limit-

cycle oscillators.

Linear stability of stationary state. Let us first consider a

single oscillator and analyze the linear stability of its stationary

state. We omit the oscillator index j and drop the coupling

function Cjk for the moment. It is clear that Eq. (1) has a stationary

solution x(t):0. Let a be a control parameter. Linear stability

analysis with the ansatz x(t)!elt shows that this fixed point is

destabilized when a exceeds a critical value A and that the critical

eigenvalues are given by a purely imaginary and conjugate pair,

l~+iV, determined by a characteristic equation

{V2{iVc{A{be{iVt0~0: ð3Þ

Namely, each oscillator undergoes a Hopf bifurcation with

frequency V at a~A. Because this bifurcation is supercritical

under the condition bv{c=t0 as will be shown by the center

manifold analysis, we expect that a small amplitude limit cycle

branches from the fixed point.

Figure 1 (left panel) shows the stability region of the stationary

solution x(t):0 with respect to the parameters a and b. Let us

decompose the parameter a into the critical value A and a

bifurcation parameter m (i.e., a~mzA). When the bifurcation

parameter m slightly exceeds 0, we observe sinusoidal oscillations

of small amplitude, O(
ffiffiffi
m
p

). As m is increased further, the

waveform of the oscillations becomes increasingly complex,

reflecting the infinite dimensionality due to time delay. These

characteristics are observed in time series and attractors shown in

Fig. 1 (middle and right panels).

Center manifold reduction. Delay differential equations

such as Eq. (1) should be considered as functional differential

equations. The state of the system at time t is described by a

function on ½{t0,0�, x(t)(g)~x(tzg) with g[½{t0,0�. Therefore,

the phase space in which the system state x(t)(g) evolves is a

function space of infinite dimension. Nevertheless, at the Hopf

bifurcation point, a~A, we can split the whole phase space into a

low-dimensional center manifold and the remaining infinite-

dimensional part, and derive a set of ordinary differential

equations describing the reduced dynamics on the center

manifold. This method is usually called the center manifold

reduction. A center manifold reduction method for delayed

dynamical systems is based on Hale’s theory [35]. We apply the

Reduction of Delay-Induced Biological Oscillations
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formulation developed by Campbell et al. [1] as well as by

Wischert et al. [36] to simplify Eq. (1), which is conceptually

similar to the conventional center manifold reduction for ordinary

differential equations but technically more elaborate. We extend

the analysis to coupled delay differential equations with small non-

zero m and incorporate the mutual interaction as perturbations.

For the purpose of creating a stepping stone to more general cases,

we focus on the case that the mutual interaction is sufficiently weak

in the present study. This enables us to develop general

mathematical framework for networks of interacting delay-

induced oscillators. See Materials and Methods for the details of

the derivation. The reduced coupled equations near the Hopf

bifurcation point of the oscillators are given by

_uu1
j (t)

_uu2
j (t)

2
4

3
5~

mjaj Vj

{Vjzmjbj 0

" #
u1

j

u2
j

" #

z E(u1
j )3z

XN

k~1

Kjk(u1
k{u1

j )zLjk(Vku2
k{Vju

2
j )

n o" #
aj

bj

" # ð4Þ

for j~1, � � � ,N, where col(u1
j ,u2

j ) are the coordinates (or amplitudes)

of the j-th oscillator on a two-dimensional center subspace. The

superscript ‘‘1’’ or ‘‘2’’ indicates contravariant components, and does

not mean the first or second power of u. They are related to the

original variables as col(u1
j ,u2

j )~col(xj , _xxj=Vj) at the lowest order.

Real values aj and bj represent basis functions of the dual space of

the center eigenspace (see Materials and Methods).

Furthermore, if we focus on the situation that the natural

frequencies are narrowly distributed around �VV within the order of

O(
ffiffiffi
m
p

), namely, Vj{�VV~O(
ffiffiffi
m
p

), we can derive a further

simplified equation from Eq. (1) by the averaging method [37] as

_uuj(t)~{iVjujz ajzibj

� �
1

2
mjz

3

8
Ejuj j2

� �
ujz

1

2

XN

k~1

Kjk{iLjkVV
� �

uk{uj

� �( )
,
ð5Þ

where we introduced a complex variable uj~u1
j ziu2

j . Note that

the above reduced equations are finite-dimensional ordinary

differential equations with only two dimensions for each oscillator,

in contrast to the original equation (1) whose phase space is

infinite-dimensional. The reduced model described by Eq. (5) is

occasionally called (network version of) the complex Ginzburg-

Landau equation and is widely studied in physics and applied

mathematics [20,21,38].

