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The hyperinsulinemia/hyperammonemia (HI/HA) syn-
drome—the secondmost common form of congenital hyper-
insulinism—is a rare autosomal dominant disease manifested
by hypoglycemic symptoms and elevated serum ammo-
nia triggered by fasting or high-protein meals (1). In
1955, Cochrane et al. described a child and her father, both
with hypoglycemia that was aggravated by consumption
of a low-carbohydrate, high-protein diet (2). Subsequently,
another group identified the gene GLUD1. This gene, lo-
cated on chromosome 10q23.3, is composed of 13 exons
and regulates mitochondrial enzyme glutamate dehydro-
genase (GDH) (3). The GDH enzyme catalyzes glutamate
metabolism and plays important roles in the regulation of
amino acid—stimulated insulin secretion in B-cells, modu-
lation of amino acid catabolism in hepatocytes, and ammo-
niagenesis in the brain (4). A total of 14 amino acid residues
affected by GDH-activating mutations has been identified
in patients with the HI/HA syndrome (5). GDH activity also
is subject to complex regulation by GTP, ADP, and leucine
(6). For example, the flux of glutamate into the tricarboxylic
acid cycle for energy generation is modulated by the mito-
chondrial energy potential, which, in turn, is controlled by
the ratio of GTP to ADP. When the energy potential is high,
amino acid oxidation is not required, and GDH enzyme
activity shuts down. When energy potential is low, GDH
is activated to sustain energy generation through oxidation
of amino acids (4). Interestingly, epigallocatechin gallate,
a component of green tea, has been shown to be a potent
allosteric inhibitor of GDH enzyme activity (7).

Insulin secretion is upregulated through increased
cellular phosphate energy potential, which is manifested

as an increase in the ATP/ADP ratio. Elevated ATP/ADP
concentrations promote closing of plasma membrane
Karp channels, resulting in pancreatic (-cell membrane
depolarization. This voltage change across the cell mem-
brane opens voltage-gated calcium (Ca”*) channels, which
promote insulin granule exocytosis (8). For example, in
pancreatic B-cells, the elevated levels of ATP promoted by
high intracellular a-ketoglutarate lead to hyperinsuline-
mia and an increased propensity for hypoglycemia. Simi-
larly, a decrease in intracellular N-acetylglutamate leads to
inactivity of carbamoyl phosphate synthetase—a ligase
mitochondrial enzyme involved in the production of
urea—which can cause an overproduction of ammonia (9).
Thus in patients with HI/HA syndrome, enhanced insulin
secretion by pancreatic -cells is driven by increased GDH
activity in conjunction with available glucose and amino
acids (Fig. 1). The importance of enhanced GDH activity is
underscored by features of HI/HA syndrome, where a dom-
inant mutation causes loss of inhibition of GDH enzyme
activity that is normally exerted by GTP and ATP (10). In-
deed, H454Y transgene pancreatic expression was confirmed
by increased GDH enzyme activity and decreased sensitivity
to GTP inhibition in islets (11). Leucine levels serve as an
indicator of increases in amino acid supply following a high-
protein feeding in mice with the H454Y mutation of GDH.
The activation of oxidation of amino acids through trans-
amination to glutamate and then into the tricarboxylic acid
cycle via GDH causes an increase in the ATP/ADP ratio and
ultimately triggers insulin release (1) (Fig. 1). This pathway
can be activated in the absence of glucose when the phos-
phate potential is low. This is because a low ATP/ADP ratio
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Figure 1—GDH regulates insulin secretion in pancreatic B-cells in
HI/HA syndrome. The elevated ATP concentration in the B-cell
induced by amino acids closes the plasma membrane Katp chan-
nels, resulting in the depolarization of the membrane potential.
This voltage change across the membrane opens voltage-gated
Ca?* channels and then leads to insulin release. However, ATP
production from glucose metabolism inhibits the GDH activity,
which is involved in the glutamate metabolism and plays important
roles in the regulation of amino acid—stimulated insulin secretion
in pancreatic B-cells. G6P, glucose-6-phosphate.

increases glutaminolysis and sensitizes GDH to stimula-
tion by leucine (12). As noted above, the H454Y trans-
gene in islets resulted in higher insulin secretion in
response to glutamine alone as well as a twofold greater
GDH flux. High glucose inhibited both glutaminase and
GDH flux, and leucine could not override this inhibition
(1). Li et al. suggested that their results indicate that
GDH functions predominantly in glutamate oxidation
rather than glutamate synthesis in islets, and that
this flux is tightly controlled by glucose (1). These data
also suggest that patients with HI/HA syndrome should
consume carbohydrates preferentially to protein to pre-
vent the protein-induced hyperinsulinism and hypogly-
cemic symptoms.