Phase reduction. The phase reduction method, which

describes a limit-cycle oscillator using only its phase variable by

eliminating the amplitude degrees of freedom, can be adopted

even if the oscillator is far from the bifurcation point. The

necessary condition is that the oscillator has a stable limit cycle and

is only weakly perturbed by the coupling. Although this method is

usually applied to a finite-dimensional limit cycle, we can extend it

to a limit-cycle solution of delay differential equations by

appropriately defining the phase.

We first define an asymptotic phase w[½0,2p� along the

unperturbed limit cycle solution, which increases with a constant

frequency rate v [20,22]. This can easily be performed by

measuring the time needed for the orbit to return to the phase

origin, which we define as the point x~0 with positive _xx on the

limit cycle. A fundamental quantity that characterizes the

dynamical properties of a limit-cycle oscillator is the phase response

curve (PRC), which gives the response of the oscillator phase to an

impulsive stimulus [22,39,40]. When an impulse is applied at some

phase point along the limit cycle, the orbit is kicked off the limit

cycle and then relaxes to it again. During the course of this

relaxation, the phase of the perturbed orbit deviates from that of

the unperturbed orbit, and the asymptotic phase difference

between these orbits gives the phase response of this limit cycle.

Applying impulsive perturbations at varying phases of the limit

cycle and observing the asymptotic phase responses, the PRC can

be measured as a function of the phase.

For sufficiently weak perturbations, the PRC is proportional to

the amplitude of the perturbation, so that the linear response

coefficient, which we call phase sensitivity, is essential. In the present

case, we measure the phase sensitivity function, Z(w), by

perturbing the model (1). Once Z(w) is obtained, we can calculate

respective phase coupling functions CK (wj{wk) and CL(wj{wk)
between the oscillators j and k by convolving them with the time

series of the coupling terms, Kjk(xk{xj) and Ljk( _xxk{ _xxj), for one

period of the limit-cycle oscillation [20,22]. These functions

describe effective phase interaction between weakly coupled

Figure 1. Stability region, time series and attractors of the cortico-thalamic model given by Eq.(1). Left panel shows stable and unstable
regions of a cortico-thalamic model without coupling, Eq. (1). The solid bifurcation curve is obtained from Eq. (3). Points A, B, and C represent the
parameter sets used for the analysis [ A: (a,b)~({0:039,{0:4), B: (a,b)~({1:77,{1:8) and C: (a,b)~({0:039,{2:0) ], where the points A and B
have the same m (equal distance from the stability boundary). Middle panels show the limit cycle oscillations and right panels their attractors at the
parameter sets of A (top), B (middle), and C (bottom).
doi:10.1371/journal.pone.0026497.g001
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oscillators and determine their dynamics. Assuming that all

oscillators have similar characteristics, we can obtain the reduced

coupled phase equations, which describe the phase dynamics of

interacting delay-induced oscillations, as

_wwj(t)~vjz
XN

k~1

½KjkCK (wk{wj)zLjkCL(wk{wj)� ð6Þ

for j~1, � � � ,N. See Materials and Methods for the details.

When we consider two-oscillator systems with symmetric

coupling [(j,k)~(1,2) or (2,1) and Cjk~K(xk{xj)zL( _xxk{ _xxj)],
the dynamics of the phase difference h(t)~w2(t){w1(t) between

the two oscillators can be derived from Eq. (6) as

_hh(t)~DvzKC(a)
K (h)zLC(a)

L (h), ð7Þ

where Dv~v2{v1 is the frequency difference and

C(a)
K (h)~CK (h){CK ({h) and C(a)

L (h)~CL(h){CL({h) are an-

ti-symmetric components of the respective phase coupling functions.

Synchronization properties of the two oscillators can be immedi-

ately derived from this equation as shown in later sections.

Validity of reduced equations near the onset of delay-
induced oscillations

To confirm the validity of the reduced equations derived by the

center manifold and the phase reduction methods, three

comparisons were carried out around the point A in Fig. 1,

(a,b)~({0:039,{0:4), which is near the Hopf bifurcation of the

delay-induced oscillations. We considered two-oscillator systems,

(j,k)~(1,2) or (2,1).

First, the phase sensitivity function Z(w) was obtained in two

different ways: (i) numerical measurement by applying weak impulsive

perturbations to Eq. (1), and (ii) analytical derivation by using the

complex Ginzburg-Landau equation derived by the center manifold

reduction, Eq. (5). Phase sensitivity functions of Eq. (5) with respect to

the perturbations in the real and imaginary components of u can be

analytically derived as Z(cm)
re (w)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
({3E)=(4m)

p
( cos wzb sin w=a)

and Z
(cm)
im (w)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
({3E)=(4m)

p
({ sin wzb cos w=a), respectively

[20]. Projecting the impulsive perturbation onto the center manifold,

an analytical expression of Z(w) can be derived as

Z(w)^aZ(cm)
re (w)zbZ

(cm)
im (w)~ffiffiffiffiffiffiffiffiffiffi

{3E
4m

s
2

({c)½1{Vt0 cot (Vt0)� cos w,
ð8Þ

which is sinusoidal reflecting the circular shape of the limit cycle near

the Hopf bifurcation point of Eq. (1). Figure 2(a) compares Z(w)
calculated in the two different ways, showing good agreement.

Second, the phase coupling functions CK (h) and CL(h) were

also obtained numerically and analytically by convolving the

coupling term Cjk with the phase sensitivity Z(w) (Eq. (21) in

Materials and Methods). Using Eq. (5), the phase coupling

functions can be analytically calculated as

CK (h)~
1

({c)½1{Vt0 cot (Vt0)� sin h, ð9Þ

and

CL(h)~
V

({c)½1{Vt0 cot (Vt0)� ( cos h{1): ð10Þ

These analytical results are compared with the numerical results in

Fig. 2(b). Again, the analytical results and the direct numerical

measurements are in good agreement for both of the phase

coupling functions.

Third, critical values of the coupling strength for phase

synchronization were compared near the point A for values

Figure 2. Numerically and analytically obtained synchronization properties of the coupled systems of delay-induced oscillations.
(a) Phase sensitivity functions Z(w) obtained analytically by center manifold reduction (solid line) and numerically by impulsive perturbation (dots).
(b) Phase coupling functions obtained analytically by center manifold reduction (solid lines) and by numerical convolution (dots). (c) Critical coupling
strength for synchronization of delay-induced oscillations. Green dots show the results of direct numerical simulations of the original delay
differential equations, while blue dots indicate the results of numerical simulations of coupled amplitude equations obtained by the center manifold
reduction. The red line is obtained from the phase coupling function (b).
doi:10.1371/journal.pone.0026497.g002
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obtained by (i) direct numerical simulations of the original delay

differential equations (1), (ii) numerical simulations of the coupled

amplitude equations (4) obtained by the center manifold reduction,

and (iii) analytical calculations from the asymmetric part of the

phase coupling function. We prepared two oscillators exhibiting

equal-amplitude limit cycles with a small frequency mismatch and

introduced weak mutual coupling only through the x-components

as Cjk~K(xk{xj) (see Materials and Methods). We did not

include the coupling through the _xx-components because the phase

coupling function CL(h) obtained in Eq. (10) is symmetric and does

not affect the dynamics of the phase difference (see Eq. (7)).

Figure 2(c) shows the critical coupling strength as a function of the

frequency mismatch. The result based on the center manifold

reduction is almost identical to that obtained by direct numerical

simulations of the original model over the whole plotted range.

Moreover, analytical calculations from the coupled phase equations

(7) with the estimated phase coupling function CK (h) yield almost

the same critical values for relatively weak coupling.

These results indicate that both the center manifold reduction

and the phase reduction are appropriately accomplished near the

point A in Fig. 1. Note that if the parameters (a,b) are far from the

bifurcation point, the phase coupling functions can exhibit higher-

harmonic fluctuations, reflecting complex limit-cycle orbits of

delay-induced oscillations. This leads to an interesting multimodal

phase locking behavior as we will demonstrate later.