In this issue of Diabetes, Kibbey et al. (13) examine
the effects of fasting and amino acids on glucose, insulin,
and glucagon levels in mice with mitochondrial GTP
(mtGTP)-insensitive mutations in GDH?4°*Y, This study
convincingly demonstrates that the H454Y mice had
fasting hypoglycemia despite the fact that their plasma
insulin concentrations were similar to controls. Both
glucose- and glutamine-stimulated insulin secretion were
severely impaired, and the lack of a glucagon response
during hypoglycemic clamps showed impaired counterreg-
ulation in the mutated H454Y mice. Conversely, acute
pharmacologic inhibition of GDH activity restored both
insulin and glucagon secretion and normalized glucose tol-
erance in perfused islets isolated from these mice. These in
vivo studies identify a physiologically relevant role for
GDH in the B-cell mitochondria that controls a-cell release
of glucagon. Furthermore, the relevance of this model
is supported by the observation that hypoglycemia may
occur as a consequence of diminished glucagon release
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from mtGTP insensitivity in children with GDH"*>*¥

mutation.

Overall, these new and interesting data highlight
a central role of the mtGTP-GDH-glucagon axis in glucose
homeostasis, and they have the potential to be a transla-
tionally relevant rodent model. One caveat with respect to
the clinical utility of this model is the fact that insulin
concentrations are not always elevated in HI/HA patients,
even during hypoglycemia. In support of the utility of their
model, the authors cited work (ref. 24 in [13]) supporting
their notion that hypoglycemia could develop without
increases in insulin secretion. Indeed, in that study, insulin
secretion increased under protein tolerance test conditions.
As discussed above, GDH™4*4Y transgenic islets manifested
decreased leucine- and glutamine-stimulated insulin secre-
tion with glucose stimulation; this is discordant with the
low insulin response following glutamine stimulation in
the current study (13). A second caveat concerns studies
supporting the concept that amino acids, especially
branched-chain amino acids such as leucine, may enhance
the mammalian target of rapamycin (mTOR) signaling
pathway. This may act as a double-edged sword in the
maintenance of B-cell function and glucose metabolism
(14). Initially, mTOR signaling positively regulates -cell
function and insulin secretion (15). However, chronic acti-
vation of mTOR signaling increases insulin resistance in
islets via feedback reductions of insulin receptor substrate
1/2 metabolic signaling (15). It is possible that mTOR
activation promotes GDH-regulated insulin release from
B-cells in patients with HI/HA syndrome. Finally, Kibbey
et al. did not address the complex cross talk between islet
o- and B-cells in the reciprocal regulation of insulin and
glucagon release. The a-cell is electrically active, which
allows opening of Ca”* channels and glucagon exocytosis
under physiological conditions of hypoglycemia. However,
the ability of low glucose to stimulate a-cell secretion of
glucagon requires an initial increase in insulin levels from
the B-cell followed by insulin deprivation in presence of
low glucose (16). This may help explain the role of the
mtGTP-GDH-glucagon axis in glucose homeostasis.

Despite these limitations, the new study by Kibbey et al.
(13) identifies a physiologically relevant role for the mito-
chondrial GDH enzyme in 3-cell modulation of a-cell se-
cretion of glucagon. It also identifies a putative mechanism
by which hypoglycemia may occur as a consequence of
diminished glucagon release. Obviously, further studies
are warranted to further elucidate cellular and molecular
mechanisms involved in the cross talk of a- and B-cells
among patients with the HI/HA syndrome and the
GDH"**' mutation.
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