We can also use the reduced phase equations to analyze

collective behavior of a population of mutually interacting delay-

induced oscillations. In the Supporting Information, we apply the

phase reduction near the point A in Fig. 1 and demonstrate that

the emergence of macroscopic synchronized state can be

analytically predicted (see Text S1 and Fig. S1).

Amplitude death of oscillations due to mutual coupling
It is known that relatively strong mutual coupling between limit

cycles can induce amplitude death, a phenomenon which means

disappearance of oscillations due to the stabilization of rest states

[41,42]. Here, we show that amplitude death, which has been

observed in low-dimensional coupled limit cycles [41], also occurs

in coupled delay-induced oscillations. Note that this phenomenon

cannot be observed in coupled phase oscillators, i.e., when the

mutual coupling is weak, because the amplitude degree of freedom

is essential. We analytically predict the condition for amplitude

death using the result of the center manifold reduction and verify it

by direct numerical simulations of the original model.

Let us consider a coupled pair of oscillators whose parameters

are at the points A and B in Fig. 1, respectively, interacting

through the x-component, Cjk~K(xk{xj ). The points A and B

have the same bifurcation parameter m, but the point B yields a

larger value of V. Thus, the oscillator B has a higher frequency

than the oscillator A while their amplitudes remain the same (see

Fig. 3a).

The condition for amplitude death can be derived from linear

stability analysis of the fixed point of Eq. (4), col(u1
j ,u2

j )~col(0,0)
for j~1,2. We can obtain the eigenvalues of the fixed point (see

Materials and Methods) as

lj^
aj

2
(m{K)+i Vj{

bj

2
(m{K)

� �
(j~1,2): ð11Þ

Figure 3. Amplitude death of the delay-induced oscillations due to mutual coupling. (a) Time series of delay-induced oscillations at the
parameter sets A and B in Fig. 1 without coupling. (b) Amplitude death observed when the oscillators are coupled with K~0:02. (c) Bifurcation
diagram of coupled delay-induced oscillations. Blue and red points indicate the dynamics of the oscillators at parameter sets A and B, respectively.
The light-yellow plane indicates K~m. The oscillation disappears and the stable fixed point appears at the origin when K exceeds m.
doi:10.1371/journal.pone.0026497.g003
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Hence, if K exceeds m, the real part of lj becomes negative, which

implies the possibility of the amplitude death phenomenon.

Figure 3 shows the results of numerical simulations of the

original model (1) with respect to the coupling strength K . We can

see that the oscillations actually die out when the coupling strength

K exceeds m. Therefore, it is confirmed that amplitude death

actually occurs in systems of coupled delay-induced oscillations as

predicted by the center manifold reduction.

The center manifold reduction can also be used to analyze the

amplitude death effect in a population of coupled delay-induced

oscillations that are distributed around the point A in Fig. 1. See

Text S1 and Fig. S2 for details.

Multimodal phase-locking
The most outstanding property of delayed dynamical systems is

that even a simple equation can exhibit complex behaviors due to

the systems’ infinite dimensionality [3]. Here, we show that the

phase reduction method can be applied to complex delay-induced

oscillations with weak mutual coupling and leads to interesting

quantitative predictions. In particular, we demonstrate phase

synchronization with multiple stable phase-locking points, which

cannot be observed in simple low-dimensional systems.

We consider a coupled pair of two identical oscillators at the

point C in Fig. 1 coupled through the _xx component,

Cjk~L( _xxk{ _xxj) for (j,k)~(1,2) or (2,1). Each oscillator at this

parameter is far from the bifurcation point, and therefore the

center manifold reduction is no longer appropriate. The phase

reduction is, however, still applicable because the oscillator

exhibits a stable limit cycle as shown in Fig. 4(a) for weak mutual

coupling. Dynamics of the phase difference between the oscillators

are derived from Eq. (7) with Dv~0 and K~0. When C
(a)
L (h)~0

and dC(a)
L (h)=dhw0 at some h, the two oscillators can be phase-

locked at this h.

The phase sensitivity function Z(w) obtained numerically by

applying small impulses to the unperturbed oscillator is shown in

Fig. 4(b), and the asymmetric part of the phase coupling function

C
(a)
L (h) calculated from this Z(w) as well as the time series of _xx(t)

for one period of the limit cycle is shown in Fig. 4(c). Reflecting the

relatively complex waveform of the delay-induced limit cycle, Z(w)
at the parameter C is not simply sinusoidal but exhibits higher-

harmonic fluctuations. In Fig. 4(c), we can identify five points that

satisfy C(a)
L (h)~0 and dC(a)

L (h)=dhw0, implying that phase

synchronization with five different values of the stable phase shift

is possible. From this figure, we can predict five basins of the initial

phase difference that will eventually synchronize at each value of

the stable phase shift.

In order to confirm the above prediction based on the estimated

phase coupling function, we performed direct numerical simula-

tions of the original model Eq. (1) with fixed coupling strength

L~0:02 from varying initial phase differences. Figure 4(d) shows

the transient dynamics of the phase differences, where uniformly

distributed initial phase differences converge to the five stable

points perfectly following the prediction of the reduced phase

equations. Thus, the phase reduction approach works nicely for

delay-induced oscillations and provides interesting results.

Discussion

In this study, we applied center manifold and phase reduction

theories to a system of interacting delay-induced oscillations. We

could successfully reduce the dynamics of the system to low-

dimensional coupled ordinary differential equations without delay,

namely, the coupled amplitude equations (5) and the coupled

phase equations (6). Generally, analytical treatments of dynamical

systems with delays had been restricted due to their infinite-

dimensional nature. We demonstrated that the two principal

reduction methods can provide analytical predictions for interact-

ing delay-induced oscillations. We successfully derived the network

version of the complex Ginzburg-Landau equation and the phase

equation known in physics and applied mathematics and whose

dynamics can be studied in detail. We then showed that the effect

of external perturbations and couplings are well described by

reduced equations that illustrate validity of the reduced equations.

Furthermore, synchronization properties of identical and non-

identical oscillators were appropriately evaluated by the complex

Ginzburg-Landau equation near the bifurcation point as well as by

the phase equation for weak coupling regimes (Figs. 2 and S1).

These results give us analytical understanding of the collective

dynamics of coupled delay-induced oscillations, even with

inhomogeneity, which is necessary to understand real biological

rhythms. Thus, our results will provide a useful starting point for

understanding and controlling complex behaviors exhibited by

interacting delay-induced oscillations.

In the cortico-thalamic model that we have analyzed, the

variable x(t) corresponds to scalp EEG voltages, which represent

population dynamics of a number of neurons in the cortex [33].

For example, it is known that epileptic seizures are pathological

dynamical states in which the neurons in the cortex are excessively

synchronized, and suppression of such excess synchronization is an

important problem in clinical medicine. It is experimentally

demonstrated that deep brain stimulation (DBS) in which high

frequency electrical stimulation is administrated to a sub-cortical

target area can modulate the seizure threshold effectively [43].

However, detailed mechanisms of how DBS works are still

unknown. The target area of DBS includes the thalamus and

subthalamic nucleus that affects the thalamus via the substantia

nigra pars reticulata. Therefore, we should investigate a cortico-

thalamic model, rather than merely cortical models, for better

understanding of the mechanisms of DBS. Detailed analysis of the

reduced equations derived from the cortico-thalamic model may

provide insights into electrical activities in the brain.

Our results on the amplitude death phenomenon suggest that

interactions between delay-induced oscillations with different

frequencies may affect the oscillations’ stabilities and modulate

their amplitudes. In the case of EEG, oscillations with various

frequencies ranging from a few Hz (d wave) to up to 80 Hz (c
wave) are observed. Therefore, interaction between EEG

oscillations with different frequencies might significantly affect

the stability of their oscillations. This implication is supported by

the report that EEGs of epileptic patients changes their properties

preceding the onset of seizures (i.e., synchronization) over a wide

frequency range [17]. Further studies on the cortico-thalamic

model with the help of the reduction methods for interacting

delay-induced oscillations might provide useful insights into the

interactions of wide frequency oscillations in EEG, including

epileptic seizures.

Regarding the phase reduction approach, the PRCs of delay

differential equations have been measured in several studies, e.g.,

for models of circadian rhythms [44–46]. However, the collective

dynamics of interacting delay-induced rhythms have not been

studied in detail with this approach. Our present study

demonstrates the utility of phase reduction for analyzing coupled

systems of delay-induced oscillations. In particular, we revealed

interesting multimodal phase-locking between delay-induced

oscillations, which seems to be one of the outstanding features in

interacting delay-induced complex oscillations far from the

bifurcation point. Complex oscillations with higher harmonics

similar to that we found at the parameter C in Fig. 4(a) are also

Reduction of Delay-Induced Biological Oscillations

PLoS ONE | www.plosone.org 6 November 2011 | Volume 6 | Issue 11 | e26497



Figure 4. Multimodal phase-locking. (a) Limit cycle oscillation at the parameter set C in Fig. 1. (b) Phase sensitivity function Z(h) of the limit-cycle
oscillation shown in (a). (c) Asymmetric part of the phase coupling function C

(a)
L (h). Each of the five colors indicates the predicted basin that

converges to the same stationary phase difference. (d) Initial and transient phase differences for multimodal phase-locking of the coupled identical
oscillators with L~0:02. Initial phase differences plotted by the same color converge to the same stationary phase difference.
doi:10.1371/journal.pone.0026497.g004
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observed in other models of nonlinear phenomena and sometimes

called mixed-mode oscillations [47,48]. Our results show that the

time delay induces such complex mixed-mode oscillations and

yields complex functional forms of C(a), which leads to multimodal

phase-locking.

The result of multimodal phase-locking implies that signals in

different regions of the brain may easily change their phase

relationships with others, even without transmission delays in the

mutual coupling. For example, Roelfsema’s experiment [15]

showed that synchronization between cortical electrical activities

suddenly alters between the in-phase locked state and the phase-

locked state with a p=2 phase difference. Ito also reported similar

sudden alternations in phase synchronization of human EEG

signals [14]. Our result suggests the possibility that such

alternations are caused by noise-induced transitions between

different multimodal phase-locking states.

It is widely known that real neuronal networks have delays in

synaptic and axonal transmission, and mathematical models with

delayed coupling have been extensively analyzed [26–29,49–54].

In contrast, we focused on the interacting slow rhythms of the

EEG that arise when interaction delays between the cortex and the

thalamus are dominant (and thus when coupling delays can be

negligible). We considered interacting oscillators with different

characteristics and derived coupled amplitude and phase equa-

tions for general networks. Although we mainly focused on two-

oscillator cases as illustrative examples, the reduced equations are

also applicable to the population dynamics of delay-induced

oscillations (Text S1 and Figs. S1 and S2) even with general

networks. Further studies on them will provide a wealth of

interesting spatio-temporal dynamics of interacting delay-induced

oscillations.

For example, we may consider arrays of neuronal populations

with local interactions between neighbors using the same

reduction methods. The reduced equations would typically exhibit

wave propagation phenomena, which may explain some features

of the EEG dynamics observed in the brain. Moreover, taking into

account detailed neuronal network structures as well as transmis-

sion delays within a population [52–55] would also lead to

interesting complex dynamics and may provide deeper under-

standing of the brain dynamics.

There are many biological systems in which self-sustained

oscillations arise from delayed feedback and mutually interact with

other oscillations. Therefore, we believe that our analysis will lead

to a deeper understanding of various biological oscillations with

delay, such as EEG dynamics (e.g., epileptic seizure and

information processing between cortical regions), blood pressure

regulation, and somite segmentations in vertebrate embryos.

Materials and Methods

Center manifold reduction
To carry out center manifold reduction of Eq. (1) in the vicinity

of the Hopf bifurcation, we assume that all oscillators are close to

the bifurcation point and the deviations of their bifurcation

parameters from the critical value fmjg are small, i.e., mj~O(m).
To extend the center manifold reduction to the neighborhood of

the bifurcation point, we define three dynamical variables (x1{3
j )

including the bifurcation parameter mj as

xj(t)~x1
j (t), _xxj(t)~x2

j (t), mj~{E(x3
j (t))2: ð12Þ

Equation (1) with diffusive (i.e., linearly attractive, as given below)

coupling terms given in Eq. (2) can be expressed with these three

dynamical variables as

d

dt

x1
j (t)

x2
j (t)

x3
j (t)

2
6664

3
7775~

0 1 0

Aj c 0

0 0 0

2
664

3
775

x1
j (t)

x2
j (t)

x3
j (t)

2
6664

3
7775z

0 0 0

bj 0 0

0 0 0

2
664

3
775

x1
j (t{t0)

x2
j (t{t0)

x3
j (t{t0)

2
6664

3
7775zFjz

XN

k~1

Gjk

x1
k(t){x1

j (t)

x2
k(t){x2

j (t)

x3
k(t){x3

j (t)

2
6664

3
7775,

ð13Þ

where Aj is the critical value of the parameter aj (i.e., aj~mjzAj ),

Fj represents the nonlinear terms given by

Fj~

0

Ex1
j (t)½{(x3

j (t))2z(x1
j (t))2�

0

2
64

3
75, ð14Þ

and Gjk is a matrix of the coupling constants given by

Gjk~

0 0 0

Kjk Ljk 0

0 0 0

2
64

3
75: ð15Þ

From Eq. (13) with Eq. (14), it is clear that x1
j balances with

x3
j when the system exhibits limit-cycle oscillations because

x1
j is of the same order as x3

j . Following Hale [35], we define

x
(t)
j (g)~col(x1

j (tzg),x2
j (tzg),x3

j (tzg)) in the infinite-dimension-

al phase space and decompose it into the center eigenspace

component and its complement as

x
(t)
j (g)~Wj(g)uj(t)zhj , ð16Þ

where uj~col(u1
j ,u2

j ,u3
j ) represents coordinates in the three-

dimensional center eigenspace. Then, we obtain the basis functions

of the center eigenspace as

Wj(g)~

cosVjg sinVjg 0

{Vj sinVjg Vj cosVjg 0

0 0 1

2
64

3
75, ð17Þ

and the corresponding dual basis as

Y j (j)~

(ajVjzbjc) sinVj jz({ajczbjVj ) cosVjj {bj sinVj jzaj cosVj j 0

(bjVj{ajc) sinVj j{(bj czajVj ) cosVjj aj sinVj jzbj cosVjj 0

0 0 1

2
64

3
75, ð18Þ

where aj~lj=f(lj)2z(mj)
2g, bj~mj=f(lj)2z(mj)

2g with lj~

({czbj t0 cosVj t0)=2, mj~(2Vj{bj t0 sinVj t0)=2. When x
(t)
j (g)

is on the center manifold, the order of hj is O(juj j2). The reduced low-

dimensional equation for uj(t) can be derived in the form

d

dt
uj(t)~Bjuj(t)zYj(0)fFj Wj(0)uj(t)zhj

� �

z
XN

k~1

Gjk Wk(0)uk(t){Wj(0)uj(t)zhk{hj

� �
g,

ð19Þ

(18)
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where

Bj~

0 Vj 0

{Vj 0 0

0 0 0

2
64

3
75: ð20Þ

Assuming that the coupling intensities are of the same order as m,

(i.e., Kjk~O(m) and Ljk~O(m)), we can obtain the center

manifold equation up to the third order in u. Fortunately, we do

not need to calculate h because it vanishes in the third-order

equation when d~0. Returning to mj again from u3
j , we arrive at

the reduced amplitude equation given as Eq. (4). Using Eq. (4),

we can analyze the system much more easily, because it does not

contain delay terms anymore.

We can further bring the above equation into the complex

Ginzburg-Landau equation when the differences in Vj are narrowly

distributed within the range of �VV+O(
ffiffiffi
m
p

). Adopting the averaging

method [37], we can derive a simple symmetric form as given in Eq.

(5). This complex Ginzburg-Landau equation clearly indicates

several important characteristics of Eq. (1). First, the Hopf

bifurcation is supercritical in the region shown in Fig. 1 because

Ev0 and ajw0 when bjvc=t0~{0:25. Second, this supercritical

Hopf bifurcation yields a circular limit cycle of uj(t) whose

amplitude is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mj=({3E)

q
, which is approximately equivalent to

that of xj in this case (see Eq. (16)), and whose oscillation period is

2p=Vj . Third, the relaxation time constant of a perturbed orbit to

return to the limit-cycle attractor is characterized by (ajmj)
{1.

These predictions are confirmed in our numerical calculations of

the original equation near the bifurcation point.

Phase coupling functions
The phase sensitivity function Z(w) with respect to perturbations

in the model (1) can be obtained analytically from the complex

Ginzburg-Landau equation or numerically from direct numerical

simulations of the original model. The time series of the coupling

terms Kjk(xk{xj) and Ljk( _xxk{ _xxj) can also be obtained analyti-

cally or numerically for one period of the limit-cycle oscillation,

T~2p=�vv, where �vv is the mean frequency of the two oscillators.

The phase coupling functions can be calculated as the convolutions

of the phase sensitivity functions and the coupling terms [20] as

CK (h)~
1

T

ðT

0

Zj(�vvt)(xk tzh=�vvð Þ{xj(t))dt,

CL(h)~
1

T

ðT

0

Zj(�vvt)( _xxk tzh=�vvð Þ{ _xxj(t))dt,

ð21Þ

which describe effective phase interactions between the two

oscillators.

Critical coupling strength
We prepare two oscillators with the same amplitude but whose

frequencies are slightly different, and we then calculate the critical

coupling strength for the phase synchronization. It is generally not

easy to find appropriate values for parameters of the delay

differential equation that satisfy such a condition, but in the

present case, it is easily achieved using the results of the center

manifold reduction ((Eqs. (3),( 5), and ( 16)). We choose the

distances of the two oscillators from the respective bifurcation

points as m~mA, and their frequencies as V~(1+D=2)VA, where

mA and VA are the bifurcation parameter and frequency at the

point A and D is the degree of frequency mismatch. The

parameter sets (a, b) satisfying the above conditions are inversely

determined from Eq. (3).

The critical values of the coupling strength for the synchroni-

zation are obtained by three methods, (i) direct numerical

simulations of the original delay differential equations (1), (ii)

numerical simulations of the coupled amplitude equations (4)

obtained by the center manifold reduction, and (iii) analytical

calculations using the asymmetric part of the phase coupling

function, C
(a)
K (h)~CK (h){CK ({h), where the maximum value of

jC(a)
K (h)j gives the slope of the critical coupling strength (Fig. 2(c)).

In numerical simulations, we determined the synchronization

transition by comparing the frequencies of the oscillators averaged

over 1,000 rotations.

Theoretical analysis for amplitude death
The condition for amplitude death can be derived from linear

stability analysis of the fixed point of Eq. (4), col(u1
j ,u2

j )~col(0,0)
for (j~1,2). The matrix corresponding to the linear part of Eq. (4)

under the condition of Cjk~K(xk{xj) for (j,k)~(1,2) or (2,1)
can be decomposed as

M~M0zDM~

0 Vj 0 0

{Vj 0 0 0

0 0 0 Vk

0 0 {Vk 0

2
666664

3
777775

z

aj(m{K) 0 ajK 0

bj(m{K) 0 bjK 0

akK 0 ak(m{K) 0

bkK 0 bk(m{K) 0

2
666664

3
777775:

ð22Þ

The left and right eigenvectors of M0 turn out to be

U�~
1ffiffiffi
2
p

1 {i 0 0

1 i 0 0

0 0 1 {i

0 0 1 i

2
6664

3
7775,U~

1ffiffiffi
2
p

1 1 0 0

i {i 0 0

0 0 1 1

0 0 i {i

2
6664

3
7775: ð23Þ

Then, the perturbed eigenvalues Eq. (11) can be obtained from the

diagonal components of U�MU .

Supporting Information

Text S1 Population dynamics of delay-induced oscilla-
tions.

(PDF)

Figure S1 Kuramoto transition in a population of delay-
induced oscillations. A: Distribution of the parameter sets

(aj ,bj) used in the numerical simulations. B: Time series of

K=Kc~0 (top) and K=Kc~2:5 (bottom). The x components of 10
representative oscillators (chosen randomly) are plotted. C: The

order parameter R vs. the coupling strength K . Macroscopic

coherent rhythms emerge at K~Kc.

(TIF)

Figure S2 Amplitude death in a population of delay-
induced oscillations. A: Distribution of the parameter sets

(aj ,bj). B–D: Snapshots of all oscillators (top) and time series of 10
representative oscillators (bottom) at different values of the
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coupling strength M (M~0:7 in B, M~0:9 in C, and M~1:1 in

D). The amplitude death occurs when M exceeds 1.

(TIF)
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